
����: A Bounded Model 
Checking Tool to Verify Qt

Applications

Mário A. P. Garcia , Felipe R. Monteiro, 

Lucas C. Cordeiro, and Eddie B. de Lima Filho

23rd International SPIN symposium on
Model Checking of Software



Why should we ensure software reliability?

• Consumer electronic products must be as robust and bug-free as possible,
given that even medium product-return rates tend to be unacceptable

- In 2014, Apple revealed a bug known as Gotofail, which was caused by a
single misplaced “goto” command in the code

- “Impact: An attacker with a privileged network position may capture or modify
data in sessions protected by SSL/TLS” – Apple Inc., 2014

- “Mozilla browser has around 20,000 open bugs” – Michail, Amir. ICSE’05.

• It is important to adopt reliable verification methods, with the goal to ensure
system correctness

• Model checking is an interesting approach, due to the possibility of
automated verification

Motivation Architecture Usage Experimental Conclusions



Model Checkers Limitations

• Verifiers should provide support regarding target language and system
properties

- However, verifiers present limitations to support linked libraries and development
frameworks

• Java PathFinder is able to verify Java code, based on byte-code, but it does
not support (full) verification of Java applications that rely on the Android
operating system

• Efficient SMT-based context-bounded model checker (ESBMC++), can be
employed to verify C/C++ code, but it does not support specific frameworks,
such as Qt

- these aspects restrict the range of applications to be verified

Motivation Architecture Usage Experimental Conclusions



Qt Cross-Platform Framework

• Qt framework provides programs that run on different
hardware/software platforms, with as few changes as
possible, while maintaining the same power and
speed.

- Samsung, Philips, and Panasonic are some companies,
on top 10 fortune 500 list, which apply Qt in their
applications development

• Its libraries are organized into modules that rely on
two main cores:

- QtCore – contains all non-graphical core classes

- QtGUI – provides a complete abstraction for the
Graphical User Interface

Motivation Architecture Usage Experimental Conclusions

Additional Modules

Qt Network Qt Multimedia

… …

Qt GUI

Graphical user interface components

QtCore

Container Classes Qt Concurrent

State Machines Qt Event System

… …



Bounded Model Checking (BMC)

• Basic Idea: given a transition system M, check negation of a given
property φ up to given depth k

• Translated into a VC ψ such that: ψ is satisfiable iff φ has
counterexample of max. depth k

• BMC has been applied successfully to verify (embedded) software since
early 2000’s

. . .

M0 M1 M2 Mk-1

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1 ¬ϕk∨ ∨ ∨ ∨

Counterexample trace

Transition
System

Property

BoundMk

Motivation Architecture Usage Experimental Conclusions



• Develop a simplified implementation, which strictly provides the same 
behaviour of the Qt framework, focused on property verification

• Verify invalid memory access, time-period values, access to missing 
files, null pointers, string manipulation, container usage, among other 
properties of Qt applications

• Apply the proposed verification methodology to real world Qt-based 
applications, which is supported by ESBMC
�� 

Apply bounded model checking to Qt-based applications

Objectives

Motivation Architecture Usage Experimental Conclusions



ESBMC����Architecture
• QtOM is an additional extension for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC++) to add support for Qt/C++ programs
verification.

Motivation Architecture Usage Experimental Conclusions

C++ 

Parser

Property 

holds up to 

bound k

Property 

violation

Counterexample

Verification 

Successful

Qt 

Operational 

Model

Qt/C++ 

Source 

Code Scan

Adding

assertions

Extract/Identify 

structure/properties Qt 

Documentation

GOTO 

Converter
Symbolic 

Execution

SMT 

Solver

Logical 

Context

IR Type 

Checked

GOTO 

Program
SSA

Form

Logical 

Formula

Scan



ESBMC����Architecture
• QtOM is an additional extension for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC++) to add support for Qt/C++ programs
verification.

Motivation Architecture Usage Experimental Conclusions

C++ 

Parser

Counterexample

Verification 

Successful

Qt 

Operational 

Model

Qt/C++ 

Source 

Code Scan

Adding

assertions

Extract/Identify 

structure/properties Qt 

Documentation

GOTO 

Converter
Symbolic 

Execution

SMT 

Solver

Logical 

Context

Scan

Identify each language 
structure, such as method 

signatures and function 
prototypes; add assertions to 

check properties on each 
structure



ESBMC����Architecture
• QtOM is an additional extension for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC++) to add support for Qt/C++ programs
verification.

