
LSVerifier: A BMC Approach to Identify Security 
Vulnerabilities in C Open-Source Software Projects
Janislley Oliveira de Sousa, Bruno Carvalho de Farias, Thales Araujo da 

Silva, Eddie Batista de Lima Filho, Lucas Carvalho Cordeiro

Email: janislley.sousa@sidia.com

XXIII Brazilian Symposium on Information 
and Computational Systems Security

Juiz de Fora/Mg - 2023



LSVerifier Team:

Mr. Janislley Oliveir Bruno Farias M.Sc. Thales Silva Dr. Eddie Batista Dr. Lucas Cordeiro
(UFAM/SIDIA) (U. Manchester) (UFAM) (TPV/UFAM) (U. Manchester/UFAM)

XXIII Brazilian Symposium on Information 
and Computational Systems Security

Juiz de Fora/Mg - 2023



Motivation

● Airbus discovered a software 
vulnerability in the A400M aircraft, 
leading to a crash in 2015.

● Security researchers could remotely 
exploit a vulnerability in the Jeep 
Cherokee's Uconnect infotainment 
system. 

● Samsung fixes bug that allowed Galaxy 
Smartphones to be hacked since 2014. 
The security flaw allowed attackers to 
have easy access to Skia, Android's 
graphics library.

Overview of research area 
challenges.

3



Motivation

● Software validation and verification 
techniques are essential tools for 
developing robust systems with high 
dependability and reliability 
requirements.

● Memory errors in C software written in 
unsafe programming languages
represent one of the main problems in 
computer security.

● The Common Weakness Enumeration 
(CWE) community identified a lot of 
vulnerabilities regarding the C 
programming language in third-party 
libraries used on the open-source 
projects.

Overview of research area 
challenges.

4



The CWE Top 13

55More info: https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html


The problem
Challenges and motivations.

● The C programming language is widely used to 

develop critical software, such as operating 

systems, drivers, and encryption libraries. 

However, it lacks protection mechanisms,

leaving memory and resource management's 

responsibility in the developers' hands.

● Large software systems are frequently 

composed of a myriad of elements declared in 

several source files, usually divided into 

various directories.

● To handle large pieces of software with many 

files, a scenario typically found in open-source 

applications, it is necessary to verify each one

at once and then change the current entry point 

when required.

66



Objective

● Propose a new approach using a 

bounded model checker to 

exploit security bugs for C open-

source software projects.

● An in-depth evaluation of our 

approach over a dataset of large 

open-source applications in 

order to find security 

vulnerabilities.

7

What will be done?



LSVerifier
Open-Source Tool

Apache 2.0

https://github.com/janislley/LSVerifier

A novel verification tool combining input-

code analysis and BMC technique to 

detect software vulnerabilities for Open-

Source C software projects.

8



Verification 
Algorithm

Description of the proposed approach.

9



Verification 
Algorithm

Description of the proposed approach.

● CTAGS is used to list all functions, variables, 
marcos, etc. in a C file.

● Generate a AST (Abstract Syntax Tree) with all 
classified data.

● Generate a CFG (Control Flot Chat).
● ESBMC uses Boolector as SMT solver by default 

when none is specified in command line.
● ESBMC's module is used to convert C programs 

into GOTO ones.
● A State Machine is used to analyze all processed 

data.
● LSVerfier is implemented in Python, and ESBMC 

module is implemented in C/C++ .
● The ESBMC module is used as binary.

10



● Basic Idea: given a transition system M, check negation of a given property φ up to given depth k.

● Bounded model checkers “slice” the state space in depth.

● It is aimed to find bugs and can only prove correctness if all states are reachable within the bound. 

● Exhaustively explores all executions. 

● Can be bounded to limit number of iterations and context-switch.

● Report errors as traces.

Bounded Model Checking (BMC) Approach

11



SV-COMP 2023 - ESBMC module

12

ESBMC



● The Tool takes a source-code directory, a software, and dependencies configuration as inputs. It then 

lists all .c files and iterates through them to verify each function.

● The verification outcomes are compiled into a report (logs, CSV files), which is returned as the final output. 13

Large Systems Verifier (LSVerifier) Architecture



● Configuration parameters are divided into the following groups: 

● File listing;

● Function verification;

● Outcome display;

● ESBMC module options;

● LSVerifier tool options to code verification:

● Tool repository: https://github.com/janislley/LSVerifier

LSVerifier: Property Verification Process

14



● More artefacts:

Software with bug.

Project dependencies example (dep.txt).

Issue fixed.

Property violation log.

LSVerifier – Property Verification Process

15



● LSVerifier tool has support to exploit the 
following properties violations:

○ Out-of-bounds array access;
○ Illegal pointer dereferences (null 

dereferencing, out-of-bounds dereferencing, 
double free, and misaligned memory 
access);

○ Arithmetic overflow;
○ Buffer overflow;
○ Not a number (NaN) occurrences in 

floating-point;
○ Division by zero;
○ Memory leak;
○ Dynamic memory allocation;
○ Data races;
○ Deadlock;
○ Atomicity violations at visible assignments.

