
Boost Continuous Formal
Verification in Industry

Felipe R. Monteiro
Mikhail R. Gadelha

Lucas C. Cordeiro

1

2

Consumer electronic products must be
as robust and bug-free as possible,
given that even medium product-return
rates tend to be unacceptable

Not only
safety-critical

systems

3

Consumer electronic products must be
as robust and bug-free as possible,
given that even medium product-return
rates tend to be unacceptable

- “Mozilla browser has around 20,000 open bugs”
Amir Michail, ICSE, 2005.

4

Consumer electronic products must be
as robust and bug-free as possible,
given that even medium product-return
rates tend to be unacceptable

- “Engineers reported the static analyser Infer was key to build a
concurrent version of Facebook app to the Android platform.”

Peter O’Hearn, FLoC, 2018.

5

- “The majority of vulnerabilities are caused by developers inadvertently
inserting memory corruption bugs into their C and C++ code. As
Microsoft increases its code base and uses more Open Source Software
in its code, this problem isn’t getting better, it’s getting worse.”

Matt Miller, Microsoft Security Response Centre, 2019.

6

“Formal automated reasoning is one of
the investments that AWS is making in
order to facilitate continued simultaneous
growth in both functionality and security.”

Byron Cook, FLoC, 2018.

7

“As analysis-tool developers, we must
measure our success in terms of defects
corrected, not the number presented to
developers. This means our responsibility
extends far beyond the analysis tool
itself.”

Sadowski et al., ACM Comm., 2018.

8

“There has been a tremendous amount of
valuable research in formal methods, but
rarely have formal reasoning techniques
been deployed as part of the development
process of large industrial codebases.”

Peter O’Hearn, FLoC, 2018.

Integrate formal verification techniques
into the workflow of the main

software development methodologies

Our main vision is to…

9

Software model checking techniques
combined with DevOps culture, particularly,

continuous integration

We focus on…

10

Software model checking techniques
combined with DevOps culture, particularly,

continuous integration

We focus on…

11

“The main challenge is scalability: real-world software systems not only
include complex control and data structure but depend on much "context"
such as libraries and interfaces to other code, including lower-level
systems code. As a result, proving a software system correct requires
much more effort, knowledge, training, and ingenuity than writing the
software in trial-and-error style.”

E. M. Clarke et al., Handbook of Model Checking, 2018.

Continuous Formal Verification

12

- “Continuous Formal Verification.” Formal verification of s2n, the open-source TLS
implementation used in numerous Amazon services.

Chudnov et al., 2018.

- “Continuous Reasoning.” Formal reasoning about a (changing) codebase is done in a fashion which
mirrors the iterative, continuous model of software development that is increasingly practiced in industry.

O’Hearn et al., 2005.

- “Continuous Verification.” Detect design errors as quickly as possible by exploiting
information from the software configuration management system.

Cordeiro et al., 2010.

- “Continuous Verification.” Adoption of verification activities throughout the development
process rather than relying on a testing phase towards the end of development.

Chang et al., 1997.

Continuous Formal Verification

13

- “Continuous Formal Verification.” Formal verification of s2n, the open-source TLS
implementation used in numerous Amazon services.

Chudnov et al., 2018.

- “Continuous Reasoning.” Formal reasoning about a (changing) codebase is done in a fashion which
mirrors the iterative, continuous model of software development that is increasingly practiced in industry.

O’Hearn et al., 2005.

- “Continuous Verification.” Detect design errors as quickly as possible by exploiting
information from the software configuration management system.

Cordeiro et al., 2010.

- “Continuous Verification.” Adoption of verification activities throughout the development
process rather than relying on a testing phase towards the end of development.

Chang et al., 1997.

Continuous Formal Verification

14

I. Decompose software systems into submodules of manageable complexity.
Chaki et al., ICSE, 2003.

II. Design verification tasks for each submodule using general inputs, e.g., taking
advantage of symbolic execution.

Cadar et al., ICSE, 2011.

III. Given a code change, we must compute the blast radios in the software system
and run all verification tasks for the relevant modules.

Fedyukovich et al., TACAS, 2013.