Motivation Architecture Usage Experimental Conclusions

C++ 

Parser

Counterexample

Verification 

Successful

Qt 

Operational 

Model

Qt/C++ 

Source 

Code Scan

Adding

assertions

Extract/Identify 

structure/properties Qt 

Documentation

GOTO 

Converter
Symbolic 

Execution

SMT 

Solver

Logical 

Context

IR Type 

Checked

Scan

Processes the C++ file and 
builds an Abstract Syntax Tree 

(AST) 



ESBMC����Architecture
• QtOM is an additional extension for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC++) to add support for Qt/C++ programs
verification.

Motivation Architecture Usage Experimental Conclusions

C++ 

Parser

Counterexample

Verification 

Successful

Qt 

Operational 

Model

Qt/C++ 

Source 

Code Scan

Adding

assertions

Extract/Identify 

structure/properties Qt 

Documentation

GOTO 

Converter
Symbolic 

Execution

SMT 

Solver

Logical 

Context

IR Type 

Checked

GOTO 

Program

Scan

Converts a C++ program into a 
GOTO-Program (replacement of 
switch and while by if and goto

expressions)



ESBMC����Architecture
• QtOM is an additional extension for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC++) to add support for Qt/C++ programs
verification.

Motivation Architecture Usage Experimental Conclusions

C++ 

Parser

Counterexample

Verification 

Successful

Qt 

Operational 

Model

Qt/C++ 

Source 

Code Scan

Adding

assertions

Extract/Identify 

structure/properties Qt 

Documentation

GOTO 

Converter
Symbolic 

Execution

SMT 

Solver

Logical 

Context

IR Type 

Checked

GOTO 

Program
SSA

Form

Scan

Converts GOTO-Program into 
a SSA Form



ESBMC����Architecture
• QtOM is an additional extension for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC++) to add support for Qt/C++ programs
verification.

Motivation Architecture Usage Experimental Conclusions

C++ 

Parser

Counterexample

Verification 

Successful

Qt 

Operational 

Model

Qt/C++ 

Source 

Code Scan

Adding

assertions

Extract/Identify 

structure/properties Qt 

Documentation

GOTO 

Converter
Symbolic 

Execution

SMT 

Solver

Logical 

Context

IR Type 

Checked

GOTO 

Program
SSA

Form

Logical 

Formula

Scan

Performs a symbolic execution 
of the program and generates 
SMT equations for constraints 

(C) and properties (P)



ESBMC����Architecture
• QtOM is an additional extension for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC++) to add support for Qt/C++ programs
verification.

Motivation Architecture Usage Experimental Conclusions

C++ 

Parser

Property 

holds up to 

bound k

Property 

violation

Counterexample

Verification 

Successful

Qt 

Operational 

Model

Qt/C++ 

Source 

Code Scan

Adding

assertions

Extract/Identify 

structure/properties Qt 

Documentation

GOTO 

Converter
Symbolic 

Execution

SMT 

Solver

Logical 

Context

IR Type 

Checked

GOTO 

Program
SSA

Form

Logical 

Formula

Scan

Evaluates the expression
C ∧ ¬P, using the specified 

solver (Z3, Boolector or Yices)



ESBMC����Architecture
• QtOM is an additional extension for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC++) to add support for Qt/C++ programs
verification.

Motivation Architecture Usage Experimental Conclusions

C++ 

Parser

Property 

holds up to 

bound k

Property 

violation

Counterexample

Verification 

Successful

Qt 

Operational 

Model

Qt/C++ 

Source 

Code Scan

Adding

assertions

Extract/Identify 

structure/properties Qt 

Documentation

GOTO 

Converter
Symbolic 

Execution

SMT 

Solver

Logical 

Context

IR Type 

Checked

GOTO 

Program
SSA

Form

Logical 

Formula

Scan

Is there a property violation?
No.



ESBMC����Architecture
• QtOM is an additional extension for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC++) to add support for Qt/C++ programs
verification.

