
1

EBF 4.2: Black-Box Cooperative

Verification for Concurrent Programs

Fatimah Aljaafari, Fedor Shmarov, Edoardo Manino,

Rafael Menezes, Lucas Cordeiro

University of Manchester

Department of Computer Science

• Concurrency is prevalent in present-day software
systems.

➢ computer games

➢ ticket reservation systems

➢ online banking

➢ auto-pilots

➢ …

• Ensuring the correctness and safety of concurrent
programs is crucial
– Software failures may lead to significant financial losses and affect

people’s well-being.
2

Introduction

Verification of concurrent programs

3

Testing and verifying concurrent programs is an
inherently difficult task

The main idea of cooperative verification is to implement a

communication interface between different tools, which allows
the exchange of partial verification results

• Different possible threads’ interleavings make the program

execution non-deterministic:
• Some bugs may occur only for a specific thread's order

• Existing techniques often have various theoretical and practical

limitations

4

EBF Cooperative Approach

1. https://github.com/fatimahkj/EBF

In EBF we implement an open-source1 tool combining
BMC and fuzzing

BMC

Fuzzer

A
g

g
re

g
a

ti
o

n

seedsPUT

Verdict

Bug Trace

…

Stage 1: Safety Proving

Stage 2: Seeds Generation

Stage 3: Falsification

Stage 4: Results Aggregation

https://github.com/fatimahkj/EBF

Stage 1: Safety Proving

• Here EBF calls the BMC engine for the given program.

• It produces one of the three possible verdicts: Safe, Bug, or Unknown.

• This is the only time when EBF can prove program safety

• If the BMC tool returns Bug, it generates a counter-example

• a sequence of program inputs and a thread schedule leading to the

vulnerability

• all produced counter-examples are
saved for further use

Stage 2: Seeds Generation

• This is introduced in EBF 4.2

• For each conditional branch (i.e., if, else, while, for, …) in the program:

1. Inject an error statement (i.e., assert(0)) inside the branch

2. Run the BMC tool on the newly instrumented program

3. If BMC returns Bug, then convert the counter-example into a seed for the

fuzzer

4. Otherwise (Safe, Unknown or timeout), move to the next branch in the

program and go to Step 1.

• The seed generating continues until all injected errors have

been detected or the stage timeout has been reached.

• The generated seeds greatly improve the fuzzer performance in the next

stage.

Stage 3: Falsification

• EBF checks whether the program contains any vulnerabilities by fuzzing

• Out of the box fuzzers (i.e., libFuzz, AFL) are not suitable for testing

concurrent programs

• They do not have access to different thread schedules

• We implement and use OpenGBF – open-source grey-box fuzzer

• Based on AFL++ (thread-safe version of AFL)

• It injects delay functions after every instruction in the program via an

LLVM pass

• Different delay values enforce different thread schedules

• The delay values and the program inputs are “sampled” by AFL++

using previously generated seeds

• Other instrumentations are applied to generate counter-examples,

ensure atomic execution, etc.

8

Stage 4: Results Aggregation

• EBF produces a verification verdict and a bug trace (if either tool returns

Bug)

• When one of the tools returns Unknown, EBF relies on the verdict of the

other one

• When the BMC tool returns Safe, and OpenGBF outputs Bug, EBF reports

Conflict

• This requires analysing the bug trace produced by OpenGBF

• The BMC tool can be wrong due to over-approximations

• OpenGBF can be wrong due with respect to the given property (i.e.,

something else causes the crash)

EBF 4.0 with different BMC tools

9

Experimental Setup:

• BMC 6 min + OpenGBF 5 min + results Aggregation 4 min = 15 min.

• RAM limit is 15 GB per Benchexec run.

• ConcurrencySafety main from SV-COMP 2022.

- Witness validation switched off.

• Ubuntu 20.04.4 LTS with 160 GB RAM and 25 cores

• EBF4.0 increases the number of found bugs in comparison to the individual

BMC tools.

• Overall, EBF4.0 provides a better trade-off between bug finding and safety

proving than each BMC engine

EBF 4.2 in SV-COMP 2023

10

Results EBF ESBMC

Correct True 67 71

Correct False 251 236

Incorrect True 0 1

Incorrect False 1 0

Overall 369 346

In EBF 4.2 we used ESBMC as BMC engine

• ESBMC 6 min + Seed Generation 1 min+ OpenGBF 5 min + results

Aggregation 3 min = 15 min.

EBF 4.2 participated in concurrencySafety main

Limitations

11

1) The order of the values in the counter example is not always

the same as their order in the program.

2) Some benchmarks can contain multiple different bugs,

which is fine for static analysis tools (BMC) but not suitable

for dynamic analysis tools (e.g., one bug is always triggered

before the other).

3) EBF4.2 only offered partial support for data race detection

because ESBMC does not yet maintain full support for this

property.

4) EBF4.2 does not yet support the detection of arithmetic

overflows and memory safety violations as required by the

competition format.

Reference

[1] F. K. Aljaafari, R. Menezes, E. Manino, et al., “Combining bmc and

fuzzing techniques for finding software vulnerabilities in concurrent

programs,” IEEE Access, vol. 10, pp. 121 365–121 384, 2022. doi:

10.1109/ACCESS.2022.3223359

[2] F. Aljaafari, F. Shmarov, E. Manino, et al., “EBF 4.2: Black-Box

cooperative verification for concurrent programs (competition

contribution),” in Proc. TACAS (2), ser. LNCS, Springer, 2023

12

Thank you

13

	Slide 1
	Slide 2
	Slide 3: Verification of concurrent programs
	Slide 4: EBF Cooperative Approach
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Stage 4: Results Aggregation
	Slide 9: EBF 4.0 with different BMC tools
	Slide 10: EBF 4.2 in SV-COMP 2023
	Slide 11: Limitations
	Slide 12: Reference
	Slide 13

