
FEDERAL UNIVERSITY OF AMAZONAS

INSTITUTE OF COMPUTING

GRADUATE PROGRAM IN COMPUTER SCIENCE

FEDERAL UNIVERSITY OF AMAZONAS

INSTITUTE OF COMPUTING

GRADUATE PROGRAM IN COMPUTER SCIENCE

MEMORY MANAGEMENT TEST-CASE

GENERATION OF C PROGRAMS USING

BOUNDED MODEL CHECKING

MEMORY MANAGEMENT TEST-CASE

GENERATION OF C PROGRAMS USING

BOUNDED MODEL CHECKING

Herbert Rocha, Raimundo Barreto,

and Lucas Cordeiro

22015UFAM/IComp/PPGI

Agenda

1. Introduction

2. Background

3. Proposed Method

4. Experimental Evaluation

5. Conclusions and Future Work

32015UFAM/IComp/PPGI

Software Applications

42015UFAM/IComp/PPGI

Verification and Testing Software

In software testing:

� a significant human effort is required to generate effective

test cases

� subtle bugs are difficult to detect

In software model checking:

� limited scalability to large software

� missing tool-supported integration into the development

process

52015UFAM/IComp/PPGI

Verification and Testing Software

In software testing:

� a significant human effort is required to generate effective

test cases

� subtle bugs are difficult to detect

In software model checking:

� limited scalability to large software

� missing tool-supported integration into the development

process

The integration aims to alleviate the weaknesses

from those strategies

62015UFAM/IComp/PPGI

What do you need to check?

�Analyzing memory management is an important task to avoid

unexpected behavior of the program

�Pointer safety violation results in an invalid address

� Produce an incorrect result of the program and not

necessarily a crash

�Memory leaks have a negative impact in other application running

on the same system

� they typically remain unobserved until they consume a large

portion of the memory

7iFM'2012UFAM/IComp/PPGI

And what are we proposing? The Map2Check Method

� Map2Check generates automatically:

� memory management test cases for structural unit tests for

C programs

� assertions from safety properties generated by BMC tools

� Map2Check aims to improve the unit testing environment,

adopting features from (bounded) model checkers

� Map2Check adopts source code instrumentation to:

� monitor the program’s executions

� validate assertions with safety properties

8iFM'2012UFAM/IComp/PPGI

And what are we proposing? The Map2Check Method

Map2Check method checks the program out of the BMC tools flow

� It is based on dynamic analysis and assertion verification

� The assertions contain a set of specifications

� The BMC is adopted as verification condition (VC) generator

that translates a program fragment and its correctness

property into logical formula

9iFM'2012UFAM/IComp/PPGI

The motivation of this work - Map2Check

� Aims to check for properties related to pointer safety, memory

leaks, and invalid free

� Provides trace of memory addresses, in case of property violation

� Support the integration between testing and verification in an

environment, where a software engineer can extend the analysis

of the program through APIs and include new BMC and unit

testing tools

#include <map2check.h>

102015UFAM/IComp/PPGI

Agenda

1. Introduction

2. Background

3. Proposed Method

4. Experimental Evaluation

5. Conclusions and Future Work

11iFM'2012UFAM/IComp/PPGI

Efficient SMT-Based Bounded Model Checking - ESBMC

ESBMC is a bounded model checker for embedded ANSI-C software

based on SMT (Satisfiability Modulo Theories) solvers, which

allows:

� Out-of-bounds array indexing;

� Division by zero;

� Pointers safety

� Dynamic memory allocation;

�Data races;

� Deadlocks;

�Underflow e Overflow;

122015UFAM/IComp/PPGI

Safety Property

� Informally, a property in linear-time specifies the allowable (or

desired) behavior of a system

� In this study, we use ESBMC VCs generator to check for memory

safety as follows:

� checking for safety pointers - SAME OBJECT

� if a pointer is NULL or invalid object - INVALID POINTER

� VCs for dynamic memory allocation - IS DYNAMIC OBJECT

� if the argument to any free, or dereferencing operation is still

a valid object - VALID OBJECT

132015UFAM/IComp/PPGI

Software Testing

� A test case consists of a test data analysis associated with an

expected result of the software specification

� Unit tests are typically written based on a set of test cases to

ensure that the program meets its design and behaves as

expected

� We create unit tests to analyze the software specification

together with their test data

� We adopt the CUnit framework to develop unit tests

Available at: http://cunit.sourceforge.net

142015UFAM/IComp/PPGI

Agenda

1. Introduction

2. Background

3. Proposed Method

4. Experimental Evaluation

5. Conclusions and Future Work

152015UFAM/IComp/PPGI

Memory Management Test Case Generation

for C Programs - Map2Check

Map2Check tool2 is available at https://sites.google.com/site/map2check/

int *a, *b;

int n;

#define BLOCK_SIZE 128

void foo (){ ... }

int main ()

{

n = BLOCK_SIZE;

a = malloc (n * sizeof(*a));

b = malloc (n * sizeof(*b));

*b++ = 0;

foo ();

if (b[-1])

{ /* invalid free (b was iterated) */

free(a); free(b); }

else

{ free(a); free(b); } /* ditto */

return 0;

}

162015UFAM/IComp/PPGI

960521 − 1_false-valid-free.c

SV-COMP 2014: 55.6% of

the tools in the MemorySafety

category are not able to find the

property violation

3.

4.

5.

6.

7.

8.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Memory Management Test Case Generation

for C Programs - Map2Check

172015UFAM/IComp/PPGI

Step 1: Identification of safety properties

$ esbmc --64 --no-library --show-claims

960521-1_false-valid-free.c

file 960521-1_false-valid-free.c: Parsing

Converting

Type-checking 960521-1_false-valid-free

Generating GOTO Program

Pointer Analysis

Adding Pointer Checks

Claim 1:

file 960521-1_false-valid-free.c line 12 function foo

dereference failure: dynamic object lower bound

!(POINTER_OFFSET(a) + i < 0) || !(IS_DYNAMIC_OBJECT(a))

182015UFAM/IComp/PPGI

Step 1: Identification of safety properties

$ esbmc --64 --no-library --show-claims

960521-1_false-valid-free.c

file 960521-1_false-valid-free.c: Parsing

Converting

Type-checking 960521-1_false-valid-free

Generating GOTO Program

Pointer Analysis

Adding Pointer Checks

Claim 1:

file 960521-1_false-valid-free.c line 12 function foo

dereference failure: dynamic object lower bound

!(POINTER_OFFSET(a) + i < 0) || !(IS_DYNAMIC_OBJECT(a))

Claims generated automatically by ESBMC do not necessarily

correspond to errors

192015UFAM/IComp/PPGI

Step 2: Extract information from safety properties

Claims Comments Line Property

Claim 1
dereference failure: dynamic

object lower bound
12

!(POINTER_OFFSET(a) + i < 0)

|| !(IS_DYNAMIC_OBJECT(a))

Claim 2
dereference failure: dynamic

object upper bound
12

!(POINTER_OFFSET(a) + i >=

DYNAMIC_SIZE(a)) ||

!(IS_DYNAMIC_OBJECT(a))

Claim 3
dereference failure: dynamic

object lower bound
14

!(POINTER_OFFSET(b) + i < 0)

|| !(IS_DYNAMIC_OBJECT(b))

Claim 4

File sum_array line 14

function main array `a’ upper

bound

14

!(POINTER_OFFSET(b) + i >=

DYNAMIC_SIZE(b)) ||

!(IS_DYNAMIC_OBJECT(b))

...

UFAM/IComp/PPGI 2015 20

Step 3: Translation of safety properties

Translate claims provided by ESBMC to assertions into the C

program:

� INVALID-POINTER.

INVALID − POINTER(i + pat) ��
IS _VALID_POINTER_MF (LIST_LOG, (void∗)&(i+pat), (void∗)(intptr_t)(i+pat))

#include <map2check.h>

Map2Check provides a library to the C program, which offers

support to execute the functions generated by the translator.