Motivation Architecture Usage Experimental Conclusions

C++ 

Parser

Property 

holds up to 

bound k

Property 

violation

Counterexample

Verification 

Successful

Qt 

Operational 

Model

Qt/C++ 

Source 

Code Scan

Adding

assertions

Extract/Identify 

structure/properties Qt 

Documentation

GOTO 

Converter
Symbolic 

Execution

SMT 

Solver

Logical 

Context

IR Type 

Checked

GOTO 

Program
SSA

Form

Logical 

Formula

Scan

Is there a property violation?
Yes.

The error present in source 
code is then described



ESBMC���� Features

Motivation Architecture Usage Experimental Conclusions

• Through the integration of QtOM into ESBMC++, ESBMC
�� is able to properly identify
Qt/C++ programs and it provides support to the verification of six properties:

1. Invalid Memory Access: QtOM assertions ensure that only valid memory
addresses are accessed

2. Time-period values: QtOM ensures that only valid time parameters are considered

3. Access to Missing Files: QtOM checks the access and manipulation of all handled
files

4. Null Pointers: QtOM covers pointer manipulation, by ensuring that NULL pointers
are not used in invalid operations

5. String Manipulation: QtOM checks pre- and postconditions to ensure correct string 
manipulation

6. Container usage: QtOM ensures the correct usage of containers, as well as their
manipulation through specialized methods



Qt Operational Model (QtOM)

• Development process of the operational model

Motivation Architecture Usage Experimental Conclusions

…

QtGUI

QtCore

Qt Documentation

class Q_CORE_EXPORT QFile : public QFileDevice
{

...
QString fileName() const;
void setFileName(const QString &name);
...

};



Qt Operational Model (QtOM)

• Development process of the operational model.

- Identify each property to be verified and transcript them into assertions

Motivation Architecture Usage Experimental Conclusions

…

QtGUI

QtCore

Qt Documentation

class Q_CORE_EXPORT QFile : public QFileDevice
{

...
QString fileName() const;
void setFileName(const QString &name);
...

};

• Extract/Identify 

structure/properties



Qt Operational Model (QtOM)

• Development process of the operational model.

- Qt Operational Model is an abstract representation, which is used to identify elements 
and verify specific properties related to such structures

Motivation Architecture Usage Experimental Conclusions

…

QtGUI

QtCore

Qt Documentation

class Q_CORE_EXPORT QFile : public QFileDevice
{

...
QString fileName() const;
void setFileName(const QString &name);
...

};

• Extract/Identify 

structure/properties

…

QtGUI O. M.

QtCore O. M.

Qt Operational Model



Qt Operational Model (QtOM)

• Development process of the operational model.

- Qt Operational Model is an abstract representation, which is used to identify elements 
and verify specific properties related to such structures.

Motivation Architecture Usage Experimental Conclusions

…

QtGUI

QtCore

Qt Documentation

class Q_CORE_EXPORT QFile : public QFileDevice
{

...
QString fileName() const;
void setFileName(const QString &name);
...

};

• Extract/Identify 

structure/properties

…

QtGUI O. M.

QtCore O. M.

Qt Operational Model

class QFile {
...

void setFileName(const QString & name){
__ESBMC_assert(!name.isEmpty(),
"The string must not be empty");
__ESBMC_assert(!this->isOpen(),
"The file must be closed");

}
...

};



Qt Operational Model (QtOM)

• Development process of the operational model.

- Qt Operational Model is an abstract representation, which is used to identify elements 
and verify specific properties related to such structures.

Motivation Architecture Usage Experimental Conclusions

…

QtGUI

QtCore

Qt Documentation

class Q_CORE_EXPORT QFile : public QFileDevice
{

...
QString fileName() const;
void setFileName(const QString &name);
...

};

• Extract/Identify 

structure/properties

…

QtGUI O. M.

QtCore O. M.

Qt Operational Model

class QFile {
...

void setFileName(const QString & name){
__ESBMC_assert(!name.isEmpty(),
"The string must not be empty");
__ESBMC_assert(!this->isOpen(),
"The file must be closed");

}
...

