
Finding Security
Vulnerabilities in

Unmanned Aerial Vehicles
Using Software Verification

Joint work with Mustafa A. Mustafa and Lucas C. Cordeiro

Omar M. Alhawi
University of Manchester

omar.alhawi@Manchester.ac.uk
2019

Software is Everywhere

2	

3	

Software is Complex

https://informationisbeautiful.net/visualizations/million-lines-of-code/	

Control	Software		
ONLY	

4	
https://www.boeing.com/defense/unmanned-little-bird-h-6u/	

https://medium.com/@bishr_tabbaa/when-smart-ships-divide-by-zer0-uss-yorktown-4e53837f75b2	

Exploitable Software is Everywhere
Security vulnerabilities can lead to drastic consequences

Attacked by rogue camera software and by a malware
delivered through a compromised USB stick.

The attackers were able to fully control Bird H-6U .

Boeing Unmanned Little Bird H-6U A sailor on the U.S.S. Yorktown entered a 0 into a data field
in a kitchen-inventory program.

The 0-input caused an overflow, which crashed all LAN
consoles and miniature remote terminal units.

 The Yorktown was non operational in the water for about
two hours and 45 minutes.

USS Yorktown aircraft carriers

•  Unmanned Aerial Vehicles (UAVs) are systems-of-systems that couple
their cyber and physical components

HMI

real-time
computer
system
(RTCS)

sensor

actuator

network Machine
learning

Verifying Embedded Software in UAV is Hard Too

Increase in lines
of code

multi-core processors
with limited amount of energy

Mass production safety-critical
applications

5	

Security Challenges in UAVs

• Vulnerability	analysis	(software	connected	with	hardware)	
• Remote	accessibility	(device	authentication,	access	control)	
• Patch	management	(vendors	might	be	long	gone)	

• Attacks	from	physical	world	(GPS	spoofing	and	replay	
attack)	

6	

Cyberwarfare	

	
Cyberterrorism	

	

	
Cyberhooliganism	

	

Related Work

7	

Literature	in	the	area	is	scarce.	

Ø  Securing	the	MAVLink	Protocol[1]		
	

•  MAVLink	protocol,	used	for	bidirectional	communication	between	a	
drone	and	a	ground	control	station.		

	
Ø  	Fuzzing	the	MAVLink	protocol[2]		
	

•  Identify	possible	vulnerabilities	in	the	protocol	implementation	using	
fuzzing	technique.		

	

[1]	"MAVSec:	Securing	the	MAVLink	Protocol	for	Ardupilot/PX4	Unmanned	Aerial	Systems’,	2019.	[Online].	Available:	
	https://ieeexplore.ieee.org/document/8766667	
	
[2]	"Security	Analysis	of	the	Drone	Communication	Protocol:	Fuzzing	the	MAVLink	protocol,	2016	[Online].	Available:	
https://www.esat.kuleuven.be/cosic/publications/article-2667.pdf	
	

Related Work

8	

Ø  Smart	Device	Ground	Control	Station[3]	
	

•  Analyse	the	cyber	security	vulnerabilities	within	the	communication	
links,	smart	devices	hardware.	

	

Ø  Autopilot	systems	[4]	
	

•  Identify	the	possible	threats	and	vulnerabilities	of	the	current	autopilot	
system.	

	
	

Ø  Existing	Gaps:	
•  No	software	evaluation	
•  No	support	to	the	drone's	high-level	layer	
•  No	specific	functionality	for	verification	decisions	

[3]"Unmanned Aerial Vehicle Smart Device Ground Control Station Cyber Security Threat Model ‘. [Online]. Available:
https://ieeexplore.ieee.org/document/6699093
[4]"Cyber	Attack	Vulnerabilities	Analysis	for	Unmanned	Aerial	Vehicles’,.	[Online].	Available:	
https://static1.squarespace.com/static/553e8918e4b0c79e77e09c4d/t/5ae86e6a8a922d40d2c0d1bd/1525182105346/AIAA-Infotech_Threats-and-
Vulnerabilities-Analysis.pdf	

Existing Gaps

9	

	
•  No	software	evaluation	

•  Malicious	Software	

•  UAV	software	exploitation		

•  No	support	to	the	drone's	high-level	layer	

•  No	specific	functionality	for	verification	decisions	

Objectives

To design an effective approach to check UAV
software implementations against

vulnerabilities.

10	

How	vulnerable	are	the	Drones	to	a	cyberattack?		

Develop	a	framework	within	which	to	think	about	and	discussion	
cybersecurity	in	UAVs.		

Project Approach

Our approach is to investigate the areas of UAV software vulnerabilities in order to improve
software productivity.

11	

There are two main layers of drone programming.

1.  Low level (Firmware):
Direct communication with the hardware being used, and provides the drone with its basic functionality.