IV. Report results at diff-time with witnesses for failed verification tasks.
Beyer et al., ICSE, 2004.

15

…

version 2.0

Analytics Team
Development Team

Implement feature
Build and
test locally

Update
regression tests Validate

Deployment Team

SCM

Regression tests

Source code

Continuous
Integration

Server

Fetch
changes

Continuous	 formal	verification

Commit
changes

Report tests Review tooling

Build artifacts
version 1.0

Update
checking

Regression test
Generalization

Model checking
regression tests

Test case
generation from
counterexamples

16

…

version 2.0

Analytics Team
Development Team

Implement feature
Build and
test locally

Update
regression tests Validate

Deployment Team

SCM

Regression tests

Source code

Continuous
Integration

Server

Fetch
changes

Continuous	 formal	verification

Commit
changes

Report tests Review tooling

Build artifacts
version 1.0

Update
checking

Regression test
Generalization

Model checking
regression tests

Test case
generation from
counterexamples

I. Decompose software systems into submodules of manageable complexity.
Chaki et al., ICSE, 2003.regression/unit testing

17

…

version 2.0

Analytics Team
Development Team

Implement feature
Build and
test locally

Update
regression tests Validate

Deployment Team

SCM

Regression tests

Source code

Continuous
Integration

Server

Fetch
changes

Continuous	 formal	verification

Commit
changes

Report tests Review tooling

Build artifacts
version 1.0

Update
checking

Regression test
Generalization

Model checking
regression tests

Test case
generation from
counterexamples

II. Design verification tasks for each submodule using general inputs, e.g., taking advantage
of symbolic execution.

Cadar et al., ICSE, 2011.
model checking + symbolic execution

18

…

version 2.0

Analytics Team
Development Team

Implement feature
Build and
test locally

Update
regression tests Validate

Deployment Team

SCM

Regression tests

Source code

Continuous
Integration

Server

Fetch
changes

Continuous	 formal	verification

Commit
changes

Report tests Review tooling

Build artifacts
version 1.0

Update
checking

Regression test
Generalization

Model checking
regression tests

Test case
generation from
counterexamples

III. Given a code change, we must compute the blast radios in the software system and run all
verification tasks for the relevant modules.

Fedyukovich et al., TACAS, 2013.
update checking

19

…

version 2.0

Analytics Team
Development Team

Implement feature
Build and
test locally

Update
regression tests Validate

Deployment Team

SCM

Regression tests

Source code

Continuous
Integration

Server

Fetch
changes

Continuous	 formal	verification

Commit
changes

Report tests Review tooling

Build artifacts
version 1.0

Update
checking

Regression test
Generalization

Model checking
regression tests

Test case
generation from
counterexamples

IV. Report results at diff-time with witnesses for failed verification tasks.
Beyer et al., ICSE, 2004.test case generation

20

Open challenges

Continuous Formal Verification

i. Modularity and complexity must be treated
differently based on the software project

API vs. Systems

ii. Different properties required different
approaches

Temporal Properties vs. Functional Properties

iii. Most of the software projects do not have a
formal specification

Running Example

21

- Core c99 package for AWS SDK for C.
Includes cross-platform primitives, configuration, data structures, and error
handling.

- It already contains 171 proof harnesses, which were manually developed
So how can we scale this process?

Generate proof harnesses from regression tests

22

Initialize inputs

Check multiple scenarios

Generate proof harnesses from regression tests

23

Initialize inputs

Check all possible scenarios

Generate proof harnesses from regression tests

24

Generate proof harnesses from regression tests

25

Generate proof harnesses from regression tests

26

Generate proof harnesses from regression tests

27

Generate proof harnesses from regression tests

28

Generate proof harnesses from regression tests

29

Predicate example

Generate proof harnesses from regression tests

30

Continuous Integration

31

Open challenges

Automatically generate proof
harnesses from regression tests

i. Deal with false negatives as the non-
deterministic choice of values for program
variables may force the exploration of paths
that are infeasible in the original program.

ii. One may combine techniques to
automatically generate tests based on
counterexamples or source code.

iii. We will also increase the power of this
analysis by using conditional verifiers.

Checking for Relevant Code Changes

32

- The equivalence check will happen in two steps:

(1) fast and imprecise abstract syntax tree (AST) structural equivalence check;

(2) slow and precise formal check e.g. bounded model checking (BMC).

Checking for Relevant Code Changes

33

- The equivalence check will happen in two steps:

(1) fast and imprecise abstract syntax tree (AST) structural equivalence check;

(2) slow and precise formal check e.g. bounded model checking (BMC).

Checking for Relevant Code Changes

34

- The equivalence check will happen in two steps:

(1) fast and imprecise abstract syntax tree (AST) structural equivalence check;

(2) slow and precise formal check e.g. bounded model checking (BMC).

We avoid this

35

Open challenges

Efficiently detect relevant code
changes and compute blast radius

i. There are many techniques that could be
applied to perform equivalence checking
such as SYMDIFF and CORK tools or
through directed incremental symbolic
execution (DiSE).

ii. Compare update checking with or tree diffs.

36

Conclusions

We make a call to the FM
community to contribute to
CFV, an approach with the
potential to detect software
vulnerabilities at scale

i. We are currently developing an automated
software tool to tackle the key challenges of
equivalence checking and test case
generalization, so it can be applied to large
open-source projects.

ii. We are also working in close collaboration
with software developers at Samsung with the
goal of integrating our automated reasoning
tool into their workflow, thus increasing the
adoption of formal methods in industry.

Boost Continuous Formal Verification in Industry
Position Paper

Felipe R. Monteiro, Mikhail R. Gadelha, and Lucas C. Cordeiro

10th Workshop on Tools for Automatic Program Analysis
26th Static Analysis Symposium

3rd World Congress on Formal Methods

37

Federal University
of Amazonas

SIDIA Instituto de
Ciência e Tecnologia

University of
Manchester

