
Handling Unbounded Loops with
ESBMC 1.20

Jeremy Morse, Lucas Cordeiro
Denis Nicole, Bernd Fischer

ESBMC: SMT-based BMC of single-
and multi-threaded software
• exploits SMT solvers and their background theories:

– optimized encodings for pointers, bit operations, unions
and arithmetic over- and underflow

– efficient search methods (non-chronological backtracking,
conflict clauses learning)conflict clauses learning)

• supports verifying multi-threaded software that uses
pthreads threading library
– interleaves only at “visible” instructions

– lazy exploration of the reachability tree

– optional context-bound

• derived from CBMC

ESBMC Verification Support
• built-in properties:

– arithmetic under- and overflow
– pointer safety
– array bounds
– division by zero
– memory leaks – memory leaks
– atomicity and order violations
– deadlocks
– data races

• user-specified assertions
(__ESBMC_assume, __ESBMC_assert)

• built-in scheduling functions (__ESBMC_atomic_begin,
__ESBMC_atomic_end, __ESBMC_yield)

Differences to ESBMC 1.17
• ESBMC 1.20 is largely a bugfixing release:

– memory handling

– internal data structure (replaced CBMC’s string-based
accessor functions)

– Z3 encoding (replaced the name equivalence used in the
pointer representation)pointer representation)

• improved our pthread-handling and added missing
sequence points (pthread join-function)

• produces a smaller number of false results
– score improvement of more than 25%

– overall verification time reduced by about 25%

Induction-Based Verification
k-induction checks...

• base case (basek): find a counter-example with up
to k loop unwindings (plain BMC)

• forward condition (fwdk): check that P holds in all
states reachable within k unwindings

• inductive step (stepk): check that whenever P holds
for k unwindings, it also holds after next unwinding
– havoc state

– run k iterations

– assume invariant

– run final iteration

⇒ iterative deepening if inconclusive

The k-induction algorithm

k=initial bound

while true do

if basek then

return trace s[0..k]

else if fwdkelse if fwdk

return true

else if stepk then

return true

end if

k=k+1

end

The k-induction algorithm

k=initial bound

while true do

if basek then

return trace s[0..k]

else if fwdk

inserts unwinding
assumption after
each loop

else if fwdk

return true

else if stepk then

return true

end if

k=k+1

end

The k-induction algorithm

k=initial bound

while true do

if basek then

return trace s[0..k]

else if fwdk

inserts unwinding
assertion after each
loop

inserts unwinding
assumption after
each loop

else if fwdk

return true

else if stepk then

return true

end if

k=k+1

end

loop

The k-induction algorithm

k=initial bound

while true do

if basek then

return trace s[0..k]

else if fwdk

inserts unwinding
assertion after each
loop

inserts unwinding
assumption after
each loop

else if fwdk

return true

else if stepk then

return true

end if

k=k+1

end

loop

havoc variables that
occur in the loop’s
termination condition

The k-induction algorithm

k=initial bound

while true do

if basek then

return trace s[0..k]

else if fwdk

inserts unwinding
assertion after each
loop

inserts unwinding
assumption after
each loop

else if fwdk

return true

else if stepk then

return true

end if

k=k+1

end

loop

havoc variables that
occur in the loop’s
termination condition

unable to falsify or
prove the property

Running example

unsigned int nondet_uint();

int main() {

unsigned int i, n=nondet_uint(), sn=0;

assume (n>=1);

Prove that for n ≥ 1naaS
n

i
n ==∑

=1

assume (n>=1);

for(i=1; i<=n; i++)

sn = sn + a;

assert(sn==n*a);

}

Running example: base case

Insert an unwinding assumption consisting of the
termination condition after the loop

– find a counter-example with k loop unwindings

unsigned int nondet_uint();

int main() { int main() {

unsigned int i, n=nondet_uint(), sn=0;

assume (n>=1);

for(i=1; i<=n; i++)

sn = sn + a;

assume(i>n);

assert(sn==n*a);

}

Running example: forward condition

Insert an unwinding assertion consisting of the
termination condition after the loop

– check that P holds in all states reachable with k unwindings

unsigned int nondet_uint();

int main() { int main() {

unsigned int i, n=nondet_uint(), sn=0;

assume (n>=1);

for(i=1; i<=n; i++)

sn = sn + a;

assert(i>n);

assert(sn==n*a);

}

Running example: inductive step

unsigned int nondet_uint();
typedef struct state {

unsigned int i, n, sn;

} statet;

Havoc (only) the variables that occur in the loop’s
termination and branch conditions

