
DSVerifier: A Bounded Model
Checking Tool for Digital

Systems

Hussama I. Ismail, Iury V. Bessa, Lucas C. Cordeiro

Eddie B. de Lima Filho, and João E. Chaves Filho

22nd International SPIN Symposium on Model
Checking of Software

Digital Systems Applications and Limitations

• Digital filters and controllers are
currently replacing many analog
components

• Despite several advantages, they
present limitations related to finite-
word length (FWL) effects

• Limit cycle oscillations (LCOs) in
power converters:
‒Oscillation in output voltage due to round-

off and overflows

‒More energy losses and short silicon
lifespan

‒ LCOs are almost unavoidable and difficult
to be detected

‒ LCOs are typically detected via time-
domain simulations

Motivation Architecture Methodology Usage Conclusions

Power Converter

A/D

Digital
PWM

Digital
Controller

��� � � �

���� �

Digital Systems Applications and Limitations

Motivation Architecture Methodology Usage Conclusions

Power Converter

A/D

Digital
PWM

Digital
Controller

��� � � �

���� �

• Digital filters and controllers are
currently replacing many analog
components

• Despite several advantages, they
present limitations related to finite-
word length (FWL) effects

• Limit cycle oscillations (LCOs) in
power converters:
‒Oscillation in output voltage due to round-

off and overflows

‒More energy losses and short silicon
lifespan

‒ LCOs are almost unavoidable and difficult
to be detected

‒ LCOs are typically detected via time-
domain simulations

Digital Systems Applications and Limitations

Motivation Architecture Methodology Usage Conclusions

Power Converter

A/D

Digital
PWM

Digital
Controller

��� � � �

���� �

• Digital filters and controllers are
currently replacing many analog
components

• Despite several advantages, they
present limitations related to finite-
word length (FWL) effects

• Limit cycle oscillations (LCOs) in
power converters:
‒Oscillation in output voltage due to round-

off and overflows

‒More energy losses and short silicon
lifespan

‒ LCOs are almost unavoidable and difficult
to be detected

‒ LCOs are typically detected via time-
domain simulations

Digital Systems Applications and Limitations

Motivation Architecture Methodology Usage Conclusions

Power Converter

A/D

Digital
PWM

Digital
Controller

��� � � �

���� �

• Digital filters and controllers are
currently replacing many analog
components

• Despite several advantages, they
present limitations related to finite-
word length (FWL) effects

• Limit cycle oscillations (LCOs) in
power converters:
‒Oscillation in output voltage due to round-

off and overflows

‒More energy losses and short silicon
lifespan

‒ LCOs are almost unavoidable and difficult
to be detected

‒ LCOs are typically detected via time-
domain simulations

Digital Systems Applications and Limitations

Motivation Architecture Methodology Usage Conclusions

Power Converter

A/D

Digital
PWM

Digital
Controller

��� � � �

���� �

• Digital filters and controllers are
currently replacing many analog
components

• Despite several advantages, they
present limitations related to finite-
word length (FWL) effects

• Limit cycle oscillations (LCOs) in
power converters:
‒Oscillation in output voltage due to round-

off and overflows

‒More energy losses and short silicon
lifespan

‒ LCOs are almost unavoidable and difficult
to be detected

‒ LCOs are typically detected via time-
domain simulations

Digital Systems Applications and Limitations

Motivation Architecture Methodology Usage Conclusions

Power Converter

A/D

Digital
PWM

Digital
Controller

��� � � �

���� �

• Digital filters and controllers are
currently replacing many analog
components

• Despite several advantages, they
present limitations related to finite-
word length (FWL) effects

• Limit cycle oscillations (LCOs) in
power converters:
‒Oscillation in output voltage due to round-

off and overflows

‒More energy losses and short silicon
lifespan

‒ LCOs are almost unavoidable and difficult
to be detected

‒ LCOs are typically detected via time-
domain simulations

Digital Systems Applications and Limitations

Motivation Architecture Methodology Usage Conclusions

Power Converter

A/D

DPWM
Digital

Controller

��� � � �

���� �

• Digital filters and controllers are
currently replacing many analog
components

• Despite several advantages, they
present limitations related to finite-
word length (FWL) effects

