
Position Paper: Towards a Hybrid Approach 
to Protect Against Memory Safety Vulnerabilities

Kaled Alshmrany*, Ahmed Bhayat*, Franz Brauße*, Lucas Cordeiro*, Konstantin Korovin*, 
Tom Melham^, Mustafa A. Mustafa*, Pierre Olivier*, Giles Reger*, Fedor Shmarov*

*The University of Manchester ^University of Oxford

#IEEESecDev https://secdev.ieee.org/2022



Introduction

• There are many techniques for ensuring software safety
• Based on static analysis, automated testing, etc.

• They provide different levels of protection
• Some techniques can detect vulnerabilities that other cannot (and vise versa)

• Existing hybrid solutions (i.e., combining different techniques) 
showed promising improvements
• Post-deployment software safety is often overlooked

• We propose a hybrid framework that addresses software safety 
across the pre-deployment and post-deployment stages

2



Hybrid Verification Framework Vision

• Accentuate post-deployment safety
• Reduce performance overheads through 

“cheaper” hardware level protection

• Reuse the information from static 
analysis to introduce only necessary 
“expensive” safety checks

• Enhance pre-deployment analysis
• Combine complementary techniques

• Avoid producing a monolithic hybrid 
solution (e.g., concolic execution)

3



Why hybrid and why now
• Why hybrid: 

• Different tools have different strengths and weaknesses
• Existing solutions demonstrate very promising results

• Frama-C, concolic execution, cooperative verification
• However, all of them are for pre-deployment

• We are addressing post-deployment safety/performance balance

• Why now: 
• Hardware memory protection techniques (e.g., CHERI) are being developed to 

cope with post-deployment performance overheads
• But they provide a subset of safety guarantees

• There are a lot of static analysis techniques that can be used for establishing 
partial safety of the program 
• This allows introducing targeted software hardening, thus increasing safety guarantees 

while keeping performance overheads manageable

4



Runtime Protection Techniques

5

• Can be used at pre-deployment + post-deployment

• Works on software and/or hardware level

• The resulting executable crashes on the inputs leading to the bug

• In software: based on program instrumentation (e.g., AddressSanitizer)
+ Flexible for introducing new checks (properties)
- Usually significant performance overheads
- Functional equivalence of the instrumented program may be compromised

• In hardware: extended ISA + specialized compiler (e.g., CHERI)
- Harder to introduce new checks
+ Minor performance overheads
- May introduce new semantics to the programs

• Needs concrete inputs for automated testing at pre-deployment
• Usually combined with a sampling-based technique (e.g., fuzzing)



Static Analysis Techniques

• Used at pre-deployment only (in fact, ahead of compilation)
• Works with a mathematical abstraction of the underlying program

• May lead to false-positives

• Analyzes the program with respect to the given specification and language 
semantics

• Requires assumptions (aka computational models) about the underlying 
hardware and system libraries

• The verification problem may be exponentially large or undecidable in 
general

• Often treated as a black-box: the program has a bug or is safe up to a point 
• The usefulness of the latter is often overlooked
• We can reuse partial safety outcome (i.e., we can only say that a program is safe up 

to some execution depth)

6



Current Progress (analysis)

• We analyzed several runtime and static techniques on a subset of SV-COMP 
benchmarks (~ 300 C programs)

• Runtime Protection
• AddressSanitizer – industry leader for detecting memory safety violations at runtime

• SoftBoundCETS – tracks pointer bounds and temporal validity

• CHERI PureCap – introduces pointer checks at hardware level

• Static Analysis
• ESBMC – bounded model checker for single- and multi-threaded C/C++ programs

• Hybrid Techniques
• FuSeBMC – combines BMC and fuzzing for automated test generation

7



Strengths and weaknesses

8

Table 1. Programs requiring user inputs

Table 2. Programs that do NOT require user-inputs

• Fuzzing helps BMC in bug-finding

• BMC is less scalable than runtime 
techniques

• BMC treats program’s input 
symbolically, and it may prove 
program’s safety

• Different runtime techniques find 
different types of vulnerabilities



Different techniques find different bugs

9

Table 3. Qualitative analysis



Current progress (implementation)

10

ESBMC-CHERI [1] extends ESBMC to be able to reason 
about C/C++ programs that run on CHERI platforms. 
• Modelling and handling inside ESBMC extra semantics that 

CHERI capabilities introduce

Exploring cooperation between BMC and fuzzing
• FuSeBMC [2] combining BMC and fuzzing for automated test 

generation
• EBF [3] combining BMC and fuzzing to verify concurrent 

C/C++ programs

[1] F. Brauße, F. Shmarov, R. Menezes, M. R. Gadelha, K. Korovin, G. Reger, and L. C. Cordeiro, “ESBMC-CHERI: towards verification of C programs for 
CHERI platforms with ESBMC,” in ISSTA 2022, pp. 773–776. 
[2] K. M. Alshmrany, M. Aldughaim, A. Bhayat, and L. C. Cordeiro, “Fusebmc: An energy-efficient test generator for finding security vulnerabilities in c 
programs,” in TAP 2021, p. 85–105. 
[3] F. K. Aljaafari, R. Menezes, E. Manino, F. Shmarov, M. A. Mustafa, and L. C. Cordeiro, “Combining BMC and Fuzzing Techniques for Finding Software 
Vulnerabilities in Concurrent Programs”, under review in IEEE Access



Future Work

• Using the information gathered during static analysis (i.e., partial 
safety outcome)

• Isolation of external libraries via hardware compartmentalization

• Exploring new verification techniques for incorporating into our 
hybrid framework

• Addressing functional equivalence of the program instrumentation for 
post-deployment

11



Thank you !!!

12