2. High level (Software/Applications):
Treat your drone as a magical black box that reliably responds to commands send to it.

Experimental Question

	
RQ1:	Are	we	able	to	perform	successful	cyber-attacks	in	commercial	
UAVs?	
	

12	

1- GPS Spoofing Attack

13	
Spoofer	

Tr
an
sm

it	
th
e	
TI
M
E	
SI
GN

AL
		

Track	

2- Denial of
Service	

	Software	Defined	Radio	(SDR)		

Transform	the	IQ	data	into	RF	
output	

Antenna	that	operates	at	
1575.42	MHz	(L1	GPS)	signal	

OS,	BladeRFx40	

	
	

gps-sdr-sim −l < lat,long,alt > −d <duration>	
	
	

Tello	&	Bebop	2..	
UAV	

Results
Results from UAV Swarm Competition

Vulnerability type Drone Model Tool Result

Spoofing

Parrot bebop 2 Wi-Fi transmitter

Full Control

Denial of service Crash

Spoofing

Tello Wi-Fi transmitter

Full Control

Denial of service Full Control

14	https://www.cranfield.ac.uk/press/news-2019/bae-competition-challenges-students-to-counter-threat--from-uavs	
	

• DepthK	uses	ESBMC,	a	context-bounded	symbolic	model	checker	that	
verifies	single-	and	multi-threaded	C	programs		

DepthK: K-Induction + Invariant
Inference

15	

• DepthK	uses	PAGAI	and	PIPS	tools	to	infer	program	invariants	

DepthK	employs	Bounded	Model	Checking	(BMC)	and	k-Induction	based	on	
program	invariants,	which	are	automatically	generated	using	polyhedral	

constraints		

DepthK: K-Induction + Invariant
Inference

16	

Experimental Questions

Ø Supporting	fuzzing,	BMC,	and	analysis	of	UAV’s	software.		

•  RQ2:	Can	DepthK	help	us	understand	the	security	vulnerabilities	that	
have	been	detected?	

	

17	

Results from Software Verification competition
SV-Comp19

Category

Benchmarks

Correct Results

Incorrect Results

Unknown

Concurrency Safety

	
1082	

	
966	

	
20	

	
96	

No Overflows

	
359	

	
167	

	
0	

	
192	
	

18	
https://sv-comp.sosy-lab.org/2019/committee.php

Experimental Questions

Ø Supporting	fuzzing,	BMC,	and	analysis	of	UAV’s	software.		

	

•  RQ3:	Can	generational	or	mutational	fuzzers	be	further	developed	to	
detect	vulnerabilities	in	real-world	software?	

	

19	

	
	

UAV Fuzzer

UAV Software Test Case

Bugs

How the data input (test cases) used during fuzzing process influence the fuzzing result?

Mutators	
depend	on	the	
input	they	are	
modifying	

Test	programs	on	random	
unexpected	data	

Can	be	realized	using	black/white	

Can	be	quite	effective	

Usually	implemented	via	
instrumentation	

Tricky	to	scale	for	programs	with	
many	paths		

20	

Future Work: UAV Fuzzer Framework

UAV Fuzzer Framework Read and view Tello UAV data status	
	

21	

Fuzzer	Test	Case	

Model	Checking	
All	the	sequences	after	fuzzing	engine	stuck	will	symbolically		

Executed	to	determine	if	they	can	reach	an	exploitation	primitive.	

22	

Classify	input	variables	into	symbolic	and/or	concrete	

Instrument	to	record	symbolic	vars	and	path	conditions		

Choose	an	arbitrary	input	

Execute	the	program	

Symbolically	re-execute	the	program	

Negate	the	unexplored	last	path	condition	

UAV Fuzzer Framework (cont.)

Challenges

•  Benchmark selection.

•  The size of complex software implementations.

•  Scaling	Issues	for	Symbolic	Exploration.

•  Time required.

23	

Methodology and Evaluation

24	

 The quality of
the test cases	

Code coverage
achieved	

Ø  Our proposed approach, “UAV Fuzzer” Can be evaluated in
three aspects:

Bugs detection	

Validating UAV
software

implementations	

The verification
time	

Results comparison

Contributions

Ø  The contribution of this research are as follows:

•  A better understanding of fuzzing and BMC. Provide

•  UAV vulnerabilities. Identify

•  Vulnerabilities in UAV Software. Detect

•  UAV fuzzer for a software exploration. Employ

•  BMC and Fuzzing to generate high coverage. Use

•  With other software verifiers and fuzzers. Compare

25	

Methods, algorithms, and
tools to write software

with respect to security

Research Mission

Automated verification to ensure the software
security in UAVs

QUESTIONS?

27	

omar.alhawi@Manchester.ac.uk	
	