• Limit cycle oscillations (LCOs) in
power converters:
‒Oscillation in output voltage due to round-

off and overflows

‒More energy losses and short silicon
lifespan

‒ LCOs are almost unavoidable and difficult
to be detected

‒ LCOs are typically detected via time-
domain simulations

Digital Systems Applications and Limitations

Motivation Architecture Methodology Usage Conclusions

Power Converter

A/D

DPWM
Digital

Controller

��� � � �

���� �

• Digital filters and controllers are
currently replacing many analog
components

• Despite several advantages, they
present limitations related to finite-
word length (FWL) effects

• Limit cycle oscillations (LCOs) in
power converters:
‒Oscillation in output voltage due to round-

off and overflows

‒More energy losses and short silicon
lifespan

‒ LCOs are almost unavoidable and difficult
to be detected

‒ LCOs are typically detected via time-
domain simulations

Digital Systems Applications and Limitations

Motivation Architecture Methodology Usage Conclusions

Power Converter

A/D

Digital
PWM

Digital
Controller

��� � � �

���� �

• Digital filters and controllers are
currently replacing many analog
components

• Despite several advantages, they
present limitations related to finite-
word length (FWL) effects

• Limit cycle oscillations (LCOs) in
power converters:
‒Oscillation in output voltage due to round-

off and overflows

‒More energy losses and short silicon
lifespan

‒ LCOs are almost unavoidable and difficult
to be detected

‒ LCOs are typically detected via time-
domain simulations

Bounded Model Checking (BMC)

• Basic Idea: given a transition system M, check negation of a given
property φ up to given depth k

• Translated into a VC ψ such that: ψ is satisfiable iff φ has
counterexample of max. depth k

• BMC has been applied successfully to verify (embedded) software since
early 2000’s, but it has not been used to verify digital controllers

. . .

M0 M1 M2 Mk-1

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1 ¬ϕk∨ ∨ ∨ ∨

Counterexample trace

Transition
System

Property

BoundMk

Motivation Architecture Methodology Usage Conclusions

• Investigate FWL effects in fixed-point digital system (controllers and
filters) implementations via BMC techniques

• Apply a design-aided verification methodology to digital systems, which
is supported by the Digital-Systems Verifier (DSVerifier)

• Verify overflows, limit cycles, time constraints, stability, and mimimum
phase in digital systems using standard benchmarks

BMC of digital systems implementations considering FWL effects

Objectives

Motivation Architecture Methodology Usage Conclusions

The Digital-Systems Verifier (DSVerifier)

• DSVerifier is an additional module for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC) to add support for digital systems
verification

Motivation Architecture Methodology Usage Conclusions

Digital

System
Specification

DSVerifier
C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC – Efficient SMT-Based Context-Bounded Model Checker

The complete tool includes four
components from ESBMC
C Parser, GOTO Program, GOTO Symex,
and SMT Solver

The Digital-Systems Verifier (DSVerifier)

• DSVerifier is an additional module for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC) to add support for digital systems
verification

Motivation Architecture Methodology Usage Conclusions

Digital

System
Specification

DSVerifier
C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC – Efficient SMT-Based Context-Bounded Model Checker

DSVerifier module is included before the
ANSI-C parser, which provides functions
related to quantization, digital-system
realizations, and property verification

The Digital-Systems Verifier (DSVerifier)

• DSVerifier is an additional module for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC) to add support for digital systems
verification

Motivation Architecture Methodology Usage Conclusions

Digital

System
Specification

DSVerifier
C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC – Efficient SMT-Based Context-Bounded Model Checker

Initialization Validation Instrumentation

The Digital-Systems Verifier (DSVerifier)

• DSVerifier is an additional module for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC) to add support for digital systems
verification

Motivation Architecture Methodology Usage Conclusions

Digital

System
Specification

DSVerifier
C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC – Efficient SMT-Based Context-Bounded Model Checker

Initialization Validation Instrumentation

First step: initializes internal parameters
for quantization, computes maximum and
minimum values for FWL format

The Digital-Systems Verifier (DSVerifier)

• DSVerifier is an additional module for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC) to add support for digital systems
verification

Motivation Architecture Methodology Usage Conclusions

Digital

System
Specification

DSVerifier
C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC – Efficient SMT-Based Context-Bounded Model Checker

Initialization Validation Instrumentation
Second step: checks whether all required
parameters are correctly provided

