XXIII Brazilian Symposium on Information
and Computational Systems Security
Juiz de Fora/Mg - 2023

LSVerifier: A BMC Approach to ldentify Security
Vulnerabilities in C Open-Source Software Projects

Janislley Oliveira de Sousa, Bruno Carvalho de Farias, Thales Araujo da
Silva, Eddie Batista de Lima Filho, Lucas Carvalho Cordeiro

Email: janislley.sousa@sidia.com

MANCHESTER

1824

XXIII Brazilian Symposium on Information
and Computational Systems Security
Juiz de Fora/Mg - 2023

oo

-:2SBSeg|23

JUIZ DE FORA

LSVerifier Team:

if‘“:’)
X 4

Mr. Janislley Oliveir Bruno Farias Dr. Eddie Batista Dr. Lucas Cordeiro
(UFAM/SIDIA) (U. Manchester) (UFAM) (TPV/IUFAM) (U. Manchester/lUFAM)

4 ESBMC

MANCHESTER

824 SIDIA

The University of Manchester

Airbus discovered a software
vulnerability in the A400M aircraft,
leading to a crash in 2015.

Security researchers could remotely
exploit a vulnerability in the Jeep
Cherokee's Uconnect infotainment

MOtiVﬂtiOﬂ system.

Samsung fixes bug that allowed Galaxy
: Smartphones to be hacked since 2014.
Overview of research area The security flaw allowed attackers to
Challenges. have easy access to Skia, Android's
graphics library.

_.§5§sg|23 3

Software validation and verification
techniques are essential tools for
developing robust systems with high
dependability and reliability
requirements.

Memory errors in C software written in
unsafe programming languages

M - - represent one of the main problems in

0t|Vat|0n computer security.

: The Common Weakness Enumeration

Overview of research area (CWE) community identified a lot of

challenges. vulnerabilities regarding the C

programming language in third-party
libraries used on the open-source
projects.

W | A
SBSeg|23

The CWE Top 13

ID Name

1 CWE-787 | Out-of-bounds Write

2 CWE-79 !Srzﬂ;)czﬁ]zrl)Neutralization of Input During Web Page Generation ('Cross-site

3 CWE-89 :nmjggtjigilr)Neutralization of Special Elements used in an SQL Command ('SQL

4 CWE-20 | Improper Input Validation

5 | CWE-125 | Out-of-bounds Read

5 CWE-78 Improper Negtra!iza\'tion of Special Elements used in an OS Command ('OS
= | Command Injection’)

7 CWE-416 | Use After Free

8 CWE-22 | Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

9 CWE-352 | Cross-Site Request Forgery (CSRF)

10 | CWE-434 | Unrestricted Upload of File with Dangerous Type

11 | CWE-476 | NULL Pointer Dereference

12 | CWE-502 | Deserialization of Untrusted Data

13 | CWE-190 | Integer Overflow or Wraparound

More info: https://cwe.mitre.org/top25/archive/2023/2023 top25 list.html

3

p iﬁ_? Las_qsﬂgg 123

https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

The problem

Challenges and motivations.

The C programming language is widely used to
develop critical software, such as operating
systems, drivers, and encryption libraries.
However, it lacks protection mechanisms,
leaving memory and resource management's
responsibility in the developers' hands.

Large software systems are frequently
composed of a myriad of elements declared in
several source files, usually divided into
various directories.

To handle large pieces of software with many
files, a scenario typically found in open-source
applications, it is necessary to verify each one
at once and then change the current entry point
when required.

W | p
E:BS‘?g |23

e Propose a new approach using a
bounded model checker to
exploit security bugs for C open-
source software projects.

ObjECtive An in-depth evaluation of our

approach over a dataset of large

What will be done? open-source applications in
order to find security
vulnerabilities.

_.§5§sg|23 7

LSVerifier

A novel verification tool combining input-
Open-Source Tool

code analysis and BMC technique to
detect software vulnerabilities for Open-

Apache 2.0 _
Source C software projects.

https://github.com/janislley/LSVerifier

W | o
SBSeg|23

Algorithm 1 The proposed verification approach.

Require: Program P, Directory D, Configuration ',

- gu - Ensure: Verification QOutcome V'
e rI I c at I 0 n configs + get_configs(C)
files « list_files(P, D)

num_files + length(files)
k1

"
while & < num_files do
functions + list_function(files[k])

log + ESBMC _Check(files|k], functions[k], configs)
kek+1
end while

Description of the proposed approach. V < spreedsheat(log)

return V'

Verification
Algorithm

Description of the proposed approach.

CTAGS is used to list all functions, variables,
marcos, etc. in a C file.

Generate a AST (Abstract Syntax Tree) with all
classified data.

Generate a CFG (Control Flot Chat).

ESBMC uses Boolector as SMT solver by default
when none is specified in command line.
ESBMC's module is used to convert C programs
into GOTO ones.

A State Machine is used to analyze all processed
data.

LSVerfier is implemented in Python, and ESBMC
module is implemented in C/C++.

The ESBMC module is used as binary.

. |
_I§Bng |23

Bounded Model Checking (BMC) Approach

e Basic ldea: given a transition system M, check negation of a given property @ up to given depth k.

k—1 k
BMCy (k) = I(s1) A /\ T'(si, 8i41) | A \/ —o(s;)
i=1 i=1

P s s A __ Property
y TP v TP v T2 v O | VT
Mo My M M| M o
_ Counterexample trace J

Bounded model checkers “slice” the state space in depth.

It is aimed to find bugs and can only prove correctness if all states are reachable within the bound.
Exhaustively explores all executions.

