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Digital Systems Applications and Limitations

• Digital filters and controllers are       
currently replacing many analog
components

• Despite several advantages, they
present limitations related to finite-
word length (FWL) effects

• Limit cycle oscillations (LCOs) in 
power converters:
‒Oscillation in output voltage due to round-

off and overflows

‒More energy losses and short silicon
lifespan

‒ LCOs are almost unavoidable and difficult
to be detected

‒ LCOs are typically detected via time-
domain simulations 

Motivation Architecture Methodology Usage Conclusions
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Bounded Model Checking (BMC)

• Basic Idea: given a transition system M, check negation of a given
property φ up to given depth k

• Translated into a VC ψ such that: ψ is satisfiable iff φ has
counterexample of max. depth k

• BMC has been applied successfully to verify (embedded) software since
early 2000’s, but it has not been used to verify digital controllers

. . .

M0 M1 M2 Mk-1

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1 ¬ϕk∨ ∨ ∨ ∨

Counterexample trace

Transition
System

Property

BoundMk
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• Investigate FWL effects in fixed-point digital system (controllers and
filters) implementations via BMC techniques

• Apply a design-aided verification methodology to digital systems, which              
is supported by the Digital-Systems Verifier (DSVerifier)

• Verify overflows, limit cycles, time constraints, stability, and mimimum
phase in digital systems using standard benchmarks

BMC of digital systems implementations considering FWL effects

Objectives
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The Digital-Systems Verifier (DSVerifier)

• DSVerifier is an additional module for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC) to add support for digital systems 
verification
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ESBMC – Efficient SMT-Based Context-Bounded Model Checker

The complete tool includes four
components from ESBMC
C Parser, GOTO Program, GOTO Symex,
and SMT Solver
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realizations, and property verification
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for quantization, computes maximum and 
minimum values for FWL format
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DSVerifier Features

• DSVerifier supports five verification properties, considering three direct-
and delta-form implementations, in addition to the cascade form

1. Overflow: if a sum or product exceeds the number representation

2. Limit Cycle: checks for zero-input limit cycles, for any initial condition

3. Stability: considers FWL effects on pole locations

4. Minimum phase: considers FWL effects on zero locations 

5. Time constraints: checks whether a specific realization meets time 
constraints
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DSVerifier-Aided Verification Methodology

Step 1:

Digital System
Design

Step 2:

Define
Representation

Step 3:

Define 
Realization Form

Step 4:

Configure 
Verifications

Step 5:

Verify Using 
a BMC tool

Step 6:

Property
Violation?

Counterexample

NO

YES

SUCCESS
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•<k,l> k bits for Integer

part and l bits for 

fractional part;

•Dynamical Range 

•Direct Forms

(DFI, DFII, TDFII)

•Delta Forms

(DDFI, DDFII, TDDFII) 
•Cascade Delta and

Direct Forms

•Hardware Model: (clock, 

number of bits, ISA)

•Verification Time

•Property: Overflow, 
Limit Cycle, Timing, 

Stability or Minimum

Phase

•Model Checker

(ESBMC)

•SMT-Solver

(Boolector and Z3)
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•Hardware Model:
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•Verification Time
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Limit Cycle, Timing, 
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Sequence of states that leads to a failure, which is
reproduced by a simulation tool
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DSVerifier-Aided Verification Example
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Define 
Representa

tion

• < 3,12 >:3 
bits for integer 
part and 12 
bits for 
fractional part

• Dynamical 
Range: [-1,1]

Define 
Realization 

Form

• DFII

Configure 
Verification

• Verify overflow

• Verification 
time:3600

• MSP430 16-bit 
16 MHz

Verify using 
a BMC Tool

• ESBMC

• Bound: 10 
samples

Result

• Verification 
Failed

Failure due to a sum overflow (sum result = 2.0879 > 1).
Input sequence: {0.9995, -0.9995, 0.9995, 1,  1, 1, 0.9995, 0.9995, 0.9995, 0.9995, 1}

Redefine the implementation!
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Define 
Realization 