The Digital-Systems Verifier (DSVerifier)

• DSVerifier is an additional module for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC) to add support for digital systems
verification

Motivation Architecture Methodology Usage Conclusions

Digital

System
Specification

DSVerifier
C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC – Efficient SMT-Based Context-Bounded Model Checker

Initialization Validation Instrumentation

Third Step: adds explicit calls
to the verification engine to check for
specific properties of digital systems

The Digital-Systems Verifier (DSVerifier)

• DSVerifier is an additional module for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC) to add support for digital systems
verification

Motivation Architecture Methodology Usage Conclusions

Digital

System
Specification

DSVerifier
C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC – Efficient SMT-Based Context-Bounded Model Checker

Initialization Validation Instrumentation

The Digital-Systems Verifier (DSVerifier)

• DSVerifier is an additional module for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC) to add support for digital systems
verification

Motivation Architecture Methodology Usage Conclusions

Digital

System
Specification

DSVerifier
C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC – Efficient SMT-Based Context-Bounded Model Checker

Initialization Validation Instrumentation
C parser: processes the ANSI-C file and
builds an Abstract Syntax Tree (AST)

The Digital-Systems Verifier (DSVerifier)

• DSVerifier is an additional module for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC) to add support for digital systems
verification

Motivation Architecture Methodology Usage Conclusions

Digital

System
Specification

DSVerifier
C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC – Efficient SMT-Based Context-Bounded Model Checker

Initialization Validation Instrumentation

GOTO Program: converts an ANSI-C
program into a GOTO-Program
(replacement of switch and while by if
and goto expressions)

The Digital-Systems Verifier (DSVerifier)

• DSVerifier is an additional module for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC) to add support for digital systems
verification

Motivation Architecture Methodology Usage Conclusions

Digital

System
Specification

DSVerifier
C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC – Efficient SMT-Based Context-Bounded Model Checker

Initialization Validation Instrumentation
GOTO Symex: performs a symbolic
execution of the program and
generates SMT equations for
constraints (C) and properties (P)

The Digital-Systems Verifier (DSVerifier)

• DSVerifier is an additional module for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC) to add support for digital systems
verification

Motivation Architecture Methodology Usage Conclusions

Digital

System
Specification

DSVerifier
C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC – Efficient SMT-Based Context-Bounded Model Checker

Initialization Validation Instrumentation
SMT Solver: evaluates the
expression C ∧ ¬P, using the
specified solver

The Digital-Systems Verifier (DSVerifier)

• DSVerifier is an additional module for the Efficient SMT-based Context-
Bounded Model Checker (ESBMC) to add support for digital systems
verification

Motivation Architecture Methodology Usage Conclusions

Digital

System
Specification

DSVerifier
C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC – Efficient SMT-Based Context-Bounded Model Checker

Initialization Validation Instrumentation

DSVerifier Features

• DSVerifier supports five verification properties, considering three direct-
and delta-form implementations, in addition to the cascade form

1. Overflow: if a sum or product exceeds the number representation

2. Limit Cycle: checks for zero-input limit cycles, for any initial condition

3. Stability: considers FWL effects on pole locations

4. Minimum phase: considers FWL effects on zero locations

5. Time constraints: checks whether a specific realization meets time
constraints

Motivation Architecture Methodology Usage Conclusions

DSVerifier-Aided Verification Methodology

Step 1:

Digital System
Design

Step 2:

Define
Representation

Step 3:

Define
Realization Form

Step 4:

Configure
Verifications

Step 5:

Verify Using
a BMC tool

Step 6:

Property
Violation?

Counterexample

NO

YES

SUCCESS

� �

=
�� + ����� + ⋯ + �����

�� + ����� + ⋯ + �����

•<k,l> k bits for Integer

part and l bits for

fractional part;

•Dynamical Range

•Direct Forms

(DFI, DFII, TDFII)

•Delta Forms

(DDFI, DDFII, TDDFII)
•Cascade Delta and

Direct Forms

•Hardware Model: (clock,

number of bits, ISA)

•Verification Time

•Property: Overflow,
Limit Cycle, Timing,

Stability or Minimum

Phase

•Model Checker

(ESBMC)

•SMT-Solver

(Boolector and Z3)

Motivation Architecture Methodology Usage Conclusions

DSVerifier-Aided Verification Methodology

Step 1:

Digital System
Design

Step 2:

Define
Representation

Step 3:

Define
Realization Form

Step 4:

Configure
Verifications

Step 5:

Verify Using
a BMC tool

Step 6:

Property
Violation?