};

• Assertions additions

are of paramount

importance, given

that they ultimately
allow formal property

verification



Running Example
• Function from a real-world Qt-based application called GeoMessage

- Function responsible for loading initial settings of the application from a file

Motivation Architecture Usage Experimental Conclusions

QString loadSimulationFile( const QString &fileName )
{

m_inputFile.setFileName( fileName );

// Check file for at least one message
if ( !doInitialRead() )
{

return Qstring( m_inputFile.fileName()
+ “is an empty message file” );

}
else

{
return NULL;

}
}

QString loadSimulationFile( const QString &fileName )
{

m_inputFile.setFileName( fileName );

// Check file for at least one message
if ( !doInitialRead() )
{

return Qstring( m_inputFile.fileName()
+ “is an empty message file” );

}
else

{
return NULL;

}
} Source Code



Running Example
• Function from a real-world Qt-based application called GeoMessage

- Function responsible for loading initial settings of the application from a file

Motivation Architecture Usage Experimental Conclusions

QString loadSimulationFile( const QString &fileName )
{

m_inputFile.setFileName( fileName );

// Check file for at least one message
if ( !doInitialRead() )
{

return Qstring( m_inputFile.fileName()
+ “is an empty message file” );

}
else

{
return NULL;

}
}

QString loadSimulationFile( const QString &fileName )
{

m_inputFile.setFileName( fileName );

// Check file for at least one message
if ( !doInitialRead() )
{

return Qstring( m_inputFile.fileName()
+ “is an empty message file” );

}
else

{
return NULL;

}
} Source Code

• Sets the file 
name



Running Example
• Operational model of the QFile class

- Such class contain the representation of the setFileName method

Motivation Architecture Usage Experimental Conclusions

class QFile{
...
QFile(const QString& name) { ... }
...

void setFileName( const QString& name){
__ESBMC_assert(!(name.isEmpty()),

"The string must not be empty");

__ESBMC_assert(!(this−>isOpen()),
"The file must be closed");

}
...

};

class QFile{
...
QFile(const QString& name) { ... }
...

void setFileName( const QString& name){
__ESBMC_assert(!(name.isEmpty()),

"The string must not be empty");

__ESBMC_assert(!(this−>isOpen()),
"The file must be closed");

}
...

}; Operational Model

• Assertions to handle two 
properties verification. 

One checks whether the 
name is not an empty 
string and another checks 

if the file is closed



Running Example
• ESBMC
�� is invoked as:

- The verification process is completely automatic

Motivation Architecture Usage Experimental Conclusions

esbmc <file>.cpp −−unwind <k> −I <path_to_QtOM> −I <path_to_C++_OM> 

Executing ESBMC++



Running Example
• ESBMC
�� is invoked as:

- The verification process is completely automatic

Motivation Architecture Usage Experimental Conclusions

esbmc <file>.cpp −−unwind <k> −I <path_to_QtOM> −I <path_to_C++_OM> 

Source code to be verified, 
which in this case is 

GeoMessage’s function



Running Example
• ESBMC
�� is invoked as:

- The verification process is completely automatic

Motivation Architecture Usage Experimental Conclusions

esbmc <file>.cpp −−unwind <k> −I <path_to_QtOM> −I <path_to_C++_OM> 

Setting up the bound, 
which in this case we 

consider as 10



Running Example
• ESBMC
�� is invoked as:

- The verification process is completely automatic

Motivation Architecture Usage Experimental Conclusions

esbmc <file>.cpp −−unwind <k> −I <path_to_QtOM> −I <path_to_C++_OM> 

Linking the operational 
models QtOM and COM for 
the Qt framework and C++ 

language, respectively.