LSVerifier: Property Verification Process

16



● Property verification for an entire project:

$ lsverifier -v -r -f -e "--unwind 1 --no-unwinding-assertions" -l dep.txt

● Property verification for specific .c files:

$ lsverifier -v -r -f -fl main.c

● Property verification for a specific path:

$ lsverifier -v -r -f -l dep.txt -d project-root/

● Property verification by specific class of vulnerability:

$ lsverifier -v -r -f -p memory-leak-check,overflow-check,deadlock-check,data-races-check

More details: https://github.com/janislley/LSVerifier/blob/main/README.md

LSVerifier – Property Verification Process

17



Experimental 
Methodology

Inputs and definitions for the proposed 
approach validation.

● Experimental Tests:

○ CPU consumption.

○ Memory usage.

● Use the standard: Confidentiality, Integrity, 

and Availability (CIA) triad.

● Security management standard ISO/IEC 27001.

● As benchmarking, we prepared a dataset

consisting of five commonly used software 

modules based on the C language: RUFUS, 

OpenSSH, CMake, Wireshark, and PuTTY.

18



Experimental 
Results

Data collected and analyzed.

19

● With verification logs report (counterexample 

traces) provided by tool, we reported the 

critical issues found on the dataset to the 

respective software owners.

● Issues were identified in 2 open-source

projects and fixed.

● Most of the issues were related with third-

party libraries.

● The LSVerifier tool maintained low peak 

memory usage, which significantly differs 

from other recent verification tools based on 

model checking.



Experimental Results: Properties violated and CWE categories

20

● Dataset: https://github.com/janislley/LSVerifier_Benchmarks

● Issues reported and fixed:

○ RUFUS: https://github.com/pbatard/rufus/issues/1856 (CWE-119)

○ WIreshark: https://gitlab.com/wireshark/wireshark/-/issues/17897 (CWE-416)

● RUFUS presented property violations such as array out of bounds, with 3 issues opened and 1 

fixed regarding imported libraries.

● The Wireshark’s property violations, which are related to array out of bounds and invalid pointers, 

were due to errors in the NPL third-party library.

https://github.com/janislley/LSVerifier_Benchmarks
https://github.com/pbatard/rufus/issues/1856
https://gitlab.com/wireshark/wireshark/-/issues/17897


Experimental Results: Properties violated on RUFUS

21

Array bounds violated: array `types' upper bound fix (CWE-119).

This issue was fixed and others 9 fixes were provide for another parts in re.c

in tyne-regex third-party library. More details: https://github.com/kokke/tiny-regex-c/pull/78

https://github.com/kokke/tiny-regex-c/pull/78


Experimental Results: Properties violated on RUFUS

22

Array bounds violated: array `types' upper bound fix (CWE-119).

This issue was fixed and others 9 fixes were provide for another parts in re.c

in tyne-regex third-party library. More details: https://github.com/kokke/tiny-regex-c/pull/78

https://github.com/kokke/tiny-regex-c/pull/78


Experimental Results: Properties violated on Wireshark

23

● Dereference failure (invalid pointer and Null pointer) issues (CWE-416) were found in the NPL 

third-party library. 

● The fix involved removing this library, as it is no longer used in Wireshark.

● More details: https://gitlab.com/wireshark/wireshark/-/merge_requests/6021

https://gitlab.com/wireshark/wireshark/-/merge_requests/6021


● The LSVerifier tool is released (v0.3.0) as Apache License 2.0 open-source software.

● The proposed tool was possible to check the files that make up the application one by one,

identifying the functions listed in each file. It then executes the ESBMC verification, thus

identifying vulnerabilities and generating an output report summarizing all software

weaknesses found.

● While its design opens the door to directions like whole-system exploitation, LSVerifier tool

implementation is mature enough to handle large and complex open-source software like

Wireshark and RUFUS.

● The results show that the approach of vulnerability analysis is feasible and can be helpful to the

open-source software community. It proved to be an important tool to check the security of

third-party libraries.

● For future work, we aim to enhance the counterexample verification method by incorporating

machine learning techniques to automatically suggest solutions for property violations.

Conclusion and Future Work

24



LSVerifier: A BMC Approach to Identify Security 
Vulnerabilities in C Open-Source Software Projects

Thank You!

Email: janislley.sousa@sidia.com Tool: https://github.com/janislley/LSVerifier

XXIII Brazilian Symposium on Information 
and Computational Systems Security

Juiz de Fora/Mg - 2023


	Slide 1: LSVerifier: A BMC Approach to Identify Security Vulnerabilities in C Open-Source Software Projects
	Slide 2: LSVerifier Team: 
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5
	Slide 6: The problem
	Slide 7: Objective
	Slide 8: LSVerifier
	Slide 9: Verification Algorithm
	Slide 10: Verification Algorithm
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Experimental Methodology
	Slide 19: Experimental Results
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: LSVerifier: A BMC Approach to Identify Security Vulnerabilities in C Open-Source Software Projects