Counterexample

NO

YES

SUCCESS

� �

=
�� + ����� + ⋯ + �����

�� + ����� + ⋯ + �����

Using prefered tools
and methods

Motivation Architecture Methodology Usage Conclusions

DSVerifier-Aided Verification Methodology

Step 1:

Digital System
Design

Step 2:

Define
Representation

Step 3:

Define
Realization Form

Step 4:

Configure
Verifications

Step 5:

Verify Using
a BMC tool

Step 6:

Property
Violation?

Counterexample

NO

YES

SUCCESS

•<k,l> k bits for Integer
part and l bits for
fractional part;

•Dynamical Range

� �

=
�� + ����� + ⋯ + �����

�� + ����� + ⋯ + �����

Motivation Architecture Methodology Usage Conclusions

DSVerifier-Aided Verification Methodology

Step 1:

Digital System
Design

Step 2:

Define
Representation

Step 3:

Define
Realization Form

Step 4:

Configure
Verifications

Step 5:

Verify Using
a BMC tool

Step 6:

Property
Violation?

Counterexample

NO

YES

SUCCESS

� �

=
�� + ����� + ⋯ + �����

�� + ����� + ⋯ + �����

•<k,l> k bits for Integer

part and l bits for

fractional part;

•Dynamical Range

•Direct Forms
(DFI, DFII, TDFII)

•Delta Forms
(DDFI, DDFII, TDDFII)

•Cascade Delta and
Direct Forms

Motivation Architecture Methodology Usage Conclusions

•Hardware Model:
(clock, number of bits,
ISA)

•Verification Time

•Property: Overflow,
Limit Cycle, Timing,
Stability or Minimum

Phase

DSVerifier-Aided Verification Methodology

Step 1:

Digital System
Design

Step 2:

Define
Representation

Step 3:

Define
Realization Form

Step 4:

Configure
Verifications

Step 5:

Verify Using
a BMC tool

Step 6:

Property
Violation?

Counterexample

NO

YES

SUCCESS

� �

=
�� + ����� + ⋯ + �����

�� + ����� + ⋯ + �����

•<k,l> k bits for Integer

part and l bits for

fractional part;

•Dynamical Range

•Direct Forms

(DFI, DFII, TDFII)

•Delta Forms

(DDFI, DDFII, TDDFII)
•Cascade Delta and

Direct Forms

Motivation Architecture Methodology Usage Conclusions

DSVerifier-Aided Verification Methodology

Step 1:

Digital System
Design

Step 2:

Define
Representation

Step 3:

Define
Realization Form

Step 4:

Configure
Verifications

Step 5:

Verify Using
a BMC tool

Step 6:

Property
Violation?

Counterexample

NO

YES

SUCCESS

� �

=
�� + ����� + ⋯ + �����

�� + ����� + ⋯ + �����

•<k,l> k bits for Integer

part and l bits for

fractional part;

•Dynamical Range

•Direct Forms

(DFI, DFII, TDFII)

•Delta Forms

(DDFI, DDFII, TDDFII)
•Cascade Delta and

Direct Forms

•Model Checker
(ESBMC)
•SMT-Solver
(Boolector and Z3)

Motivation Architecture Methodology Usage Conclusions

•Hardware Model: (clock,

number of bits, ISA)

•Verification Time

•Property: Overflow,
Limit Cycle, Timing,

Stability or Minimum

Phase

DSVerifier-Aided Verification Methodology

Step 1:

Digital System
Design

Step 2:

Define
Representation

Step 3:

Define
Realization Form

Step 4:

Configure
Verifications

Step 5:

Verify Using
a BMC tool

Step 6:

Property
Violation?