212015UFAM/IComp/PPGI

Step 4: Memory tracking

Consists of two phases:

1) identify and track variables in the analyzed source code, as well

as, the variable operations and assignments

2) instrument the source code with specific functions for

monitoring the memory addresses and the addresses pointing

by these variables according to the program execution

int *a, *b;

int n;

#define BLOCK_SIZE 128

void foo (){ ... }

int main ()

{

n = BLOCK_SIZE;

a = malloc (n * sizeof(*a));

b = malloc (n * sizeof(*b));

*b++ = 0;

foo ();

if (b[-1])

{ /* invalid free (b was iterated) */

free(a); free(b); }

else

{ free(a); free(b); } /* ditto */

return 0;

}

222015UFAM/IComp/PPGI

Step 4: Memory tracking

Phase 1: identify and track variables

Input: Abstract Syntax Tree (AST)

Output: Variables Tracking (Map)

3.

4.

5.

6.

7.

8.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Analyzing the

program scope

232015UFAM/IComp/PPGI

Step 4: Memory tracking

Tracking of the variablesint *a, *b;

int n;

#define BLOCK_SIZE 128

void foo (){ ... }

int main ()

{

n = BLOCK_SIZE;

a = malloc (n * sizeof(*a));

b = malloc (n * sizeof(*b));

*b++ = 0;

foo ();

if (b[-1])

{ /* invalid free (b was iterated) */

free(a); free(b); }

else

{ free(a); free(b); } /* ditto */

return 0;

}

3.

4.

5.

6.

7.

8.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Pointer variable

assignments

242015UFAM/IComp/PPGI

Step 4: Memory tracking

Phase 2: Instrumentation of the source code

� mark_map_MF. This function trackes the memory addresses

(LIST_LOG) of the variables according to the program

execution;

� IS_VALID_DYN_OBJ_MF. This function identifies if a dynamic

object is valid;

� INVALID_FREE. This function identifies whether a given dynamic

object can be released/deallocated from the memory properly;

� CHECK_MEMORY_LEAK. Identifies if, in the end of the program,

some allocated memory is not released.

3.

4.

5.

6.

7.

8.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

int *a, *b;

int n;

#define BLOCK_SIZE 128

void foo (){ ... }

int main ()

{

n = BLOCK_SIZE;

a = malloc (n * sizeof(*a));

b = malloc (n * sizeof(*b));

*b++ = 0;

foo ();

if (b[-1])

{ /* invalid free (b was iterated) */

free(a); free(b); }

else

{ free(a); free(b); } /* ditto */

return 0;

}

252015UFAM/IComp/PPGI

Step 4: Memory tracking

Line Address Points to Escope Is Dynamic Is Free

28 0x601050 0xb44034 global 0 1

28 0x601060 0xb44010 global 0 1

...

10 0x7fff39f18a2c (nil) foo 0 0

22 0x601050 0xb44034 global 0 0

21 0x601050 0xb44030 global 1 0

...

Tracking memory execution
Invalid free

variable b was iterated

262015UFAM/IComp/PPGI

Step 5: Code instrumentation with assertions

...

int main ()

{

n = BLOCK_SIZE;

a = malloc (n * sizeof(*a));

b = malloc (n * sizeof(*b));

*b++ = 0;

foo ();

if (b[-1])

{

...

}

else

{

ASSERT(INVALID_FREE(LIST_LOG, (void *)(intptr_t)(a), 28));

free(a);

ASSERT(INVALID_FREE(LIST_LOG, (void *)(intptr_t)(b), 28));

free(b);
}

return 0;

}

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

272015UFAM/IComp/PPGI

Step 6: Implementation of the tests

Model using C assertions

Model for CUnit

#include <map2check.h>

Unit Testing

Framework

debugging

options/statements for unit testing

282015UFAM/IComp/PPGI

Step 6: Implementation of the tests

292015UFAM/IComp/PPGI

Step 7: Execution of the tests

302015UFAM/IComp/PPGI

Agenda

1. Introduction

2. Background

3. Proposed Method

4. Experimental Evaluation

5. Conclusions and Future Work

312015UFAM/IComp/PPGI

Planning and Designing the Experiments

Goal: Analyzing the ability of Map2Check to generate and verify

test cases related to memory management.