Form

• DFII

Configure 
Verification

• Verify overflow

• Verification 
time:3600

• MSP340 16 
MHz

Verify using 
a BMC Tool

• ESBMC

Result

• Verification 
Failed

Maintain the Representation

Motivation Architecture Methodology Usage Conclusions

•  � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example



Controller 
Design

Define 
Representa

tion
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Define 
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Configure 
Verification

• Verify overflow

• Verification 
time:3600

• MSP340 16 
MHz

Verify using 
a BMC Tool

• ESBMC

Result

• Verification 
Failed

Change the Realization Form
TDFII presents less sums and products
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Define 
Representa

tion

• < 3,12 >:3 
bits for integer 
part and 12 
bits for 
fractional part

• Dynamical 
Range: [-1,1]

Define 
Realization 

Form

• TDFII

Configure 
Verification

• Verify overflow

• Verification 
time:3600

• MSP430 16-bit 
16 MHz

Verify using 
a BMC Tool

• ESBMC

• Bound: 10 
samples

Result

• Verification 
Failed

Repeat the test
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Design

Define 
Representa

tion

• < 3,12 >:3 
bits for integer 
part and 12 
bits for 
fractional part

• Dynamical 
Range: [-1,1]

Define 
Realization 

Form

• TDFII

Configure 
Verification

• Verify overflow

• Verification 
time:3600

• MSP430 16-bit 
16 MHz

Verify using 
a BMC Tool

• ESBMC

• Bound: 10 
samples

Result

• SUCCESS

The problem was solved
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Design

Define 
Representa

tion

• < 3,12 >:3 
bits for integer 
part and 12 
bits for 
fractional part

• Dynamical 
Range: [-1,1]

Define 
Realization 

Form

• TDFII

Configure 
Verification

• Verify limit 
cycle

• Verification 
time:3600

• MSP430 16-bit 
16 MHz

Verify using 
a BMC Tool

• ESBMC

• Bound: 10 
samples

Result

• SUCESS

But verifing limit cycles...
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Controller 
Design

Define 
Representa

tion

• < 3,12 >:3 
bits for integer 
part and 12 
bits for 
fractional part

• Dynamical 
Range: [-1,1]

Define 
Realization 

Form

• TDFII

Configure 
Verification

• Verify limit 
cycle

• Verification 
time:3600

• MSP430 16-bit 
16 MHz

Verify using 
a BMC Tool

• ESBMC

• Bound: 10 
samples

Result

• Verification 
Failed

Appears an oscillation: {-0.002, -0.002, -0.0015, -0.0015, -0.002, -0.002, -0.0015, -0.0015, -0.002, -0.002}.
Zero input sequence

Redefine the implementation!
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Controller 
Design

Define 
Representa

tion

• < 3,4 >:3 bits 
for integer part 
and 4 bits for 
fractional part

• Dynamical 
Range: [-1,1]

Define 
Realization 

Form

• TDFII

Configure 
Verification

• Verify limit 
cycle

• Verification 
time:3600

• MSP430 16-bit 
16 MHz

Verify using 
a BMC Tool

• ESBMC

• Bound: 10 
samples

Result

• SUCESS

Verifying with a different representation...
There is a trade off: the oscillation is solved; however, there is an accurate loss
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for integer part 
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fractional part

• Dynamical 
Range: [-1,1]

Define 
Realization 

Form

• TDFII

Configure 
Verification

• Verify limit 
cycle

• Verification 
time:3600

• MSP430 16-bit 
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Verify using 
a BMC Tool

• ESBMC

• Bound: 10 
samples

Result

• SUCCESS

SUCCESS
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DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: ( � =  
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

#include <dsverifier.h>

digital_system ds = { 

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

Motivation Architecture Methodology Usage Conclusions



#include <dsverifier.h>

digital_system ds = { 

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

Numerator Coefficients

Motivation Architecture Methodology Usage Conclusions

DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: ( � =  
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239



DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: ( � =  
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

#include <dsverifier.h>

digital_system ds = { 

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

Motivation Architecture Methodology Usage Conclusions



DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: ( � =  
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