Counterexample

NO

YES

SUCCESS

� �

=
�� + ����� + ⋯ + �����

�� + ����� + ⋯ + �����

•<k,l> k bits for Integer

part and l bits for

fractional part;

•Dynamical Range

•Direct Forms

(DFI, DFII, TDFII)

•Delta Forms

(DDFI, DDFII, TDDFII)
•Cascade Delta and

Direct Forms

•Model Checker

(ESBMC)

•SMT-Solver

(Boolector and Z3)

Motivation Architecture Methodology Usage Conclusions

•Hardware Model: (clock,

number of bits, ISA)

•Verification Time

•Property: Overflow,
Limit Cycle, Timing,

Stability or Minimum

Phase

DSVerifier-Aided Verification Methodology

Step 1:

Digital System
Design

Step 2:

Define
Representation

Step 3:

Define
Realization Form

Step 4:

Configure
Verifications

Step 5:

Verify Using
a BMC tool

Step 6:

Property
Violation?

Counterexample

NO

YES

SUCCESS

� �

=
�� + ����� + ⋯ + �����

�� + ����� + ⋯ + �����

•<k,l> k bits for Integer

part and l bits for

fractional part;

•Dynamical Range

•Direct Forms

(DFI, DFII, TDFII)

•Delta Forms

(DDFI, DDFII, TDDFII)
•Cascade Delta and

Direct Forms

•Model Checker

(ESBMC)

•SMT-Solver

(Boolector and Z3)

Motivation Architecture Methodology Usage Conclusions

•Hardware Model: (clock,

number of bits, ISA)

•Verification Time

•Property: Overflow,
Limit Cycle, Timing,

Stability or Minimum

Phase

DSVerifier-Aided Verification Methodology

Step 1:

Digital System
Design

Step 2:

Define
Representation

Step 3:

Define
Realization Form

Step 4:

Configure
Verifications

Step 5:

Verify Using
a BMC tool

Step 6:

Property
Violation?

Counterexample

NO

YES

SUCCESS

� �

=
�� + ����� + ⋯ + �����

�� + ����� + ⋯ + �����

•<k,l> k bits for Integer

part and l bits for

fractional part;

•Dynamical Range

•Direct Forms

(DFI, DFII, TDFII)

•Delta Forms

(DDFI, DDFII, TDDFII)
•Cascade Delta and

Direct Forms

•Model Checker

(ESBMC)

•SMT-Solver

(Boolector and Z3)

Sequence of states that leads to a failure, which is
reproduced by a simulation tool

Motivation Architecture Methodology Usage Conclusions

•Hardware Model: (clock,

number of bits, ISA)

•Verification Time

•Property: Overflow,
Limit Cycle, Timing,

Stability or Minimum

Phase

DSVerifier-Aided Verification Methodology

Step 1:

Digital System
Design

Step 2:

Define
Representation

Step 3:

Define
Realization Form

Step 4:

Configure
Verifications

Step 5:

Verify Using
a BMC tool

Step 6:

Property
Violation?

Counterexample

NO

YES

SUCCESS

� �

=
�� + ����� + ⋯ + �����

�� + ����� + ⋯ + �����

•<k,l> k bits for Integer

part and l bits for

fractional part;

•Dynamical Range

•Direct Forms

(DFI, DFII, TDFII)

•Delta Forms

(DDFI, DDFII, TDDFII)
•Cascade Delta and

Direct Forms

•Model Checker

(ESBMC)

•SMT-Solver

(Boolector and Z3)

Re-choose the numeric format and/or realization form

Motivation Architecture Methodology Usage Conclusions

•Hardware Model: (clock,

number of bits, ISA)

•Verification Time

•Property: Overflow,
Limit Cycle, Timing,

Stability or Minimum

Phase

DSVerifier-Aided Verification Methodology

Step 1:

Digital System
Design

Step 2:

Define
Representation

Step 3:

Define
Realization Form

Step 4:

Configure
Verifications

Step 5:

Verify Using
a BMC tool

Step 6:

Property
Violation?