� The experiments are conducted on an Intel Core i7-2670QMCPU,

2.20GHz, 32GB RAM com Linux OS

� The time limit to the verification is 15 min

Disponível em https://github.com/hbgit/Map2Check

322015UFAM/IComp/PPGI

Planning and Designing the Experiments

� We consider 61 ANSI-C programs from the MemorySafety

category of the SV-COMP’14 benchmark

� Comparison to the tools:

� Valgrind’s Memcheck (Nethercote e Seward, 2007)

� CBMC (Clarke et al., 2004)

� LLBMC (Merz et al., 2012)

� CPAChecker (Beyer e Keremoglu, 2011)

� Predator (Dudka et al., 2014)

� ESBMC (Cordeiro et al., 2012).

332015UFAM/IComp/PPGI

Experiment’s Execution and Results Analysis

Tool CPAChecker Map2Check Valgrind CBMC Predator LLBMC ESBMC

Correct

Results
59 58 57 46 43 31 7

False

Negatives
0 0 0 8 0 0 0

False

Positives
0 0 0 2 12 0 36

Unknown

and TO
2 3 4 5 6 30 18

Time (min) 23.33 190.98 151.57 200 76.66 416.66 139.06

95.08%95.72% 93.44%

> 76%

342015UFAM/IComp/PPGI

Experiment’s Execution and Results Analysis

Memory consumed by the tools in the programs

� Map2Check is the 2nd tool that consumes less memory

� Map2Check in 95% of the programs has consumed about 50 MB

352015UFAM/IComp/PPGI

Experiment’s Execution and Results Analysis

The runtime verification:

� Map2Check is 54.16% faster than LLBMC and 4.5% than CBMC

� Map2Check does not identify more correct results only, but also

generates less Unknown and TO than CPAChecker

� Map2Check time: the concrete execution of the nondeterministic

programs

� The function __VERIFIER_nondet_int() in loop

structures

� Map2Check depends on a random function to determine the

halting condition of a loop

362015UFAM/IComp/PPGI

Experiment’s Execution and Results Analysis

Analyzing Map2Check in the context of the SVCOMP’14 in the

MemorySafety category.

Scores:

1st place: CPAChecker = 95 e Map2Check = 95

2th place: LLBMC = 38

3th place: Predator = 14

The scores could be ranked with

negative points

372015UFAM/IComp/PPGI

Experiment’s Execution and Results Analysis

We had participated in SV-COMP 2015 with Map2Check tool in the

MemorySafety category

� Updates in SV-COMP:

� In SV-COMP 2014 the total file was 61 and in SV-COMP 2015

was 205

� The scores were updated to penalize incorrect results

� Map2Check won the 6th from 9 tools (number of correct

programs was 165 from 205)

� Forester (Holik et al., 2015)

� Seahorn (Kahsai et al., 2015)

� CBMC (Clarke et al., 2004a)

382015UFAM/IComp/PPGI

Agenda

1. Introduction

2. Background

3. Proposed Method

4. Experimental Evaluation

5. Conclusions and Future Work

392015UFAM/IComp/PPGI

Conclusions and Future Work

� We presented a method to:

� integrate unit testing with model checkers, focusing on

memory management defects

� disseminate the application of formal methods and helping

developers not very familiar with this subject to verify large C

programs

� Map2Check can be adopted as a complementary technique for

the verification performed by BMC tools

� Mainly when BMC tools cannot, usually because of time-out;

or when there are false negative or false positive

402015UFAM/IComp/PPGI

Conclusions and Future Work

� The experimental results have shown to be very effective

� The Map2Check method has detected at least as many memory

management defects as the state-of-the-art tools

For future work

� To improve the verification runtime and precision of Map2Check:

� adopting program invariants

� static verification based on abstract domain

� Adopting a witness checker

412015UFAM/IComp/PPGI

Questions ?

Thank you for your attention!
herberthb12@gmail.com

