
Jeremy Morse, Mikhail Ramalho,
Lucas Cordeiro, Denis Nicole, Bernd Fischer

ESBMC 1.22
(Competition Contribution)

ESBMC: SMT-based BMC of
single- and multi-threaded software
• exploits SMT solvers and their background theories:

– optimized encodings for pointers, bit operations, unions
and arithmetic over- and underflow

– efficient search methods (non-chronological backtracking,
conflict clauses learning)

• supports verifying multi-threaded software that uses
pthreads threading library

– interleaves only at “visible” instructions

– lazy exploration of the reachability tree

– optional context-bound

• derived from CBMC (v2.9) and has inherited its object-
based memory model

ESBMC verification support

• built-in properties:
– arithmetic under- and overflow

– pointer safety

– array bounds

– division by zero

– memory leaks

– atomicity and order violations

– deadlocks

– data races

• user-specified assertions
(__ESBMC_assume, __ESBMC_assert)

• built-in scheduling functions (__ESBMC_atomic_begin,
__ESBMC_atomic_end, __ESBMC_yield)

Differences to ESBMC 1.20

• ESBMC 1.22 is largely a bugfixing release:

– memory handling

– replaced CBMC’s string-based accessor functions
→ increased ESBMC’s speed by 2x

• improved memory model for precision, performance,
and stability

• produces a smaller number of false results

– more errors detected (+109),
fewer unexpected (-15) and missed (-157) errors

ESBMC’s memory model

• statically tracks possible pointer variable targets (objects)

– dereferencing a pointer leads to the construction of
guarded references to each potential target

• C is very liberal about permitted dereferences

• SAT: immediate access to bit-level representation

struct foo {
uint16_t bar[2];
uint8_t baz;

};

struct foo qux;
char *quux = &qux;
quux++;
*quux;

pointer and object types
do not match

ESBMC’s memory model

• statically tracks possible pointer variable targets (objects)

– dereferencing a pointer leads to the construction of
guarded references to each potential target

• C is very liberal about permitted dereferences

• SMT: sorts must be repeatedly unwrapped

struct foo {
uint16_t bar[2];
uint8_t baz;

};

struct foo qux;
char *quux = &qux;
quux++;
*quux;

pointer and object types
do not match

Byte-level data extraction in SMT

• access to underlying data bytes is complicated

– requires manipulation of arrays / tuples

• problem is magnified by nondeterministic offsets

• supporting all legal behaviors at SMT layer difficult

– extract (unaligned) 16bit integer from *fuzz

• experiments showed significantly increased memory
consumption

uint16_t *fuzz;
if (nondet_bool()) {

fuzz = &qux.bar[0];
} else {
fuzz = &qux.baz;

}

─ chooses accessed field nondeterministically

─ requires a byte_extract expression

─ handles the tuple that encoded the struct

“Aligned” Memory Model

• framework cannot easily be changed to SMT-level
byte representation (a la LLBMC)

• push unwrapping of SMT data structures to dereference

• enforce C alignment rules

– static analysis of pointer alignment eliminates need to
encode unaligned data accesses
→ reduces number of behaviors that must be modeled

– add alignment assertions (if static analysis not conclusive)

– extracting 16-bit integer from *fuzz:
– offset = 0: project bar[0] out of foo

– offset = 1: “unaligned memory access” failure

– offset = 2: project bar[1] out of foo

– offset = 3: “unaligned memory access” failure

– offset = 4: “access to object out of bounds” failure

Strengths:

Weaknesses:
• all unexpected results are caused by

– bounding the programs (Recursive)

– differences in the memory models (MemorySafety)
→ ESBMC detects an unchecked dereference of a

pointer to a freshly allocated memory chunk

• robust context-bounded model checker for C programs

• improved memory model to handle pointer arithmetic

– greater accuracy and faster verification