Counterexample

NO

YES

SUCCESS

•<k,l> k bits for Integer

part and l bits for

fractional part;

•Dynamical Range

•Direct Forms

(DFI, DFII, TDFII)

•Delta Forms

(DDFI, DDFII, TDDFII)
•Cascade Delta and

Direct Forms

•Model Checker

(ESBMC)

•SMT-Solver

(Boolector and Z3)

In the worst case re-design the controller

Motivation Architecture Methodology Usage Conclusions

•Hardware Model: (clock,

number of bits, ISA)

•Verification Time

•Property: Overflow,
Limit Cycle, Timing,

Stability or Minimum

Phase

DSVerifier-Aided Verification Example

Motivation Architecture Methodology Usage Conclusions

Controller
Design

Define
Representa

tion

• < 3,12 >:3 bits
for integer part
and 12 bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• DFII

Configure
Verification

• Verify overflow

• Verification
time:3600

• MSP340 16
MHz

Verify using
a BMC Tool

• ESBMC

Result

• Verification
Failed

• � =
�." #$�"#%�

#$��."&

Controller
Design

Define
Representa

tion

• < 3,12 >:3
bits for integer
part and 12
bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• DFII

Configure
Verification

• Verify overflow

• Verification
time:3600

• MSP340 16
MHz

Verify using
a BMC Tool

• ESBMC

Result

• Verification
Failed

Numeric format choosen based on impulse response sum and hardware limitations

Motivation Architecture Methodology Usage Conclusions

• � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example

Controller
Design

Define
Representa

tion

• < 3,12 >:3
bits for integer
part and 12
bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• DFII

Configure
Verification

• Verify overflow

• Verification
time:3600

• MSP340 16
MHz

Verify using
a BMC Tool

• ESBMC

Result

• Verification
Failed

Random first trial

Motivation Architecture Methodology Usage Conclusions

• � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example

Controller
Design

Define
Representa

tion

• < 3,12 >:3
bits for integer
part and 12
bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• DFII

Configure
Verification

• Verify overflow

• Verification
time:3600

• MSP430 16-bit
16 MHz

Verify using
a BMC Tool

• ESBMC

Result

• Verification
Failed

Motivation Architecture Methodology Usage Conclusions

• � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example

Controller
Design

Define
Representa

tion

• < 3,12 >:3
bits for integer
part and 12
bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• DFII

Configure
Verification

• Verify overflow

• Verification
time:3600

• MSP430 16-bit
16 MHz

Verify using
a BMC Tool

• ESBMC

• Bound: 10
samples

Result

• Verification
Failed

Motivation Architecture Methodology Usage Conclusions

• � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example

Controller
Design

Define
Representa

tion

• < 3,12 >:3
bits for integer
part and 12
bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• DFII

Configure
Verification

• Verify overflow

• Verification
time:3600

• MSP430 16-bit
16 MHz

Verify using
a BMC Tool

• ESBMC

• Bound: 10
samples

Result

• Verification
Failed

Failure due to a sum overflow (sum result = 2.0879 > 1).
Input sequence: {0.9995, -0.9995, 0.9995, 1, 1, 1, 0.9995, 0.9995, 0.9995, 0.9995, 1}

Redefine the implementation!

Motivation Architecture Methodology Usage Conclusions

• � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example

Controller
Design

Define
Representa

tion

• < 3,12 >:3
bits for integer
part and 12
bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• DFII

Configure
Verification

• Verify overflow

• Verification
time:3600

• MSP340 16
MHz

Verify using
a BMC Tool

• ESBMC

Result

• Verification
Failed

Maintain the Representation

Motivation Architecture Methodology Usage Conclusions

• � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example

Controller
Design

Define
Representa

tion

• < 3,12 >:3
bits for integer
part and 12
bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• TDFII

Configure
Verification

• Verify overflow

• Verification
time:3600

• MSP340 16
MHz

Verify using
a BMC Tool

• ESBMC

Result

• Verification
Failed

Change the Realization Form
TDFII presents less sums and products

Motivation Architecture Methodology Usage Conclusions

• � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example

Controller
Design

Define
Representa

tion

• < 3,12 >:3
bits for integer
part and 12
bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• TDFII

Configure
Verification

• Verify overflow

• Verification
time:3600

• MSP430 16-bit
16 MHz

Verify using
a BMC Tool

• ESBMC

Result

• Verification
Failed

Motivation Architecture Methodology Usage Conclusions

• � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example

Controller
Design

Define
Representa

tion

• < 3,12 >:3
bits for integer
part and 12
bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• TDFII

Configure
Verification

• Verify overflow

• Verification
time:3600

• MSP430 16-bit
16 MHz

Verify using
a BMC Tool

• ESBMC

• Bound: 10
samples

Result

• Verification
Failed

Motivation Architecture Methodology Usage Conclusions

• � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example

Controller
Design

Define
Representa

tion

• < 3,12 >:3
bits for integer
part and 12
bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• TDFII

