
4 Strengths and Weaknesses
JBMC does not produce any incorrect result for any of the Java
verification tasks available in SV-COMP 2019 [4]; it correctly claims
139 benchmarks correct and finds bugs in 192.

However, JBMC aborts (or returns unknown) on 37 benchmarks due
to time or memory exhaustion, or due to missing models of the Java
standard library.
JBMC’s concurrency support is still limited and there is no support
for lambdas, reflection and the Java Native Interface (JNI).

6 Software Project
JBMC is maintained by Peter Schrammel together with numerous
contributors from the community.
It is publicly available under a BSD-style license.
The source code is available at
http://www.github.com/diffblue/cbmc in the jbmc directory.
Instructions for building JBMC from source are given in the file
COMPILING.md.

References:
[1] Cordeiro, L.C., Kroening, D., Schrammel, P. JBMC: A bounded model checking tool

for verifying Java bytecode (Competition Contribution). In: TACAS. LNCS, vol. 11429.
Springer (2019)

[2] Cordeiro, L.C., Kesseli, P., Kroening, D., Schrammel, P., Trtík, M.: JBMC: A bounded
model checking tool for verifying Java bytecode. In: CAV. LNCS, vol. 10981, pp.
183–190. Springer (2018)

[3] Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Tools
and Algorithms for the Construction and Analysis of Systems, TACAS. LNCS, vol.
2988, pp. 168–176. Springer (2004)

[4] Beyer, D.: Automatic Verification of C and Java Programs: SV-COMP 2019, TACAS.
LNCS, vol. 11429. Springer (2019)

[5] Li, G., Ghosh, I.: PASS: string solving with parameterized array and interval
automaton. In: HVC. LNCS, vol. 8244, pp. 15–31 (2013)

JBMC: Bounded Model Checking for Java Bytecode
Lucas C. Cordeiro1, Daniel Kroening2, 4, Peter Schrammel3, 4

1University of Manchester, 2University of Oxford, 3University of Sussex, 4Diffblue Ltd

5 Tool Setup
The competition submission is based on JBMC version 5.10. For the
competition, JBMC is called from a wrapper script.
The wrapper script compiles the .java source files in the given
benchmark directories and then invokes the JBMC binary repeatedly
with increasing values for the unwinding bound until the property
has been refuted (answering false) or the program has been fully
unwound without finding a property violation (answering true).

We can run the JBMC wrapper script to check for a reachability property
in the program shown above by executing the following command:

.\jbmc --propertyfile <path-to-sv-benchmarks>/properties/
assert.prp <path-to-sv-benchmarks>/java/jbmc-regression/
StringValueOf08

import org.sosy_lab.sv_benchmarks.Verifier;
public class Main {
 public static void main (String [] args) {
 String arg = Verifier.nondetString();
 float floatValue = Float.parseFloat(arg)
 String tmp = String.valueOf (floatValue);
 assert temp.equals(“2.50”);
 }
}

1
2
3
4
5
6
7
8
9

3 Features
The Java operational model (JOM) consists of simplified models of
the most common classes from java.lang and a few from java.util.
JBMC also implements a solver for strings to determine the
satisfiability of a set of constraints involving strings (based on [5]).
JBMC provides API classes that allow users to define non-
deterministic verification harnesses and stub functions as used
in the SV-COMP benchmarks.

2 Approach and Uniqueness
JBMC is an extension to the C Bounded Model Checker (CBMC) [3],
named JBMC, to verify Java bytecode [1,2].
JBMC consists of a frontend for parsing Java bytecode and a Java
operational model (JOM), an exact, but verification-friendly model
of the standard Java libraries.
A distinct feature of JBMC, when compared with other approaches,
is the use of Bounded Model Checking (BMC) in combination
with Boolean Satisfiability Modulo Theories (SMT); it symbolically
explores the state-space to perform a bit-accurate verification of Java
programs.

Java operational
model

parse bytecode

convert to GOTO

static analysis

symbolic execution

SMT solver

Java program
with properties bounds

safe wrt bounds unsafe + trace

assert
runtime exceptions
uncaught exceptions

multi-path

QF_ABVFP+Strings

polymorphism,
exceptions, ...

data structures, ...

unwind

JBMC

1 Motivation
The Java Programming Language is a
general-purpose, concurrent, strongly
typed, object-oriented language. Java
programs may have bugs, which may
result in array bound violations, unintended
arithmetic overflows, and other kinds of
functional and runtime errors. Also, Java allows multi-threading, and
thus, problems such as race conditions and deadlocks can occur.