} statet;
int main() {

unsigned int i, n=nondet_uint(), sn=0, k;
assume(n>=1);

statet cs, s[n];
cs.i=nondet_uint();
cs.sn=nondet_uint();
cs.n=n;

Running example: inductive step

unsigned int nondet_uint();
typedef struct state {

unsigned int i, n, sn;

} statet;

Havoc (only) the variables that occur in the loop’s
termination and branch conditions

define the type of the
program state

} statet;
int main() {

unsigned int i, n=nondet_uint(), sn=0, k;
assume(n>=1);

statet cs, s[n];
cs.i=nondet_uint();
cs.sn=nondet_uint();
cs.n=n;

Running example: inductive step

unsigned int nondet_uint();
typedef struct state {

unsigned int i, n, sn;

} statet;

Havoc (only) the variables that occur in the loop’s
termination and branch conditions

define the type of the
program state

} statet;
int main() {

unsigned int i, n=nondet_uint(), sn=0, k;
assume(n>=1);

statet cs, s[n];
cs.i=nondet_uint();
cs.sn=nondet_uint();
cs.n=n;

state vector

Running example: inductive step

unsigned int nondet_uint();
typedef struct state {

unsigned int i, n, sn;

} statet;

Havoc (only) the variables that occur in the loop’s
termination and branch conditions

define the type of the
program state

} statet;
int main() {

unsigned int i, n=nondet_uint(), sn=0, k;
assume(n>=1);

statet cs, s[n];
cs.i=nondet_uint();
cs.sn=nondet_uint();
cs.n=n;

state vector

explore all possible
values implicitly

Running example: inductive step

for(i=1; i<=n; i++) {
s[i-1]=cs;
sn = sn + a;

cs.i=i;

ESBMC is called to verify the assertions where the first
arbitrary state is emulated by nondeterminism.

cs.i=i;
cs.sn=sn;
cs.n=n;
assume(s[i-1]!=cs);

}

assume(i>n);
assert(sn == n*a);
}

Running example: inductive step

for(i=1; i<=n; i++) {
s[i-1]=cs;
sn = sn + a;

cs.i=i;

ESBMC is called to verify the assertions where the first
arbitrary state is emulated by nondeterminism.

capture the state cs
before the iteration

cs.i=i;
cs.sn=sn;
cs.n=n;
assume(s[i-1]!=cs);

}

assume(i>n);
assert(sn == n*a);
}

Running example: inductive step

for(i=1; i<=n; i++) {
s[i-1]=cs;
sn = sn + a;

cs.i=i;

ESBMC is called to verify the assertions where the first
arbitrary state is emulated by nondeterminism.

capture the state cs
before the iteration

cs.i=i;
cs.sn=sn;
cs.n=n;
assume(s[i-1]!=cs);

}

assume(i>n);
assert(sn == n*a);
}

capture the state cs
after the iteration

Running example: inductive step

for(i=1; i<=n; i++) {
s[i-1]=cs;
sn = sn + a;

cs.i=i;

ESBMC is called to verify the assertions where the first
arbitrary state is emulated by nondeterminism.

capture the state cs
before the iteration

cs.i=i;
cs.sn=sn;
cs.n=n;
assume(s[i-1]!=cs);

}

assume(i>n);
assert(sn == n*a);
}

capture the state cs
after the iteration

constraints are
included by means
of assumptions

Running example: inductive step

for(i=1; i<=n; i++) {
s[i-1]=cs;
sn = sn + a;

cs.i=i;

ESBMC is called to verify the assertions where the first
arbitrary state is emulated by nondeterminism.

capture the state cs
before the iteration

cs.i=i;
cs.sn=sn;
cs.n=n;
assume(s[i-1]!=cs);

}

assume(i>n);
assert(sn == n*a);
}

capture the state cs
after the iteration

constraints are
included by means
of assumptions

insert unwinding
assumption

Strengths:
• robust context-bounded model checker for multi-

threaded C code
• combines plain BMC with k-induction

– k-induction by itself is by far not as strong as plain BMC
 ⇒ although it produced substantially fewer false results

Strengths:

Weaknesses:

• robust context-bounded model checker for multi-
threaded C code

• combines plain BMC with k-induction
– k-induction by itself is by far not as strong as plain BMC
 ⇒ although it produced substantially fewer false results

Weaknesses:
• scalability (like other BMCs...)

– loop unrolling
– interleavings

• pointer handling and points-to analysis
– exposed by excessive typecasts in the CIL-converted code
– better memory model in progress