Configure
Verification

• Verify overflow

• Verification
time:3600

• MSP430 16-bit
16 MHz

Verify using
a BMC Tool

• ESBMC

• Bound: 10
samples

Result

• Verification
Failed

Repeat the test

Motivation Architecture Methodology Usage Conclusions

• � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example

Controller
Design

Define
Representa

tion

• < 3,12 >:3
bits for integer
part and 12
bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• TDFII

Configure
Verification

• Verify overflow

• Verification
time:3600

• MSP430 16-bit
16 MHz

Verify using
a BMC Tool

• ESBMC

• Bound: 10
samples

Result

• SUCCESS

The problem was solved

Motivation Architecture Methodology Usage Conclusions

• � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example

Controller
Design

Define
Representa

tion

• < 3,12 >:3
bits for integer
part and 12
bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• TDFII

Configure
Verification

• Verify limit
cycle

• Verification
time:3600

• MSP430 16-bit
16 MHz

Verify using
a BMC Tool

• ESBMC

• Bound: 10
samples

Result

• SUCESS

But verifing limit cycles...

Motivation Architecture Methodology Usage Conclusions

• � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example

Controller
Design

Define
Representa

tion

• < 3,12 >:3
bits for integer
part and 12
bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• TDFII

Configure
Verification

• Verify limit
cycle

• Verification
time:3600

• MSP430 16-bit
16 MHz

Verify using
a BMC Tool

• ESBMC

• Bound: 10
samples

Result

• Verification
Failed

Appears an oscillation: {-0.002, -0.002, -0.0015, -0.0015, -0.002, -0.002, -0.0015, -0.0015, -0.002, -0.002}.
Zero input sequence

Redefine the implementation!

Motivation Architecture Methodology Usage Conclusions

• � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example

Controller
Design

Define
Representa

tion

• < 3,4 >:3 bits
for integer part
and 4 bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• TDFII

Configure
Verification

• Verify limit
cycle

• Verification
time:3600

• MSP430 16-bit
16 MHz

Verify using
a BMC Tool

• ESBMC

• Bound: 10
samples

Result

• SUCESS

Verifying with a different representation...
There is a trade off: the oscillation is solved; however, there is an accurate loss

Motivation Architecture Methodology Usage Conclusions

• � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example

Controller
Design

Define
Representa

tion

• < 3,4 >:3 bits
for integer part
and 4 bits for
fractional part

• Dynamical
Range: [-1,1]

Define
Realization

Form

• TDFII

Configure
Verification

• Verify limit
cycle

• Verification
time:3600

• MSP430 16-bit
16 MHz

Verify using
a BMC Tool

• ESBMC

• Bound: 10
samples

Result

• SUCCESS

SUCCESS

Motivation Architecture Methodology Usage Conclusions

• � =
�." #$�"#%�

#$��."&

DSVerifier-Aided Verification Example

DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: (� =
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

#include <dsverifier.h>

digital_system ds = {

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

Motivation Architecture Methodology Usage Conclusions

#include <dsverifier.h>

digital_system ds = {

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

Numerator Coefficients

Motivation Architecture Methodology Usage Conclusions

DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: (� =
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: (� =
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

#include <dsverifier.h>

digital_system ds = {

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

Motivation Architecture Methodology Usage Conclusions

DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: (� =
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

#include <dsverifier.h>

digital_system ds = {

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

Motivation Architecture Methodology Usage Conclusions

Number of Coefficients

DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: (� =
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

#include <dsverifier.h>

digital_system ds = {

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

Motivation Architecture Methodology Usage Conclusions

DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: (� =
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

#include <dsverifier.h>

digital_system ds = {

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

Motivation Architecture Methodology Usage Conclusions

Denominator Coefficients

DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: (� =
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

Motivation Architecture Methodology Usage Conclusions

#include <dsverifier.h>

digital_system ds = {

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

implementation impl = {

.int_bits = 4,

.frac_bits = 10,

.min = -5,

.max = 5

};

• Implementation aspects:

DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: (� =
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

Motivation Architecture Methodology Usage Conclusions

#include <dsverifier.h>

digital_system ds = {

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

implementation impl = {

.int_bits = 4,

.frac_bits = 10,

.min = -5,

.max = 5

};

