©) cSueurer
IEEE
SecDev

Position Paper: Towards a Hybrid Approach
to Protect Against Memory Safety Vulnerabilities

Kaled Alshmrany*, Ahmed Bhayat*, Franz Braul3e*, Lucas Cordeiro*, Konstantin Korovin*,
Tom Melham”, Mustafa A. Mustafa*, Pierre Olivier*, Giles Reger*, Fedor Shmarov*

*The University of Manchester AUniversity of Oxford

HIEEESecDev https://secdev.ieee.org/ZOZZ

Introduction

* There are many techniques for ensuring software safety
* Based on static analysis, automated testing, etc.

* They provide different levels of protection
* Some techniques can detect vulnerabilities that other cannot (and vise versa)

* Existing hybrid solutions (i.e., combining different techniques)
showed promising improvements

* Post-deployment software safety is often overlooked

* We propose a hybrid framework that addresses software safety
across the pre-deployment and post-deployment stages

Hybrid Verification Framework Vision

CHERI C
L Program | * Accentuate post-deployment safety
| 7 Spatial memory safety
Temporal memory safety * Reduce performance overheads through
Use static properties Clal‘“g ﬁ “cheaper” hardware level protection
torefine runtime _» 1% Custom assertions * Reuse the information from static
checks \ (ASAN/SB)

backoond analysis to introduce only necessary
I “expensive” safety checks

program.exe dynamic
linking

Pre-Deployment Post-Deployment

* Enhance pre-deployment analysis

FuSeBMC * ASAN/SB | I I ! e * Combine complementary techniques
' : external
ESBMC | 1 | |/ braries * Avoid producing a monolithic hybrid
@) i Remove solution (e.g., concolic execution)
I] assertions in
%Partj—al Bug Report i Memorysafety\nolatlons e e

‘certificate (Test Case)

Why hybrid and why now

* Why hybrid:
 Different tools have different strengths and weaknesses
* Existing solutions demonstrate very promising results

* Frama-C, concolic execution, cooperative verification
* However, all of them are for pre-deployment

* We are addressing post-deployment safety/performance balance
* Why now:

 Hardware memory protection techniques (e.g., CHERI) are being developed to
cope with post-deployment performance overheads
e But they provide a subset of safety guarantees
* There are a lot of static analysis techniques that can be used for establishing
partial safety of the program

* This allows introducing targeted software hardening, thus increasing safety guarantees
while keeping performance overheads manageable

Runtime Protection Techniques

e Can be used at pre-deployment + post-deployment
* Works on software and/or hardware level
* The resulting executable crashes on the inputs leading to the bug

* In software: based on program instrumentation (e.g., AddressSanitizer)
Flexible for introducing new checks (properties)
- Usually significant performance overheads
- Functional equivalence of the instrumented program may be compromised

* In hardware: extended ISA + specialized compiler (e.g., CHERI)
- Harder to introduce new checks
Minor performance overheads
- May introduce new semantics to the programs

* Needs concrete inputs for automated testing at pre-deployment
e Usually combined with a sampling-based technique (e.g., fuzzing)

Static Analysis Technigues

* Used at pre-deployment only (in fact, ahead of compilation)

* Works with a mathematical abstraction of the underlying program
* May lead to false-positives

* Analyzes the program with respect to the given specification and language
semantics

* Requires assumptions (aka computational models) about the underlying
hardware and system libraries

* The verlification problem may be exponentially large or undecidable in
genera

e Often treated as a black-box: the program has a bug or is safe up to a point
* The usefulness of the latter is often overlooked

* We can reuse partial safety outcome (i.e., we can only say that a program is safe up
to some execution depth)

Current Progress (analysis)

* We analyzed several runtime and static techniques on a subset of SV-COMP
benchmarks (~ 300 C programs)

* Runtime Protection
» AddressSanitizer — industry leader for detecting memory safety violations at runtime
e SoftBoundCETS — tracks pointer bounds and temporal validity
* CHERI PureCap —introduces pointer checks at hardware level

e Static Analysis
* ESBMC — bounded model checker for single- and multi-threaded C/C++ programs

e Hybrid Techniques

* FuSeBMC — combines BMC and fuzzing for automated test generation

Strengths and weaknesses

* Fuzzing helps BMC in bug-finding
e BMC is less scalable than runtime
techniques

* BMC treats program’s input
symbolically, and it may prove
program’s safety

* Different runtime techniques find
different types of vulnerabilities

Technique Correct | Incorrect | Timeout
(FN+FP)
ESBMC 107 3 (34+0) 17
FuSeBMC 116 2 (240) 9
Combined 116 2 9

Table 1. Programs requiring user inputs

Technique Correct | Incorrect | Timeout
(FN+FP)

ASAN 159 13 (13+0) 6
SB 152 20 (19+1) 6
PureCap 145 24 (24+0) 9
ASAN + SB 166 6 (5+1) 6
Runtime (combined) 166 6 (5+1) 6
ESBMC 130 5 (1+4) 43
FuSeBMC 133 4 (143) 41
Static (combined) 132 5 (1+4) 41

Table 2. Programs that do NOT require user-inputs

Different technigues find different bugs

Feature ASAN SB PureCap (RISC-V) ESBMC | FuSeBMC
Spatial Memory Safety
Subobject buffer overflow no no no/yes yes yes
Temporal Memory Safety
Use-after-free yes yes no yes yes
Stack use after return no/yes yes no yes yes
Stack use after scope yes no no yes yes
Double free yes yes no yes yes
Memory leaks yes no no yes yes
Program Features
Unions yes yes yes/no yes yes
Library functions yes/no | yes/no yes/no yes/no yes/no

Table 3. Qualitative analysis

Current progress (implementation)

2rogzan Spatial memory safety ESBMC-CHERI [1] extends ESBMC to be able to reason
cling Temporal memory safety about C/C++ programs that run on CHERI platforms.
Use staicproperties IlR o ﬁ) * Modelling arTo.I .han_dling inside ESBMC extra semantics that
checks l uston assertions CHERI capabilities introduce

back-end -

|

: program.exe ‘fi’gii‘;;
Fresbsploment y Pest-Deplovment Exploring cooperation between BMC and fuzzing
FuSeBMC ~~ ASAN/SB I I I\ - * FuSeBMC [2] combining BMC and fuzzing for automated test
ESBMC < — generation
@ i i |> remove e EBF [3] combining BMC and fuzzing to verify concurrent
%Partial Bug Report E Mem.orysafetyviola:()ns e C/C++ programs

‘certificate (Test Case)

[1] F. BrauRe, F. Shmarov, R. Menezes, M. R. Gadelha, K. Korovin, G. Reger, and L. C. Cordeiro, “ESBMC-CHERI: towards verification of C programs for
CHERI platforms with ESBMC,” in ISSTA 2022, pp. 773-776.

[2] K. M. Alshmrany, M. Aldughaim, A. Bhayat, and L. C. Cordeiro, “Fusebmc: An energy-efficient test generator for finding security vulnerabilities in c
programs,” in TAP 2021, p. 85-105.

[3] F. K. Aljaafari, R. Menezes, E. Manino, F. Shmarov, M. A. Mustafa, and L. C. Cordeiro, “Combining BMC and Fuzzing Techniques for Finding Software

Vulnerabilities in Concurrent Programs”, under review in IEEE Access 0

Future Work

e Using the information gathered during static analysis (i.e., partial
safety outcome)

* |solation of external libraries via hardware compartmentalization

* Exploring new verification techniques for incorporating into our
hybrid framework

* Addressing functional equivalence of the program instrumentation for
post-deployment

Thank you !l