#include <dsverifier.h>

digital_system ds = { 

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

Motivation Architecture Methodology Usage Conclusions

Number of Coefficients



DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: ( � =  
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

#include <dsverifier.h>

digital_system ds = { 

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

Motivation Architecture Methodology Usage Conclusions



DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: ( � =  
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

#include <dsverifier.h>

digital_system ds = { 

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

Motivation Architecture Methodology Usage Conclusions

Denominator Coefficients



DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: ( � =  
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

Motivation Architecture Methodology Usage Conclusions

#include <dsverifier.h>

digital_system ds = { 

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

implementation impl = {

.int_bits = 4,

.frac_bits = 10,

.min = -5,

.max = 5

};

• Implementation aspects:



DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: ( � =  
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

Motivation Architecture Methodology Usage Conclusions

#include <dsverifier.h>

digital_system ds = { 

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

implementation impl = {

.int_bits = 4,

.frac_bits = 10,

.min = -5,

.max = 5

};

• Implementation aspects:

14-bits architecture: 4 bits for integer and
10 bits for precision parts



DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: ( � =  
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

Motivation Architecture Methodology Usage Conclusions

#include <dsverifier.h>

digital_system ds = { 

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

implementation impl = {

.int_bits = 4,

.frac_bits = 10,

.min = -5,

.max = 5

};

• Implementation aspects:

14-bits architecture: 4 bits for integer and
10 bits for precision parts

Dynamical Range: between -5.0 and 5.0



DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: ( � =  
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

Motivation Architecture Methodology Usage Conclusions

#include <dsverifier.h>

digital_system ds = { 

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

implementation impl = {

.int_bits = 4,

.frac_bits = 10,

.min = -5,

.max = 5

};

• Implementation aspects:

14-bits architecture: 4 bits for integer and
10 bits for precision parts

Dynamical Range: between -5.0 and 5.0

./dsverifier <file>
--realization <i> --property <j> --x-size <k>

• DSVerifier is invoked as:



DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: ( � =  
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

Motivation Architecture Methodology Usage Conclusions

#include <dsverifier.h>

digital_system ds = { 

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

implementation impl = {

.int_bits = 4,

.frac_bits = 10,

.min = -5,

.max = 5

};

• Implementation aspects:

14-bits architecture: 4 bits for integer and
10 bits for precision parts

Dynamical Range: between -5.0 and 5.0

./dsverifier <file>
--realization <i> --property <j> --x-size <k>

• DSVerifier is invoked as:

e.g., DFI, DFII



DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: ( � =  
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

Motivation Architecture Methodology Usage Conclusions

#include <dsverifier.h>

digital_system ds = { 

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

implementation impl = {

.int_bits = 4,

.frac_bits = 10,

.min = -5,

.max = 5

};

• Implementation aspects:

14-bits architecture: 4 bits for integer and
10 bits for precision parts

Dynamical Range: between -5.0 and 5.0

./dsverifier <file>
--realization <i> --property <j> --x-size <k>

• DSVerifier is invoked as:

e.g., DFI, DFII
e.g., 

OVERFLOW



DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: ( � =  
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

Motivation Architecture Methodology Usage Conclusions
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• The graphical user interface  
(GUI) improves usability and 
attracts more digital-system
enginners

• Allows users to provide all
required parameters for the
verification

• Parallel execution of 
verification tasks, which is 
guided by properties 
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• Graphical verification results 
and counterexamples

• Access the documentation, 
benchmarks, and publications

• Developed using JavaFX

• Requires Java Runtime
Environment Version 8.0 
Update 40 (jre1.8.0 40)
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• DSVerifier is able to verify digital systems and supports an extensive
verification of different properties and realization forms

• DSVerifier can be regarded as an automated and reliable tool if 
compared to traditional simulation tools
‒ An enginner can verify during design phase, if the digital-system presents

the expected behavior

Future Work
• Support for closed-loop system verification, more system-level 
properties, realizations, hardware platforms, and BMC tools

• Source code, benchmarks, experimental results, and publications are 
available at http://www.dsverifier.org

Conclusions
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Demonstration
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