Running Example
• Even assuming that a non-empty string is passed to the function, the 
model checker reports a bug in the source code

Motivation Architecture Usage Experimental Conclusions

QString loadSimulationFile( const QString &fileName )
{

m_inputFile.setFileName( fileName );

// Check file for at least one message
if ( !doInitialRead() )
{

return Qstring( m_inputFile.fileName()
+ “is an empty message file” );

}
else

{
return NULL;

}
}

QString loadSimulationFile( const QString &fileName )
{

m_inputFile.setFileName( fileName );

// Check file for at least one message
if ( !doInitialRead() )
{

return Qstring( m_inputFile.fileName()
+ “is an empty message file” );

}
else

{
return NULL;

}
} Source Code

There is nothing to ensure 
that the file was not open 

previously



Running Example
• After the modification mentioned below, the verification process returns a 
successful result 

Motivation Architecture Usage Experimental Conclusions

QString loadSimulationFile( const QString &fileName )
{

if ( m_inputFile.isOpen() )
m_inputFile.close();

m_inputFile.setFileName( fileName );

// Check file for at least one message

if ( !doInitialRead() )
{

return Qstring( m_inputFile.fileName()
+ “is an empty message file” );

}
else
{

return NULL;

}
}

QString loadSimulationFile( const QString &fileName )
{

if ( m_inputFile.isOpen() )
m_inputFile.close();

m_inputFile.setFileName( fileName );

// Check file for at least one message

if ( !doInitialRead() )
{

return Qstring( m_inputFile.fileName()
+ “is an empty message file” );

}
else
{

return NULL;

}
} Source Code

We propose the addition of 
a conditional structure to 
ensure the file is closed 
before setting its name



Qt-based Applications

Motivation Architecture Usage Experimental Conclusions

Locomaps Application

• A Qt cross-platform sample application, which
demonstrates satellite, terrain, street maps, tiled map
service planning, and Qt Geo GPS Integration, among other
features.

• Application description:
- 2 classes

- 115 Qt/C++ source lines of code

- 5 different APIs from Qt framework are used

• Experimental Setup
- ESBMC++ v1.25.4

- Intel Core i7-2600 computer with 3.40GHz clock and 24GB of RAM



Qt-based Applications

Motivation Architecture Usage Experimental Conclusions

• Application description:
- 4 classes

- 1209 Qt/C++ source lines of code

- 20 different APIs from Qt framework are used
* Among them are QMutex and QMutexLocker, which are related to the Qt Threading module

• Experimental Setup
- ESBMC++ v1.25.4

- Intel Core i7-2600 computer with 3.40GHz clock and 24 GB of RAM

GeoMessage Application

• A real-world Qt application
- It receives XML files as input and generates, in

different frequencies, User Datagram Protocol
(UDP) broadcast datagrams, as an output to

ArcGIS’s applications and system components.



Experimental Results

Motivation Architecture Usage Experimental Conclusions

Verification Results

• Properties checked:
- Array-bound violations

- Under- and overflow arithmetic

- Division by zero

- Pointer safety

- Containers usage

- String manipulation

- Access to missing files

• The tool is able to fully identify the verified source code, using 5 different
QtOM modules for Locomaps and 20 for GeoMessage.



Experimental Results

Motivation Architecture Usage Experimental Conclusions

• Verification Results

•The verification process was automatic and approximately
6.7 seconds for Locomaps and 16 seconds for
GeoMessage.

•All the process generated 32 verification conditions(VCs)
for Locomaps and 6421 VCs for GeoMessage, on a
standard PC desktop.

• ESBMC
�� is able to find a similar bugs in both
applications.



Experimental Results

Motivation Architecture Usage Experimental Conclusions

• In that particular case, if the argv parameter is not correctly initialized,
then the constructor called by object app does not execute properly and
the application crashes

int main(int argc, char ∗argv[]){
QApplication app(argc , argv);
return app.exec();

}

int main(int argc, char ∗argv[]){
QApplication app(argc , argv);
return app.exec();

}

Source Code

There is nothing to ensure 
that the parameters are 

valid



• ESBMC
�� was presented as an SMT-based BMC tool, which employs an
operational model (QtOM) to verify Qt-based applications.

• The performed experiments involved two Qt/C++ applications, which were
successfully verified, in the context of consumer electronics devices.

• To the best of our knowledge, there is no other approach, employing BMC, that
is able to verify Qt-based applications.

Future Work

• QtOM will be extended to support more modules, with the goal of increasing the
Qt framework coverage.

• Conformance testing procedures will be developed for validating QtOM.

• All benchmarks, OMs, tools, and experimental results are available at

http://esbmc.org/qtom

Conclusions

Motivation Architecture Usage Experimental Conclusions



Demonstration

Motivation Architecture Usage Experimental Conclusions