• Implementation aspects:

14-bits architecture: 4 bits for integer and
10 bits for precision parts

DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: (� =
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

Motivation Architecture Methodology Usage Conclusions

#include <dsverifier.h>

digital_system ds = {

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

implementation impl = {

.int_bits = 4,

.frac_bits = 10,

.min = -5,

.max = 5

};

• Implementation aspects:

14-bits architecture: 4 bits for integer and
10 bits for precision parts

Dynamical Range: between -5.0 and 5.0

DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: (� =
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

Motivation Architecture Methodology Usage Conclusions

#include <dsverifier.h>

digital_system ds = {

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

implementation impl = {

.int_bits = 4,

.frac_bits = 10,

.min = -5,

.max = 5

};

• Implementation aspects:

14-bits architecture: 4 bits for integer and
10 bits for precision parts

Dynamical Range: between -5.0 and 5.0

./dsverifier <file>
--realization <i> --property <j> --x-size <k>

• DSVerifier is invoked as:

DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: (� =
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

Motivation Architecture Methodology Usage Conclusions

#include <dsverifier.h>

digital_system ds = {

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

implementation impl = {

.int_bits = 4,

.frac_bits = 10,

.min = -5,

.max = 5

};

• Implementation aspects:

14-bits architecture: 4 bits for integer and
10 bits for precision parts

Dynamical Range: between -5.0 and 5.0

./dsverifier <file>
--realization <i> --property <j> --x-size <k>

• DSVerifier is invoked as:

e.g., DFI, DFII

DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: (� =
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

Motivation Architecture Methodology Usage Conclusions

#include <dsverifier.h>

digital_system ds = {

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

implementation impl = {

.int_bits = 4,

.frac_bits = 10,

.min = -5,

.max = 5

};

• Implementation aspects:

14-bits architecture: 4 bits for integer and
10 bits for precision parts

Dynamical Range: between -5.0 and 5.0

./dsverifier <file>
--realization <i> --property <j> --x-size <k>

• DSVerifier is invoked as:

e.g., DFI, DFII
e.g.,

OVERFLOW

DSVerifier Command-line Version

• The user provides the digital-system specification via an ANSI-C file

• Consider the following digital system: (� =
2.813�" − 0.0163� − 1.872

�" + 1.068� + 0.1239

Motivation Architecture Methodology Usage Conclusions

#include <dsverifier.h>

digital_system ds = {

.b = {2.813, -0.0163, -1.872},

.b_size = 3,

.a = { 1.0, 1.068, 0.1239 },

.a_size = 3

};

implementation impl = {

.int_bits = 4,

.frac_bits = 10,

.min = -5,

.max = 5

};

• Implementation aspects:

14-bits architecture: 4 bits for integer and
10 bits for precision parts

Dynamical Range: between -5.0 and 5.0

./dsverifier <file>
--realization <i> --property <j> --x-size <k>

• DSVerifier is invoked as:

e.g., DFI, DFII
e.g.,

OVERFLOW
e.g., 10, 20, 30

• The graphical user interface
(GUI) improves usability and
attracts more digital-system
enginners

• Allows users to provide all
required parameters for the
verification

• Parallel execution of
verification tasks, which is
guided by properties

Motivation Architecture Methodology Usage Conclusions

DSVerifier Usage (Graphical User Interface)

• Graphical verification results
and counterexamples

• Access the documentation,
benchmarks, and publications

• Developed using JavaFX

• Requires Java Runtime
Environment Version 8.0
Update 40 (jre1.8.0 40)

Motivation Architecture Methodology Usage Conclusions

DSVerifier Usage (Graphical User Interface)

• DSVerifier is able to verify digital systems and supports an extensive
verification of different properties and realization forms

• DSVerifier can be regarded as an automated and reliable tool if
compared to traditional simulation tools
‒ An enginner can verify during design phase, if the digital-system presents

the expected behavior

Future Work
• Support for closed-loop system verification, more system-level
properties, realizations, hardware platforms, and BMC tools

• Source code, benchmarks, experimental results, and publications are
available at http://www.dsverifier.org

Conclusions

Motivation Architecture Methodology Usage Conclusions

Demonstration

Motivation Architecture Methodology Usage Conclusions