Can be bounded to limit number of iterations and context-switch.

Report errors as traces. ﬁg 1
©23SBSeg|23

PR

Kin. ime In s

SV-COMP 2023 - ESBMC module

LS
Bubasak

L

i
4 B
-+,

‘Cumulative score

-~

+95BSeg| 23

JUIZ DE FORA

12

Large Systems Verifier (LSVerifier) Architecture

o
—
L

Source Code

LSVerifier
configuration

File Listing Function Listing Model Checker
A A
— r N I's \
= void () O
S y
ESBMC
List .c files List
functions l Export Results
—
‘ void) I [5
—_
Lb void f(){
} Register
ESBMC log
Check each
function
LSVerifier

s

Spreadsheet
with outcome

e The Tool takes a source-code directory, a software, and dependencies configuration as inputs. It then
lists all .c files and iterates through them to verify each function.

e The verification outcomes are compiled into a report (logs, CSV files), which is returned asﬁﬁ&gut. 13

LSVerifier: Property Verification Process

Configuration parameters are divided into the following groups:

File listing;

Function verification;
Outcome display;
ESBMC module options;

LSVerifier tool options to code verification:

L 5", default=
argument("-p", o]
argument("-f", "--fun , h e Fu E default=

argument("-fp", "-- , h ric un ion", action="store true",

argument("-f

argument (" -v'

argument("-r", - T , hel Ver at - I e true", default=
argument ("-d')

argument (" - 5)in <", help ification", action="store true
argument(”-e",)

Tool repository: https://github.com/janislley/LSVerifier

default=

, default=

P8

ﬁ:?ﬁﬁ%ﬁglﬂ

14

L -

LSVerifier — Property Verification Process

ARAmien mvcb L b

/fusr/include/ glib -2.0/
/fusr/lib/x86_64—linux —gnu/glib —=2.0/include/
extcap/

plugins/epan/ethercat/
plugins/epan/falco_bridge/
plugins/epan/wimaxmacphy/

randpkt_core/

writecap/

epan/crypt/

Project dependencies example (dep.txt).

Counterexample:

State 2 file line function vector func thread

Violated property:
file line function vector func
array bounds violated: array i' upper bound

Property violation log.

re with bug.

vector func(cl]) {
c[2] = 'a';

i[1

]
r

1;

vector func| cl[]) {

ﬁﬁs&ﬁsﬁglﬂ

15

LSVerifier: Property Verification Process

Vulnerahility type

CWE numbers

Buffer overflow

CWE-20,

CWE-121,
CWE-129,
CWE-6T6,
CWE-T54,

CWE-120,
CWE-125,
CWE-131,
CWE-G28,
CWE-T88

Arithmetic overflow

CWE-190),
CWE-T54,
CWE-6&1,

CWE-191,
CWE-GS0,
CWE-6G82

Array bounds violated

CWE-119,
CWE-129,
CWE-193,
CWE-T&T,

CWE-125,
CWE-131,
CWE-T54,
CWE-TEB

NULL pointer

CWE-391,

CWE-476

Invalid pointer

CWE-416,
CWE-690),
CWE-324,

CWE-476,
CWE-822,
CWE-825

Double free

CWE-415

Division by zero

CWE-3659

Memory Leak

CWE-401

Other vulnerabilities

CWE-119,
CWE-158,
CWE-389,
CWE-416,
CWE-590,
CWE-664,
CWE-674,
CWE-T04,
CWE-T&7,
CWE-823,
CWE-843,

CWE-125,
CWE-362,
CWE-459,
CWE-469,
CWE-G17,
CWE-G62,
CWE-G85,
CWE-T61,
CWE-T59,
CWE-825,
CWE-908

e LSVerifier tool has support to exploit the
following properties violations:

@)
o

o O

O O O O O O

Out-of-bounds array access;

lllegal pointer dereferences (null
dereferencing, out-of-bounds dereferencing,
double free, and misaligned memory
access);

Arithmetic overflow;

Buffer overflow;

Not a number (NaN) occurrences in
floating-point;

Division by zero;

Memory leak;

Dynamic memory allocation;

Data races;

Deadlock;

Atomicity violations at visible assignments.

W 16
t22/5BSeg| 23

LSVerifier — Property Verification Process

e Property verification for an entire project:

$ Isverifier -v -r -f -e "--unwind 1 --no-unwinding-assertions" -l dep.txt
e Property verification for specific .c files:

$ Isverifier -v -r -f -fl main.c

e Property verification for a specific path:

$ Isverifier -v -r -f -l dep.txt -d project-root/

e Property verification by specific class of vulnerability:

$ Isverifier -v -r -f -p memory-leak-check,overflow-check,deadlock-check,data-races-check

More details: https://github.com/janislley/LSVerifier/blob/main/README.md

: 2
i igiﬁ%eglﬂ

17

Experimental
Methodology

Inputs and definitions for the proposed
approach validation.

Experimental Tests:
o CPU consumption.
o Memory usage.

Use the standard: Confidentiality, Integrity,
and Availability (CIA) triad.

Security management standard ISO/IEC 27001.

As benchmarking, we prepared a dataset
consisting of five commonly used software
modules based on the C language: RUFUS,
OpenSSH, CMake, Wireshark, and PuTTY.

With verification logs report (counterexample
traces) provided by tool, we reported the
critical issues found on the dataset to the
respective software owners.

EXp e ri m e nta I Issu_es were idfentified in 2 open-source
Resu ItS projects and fixed.

Data collected and analyzed.

Most of the issues were related with third-
party libraries.

The LSVerifier tool maintained low peak
memory usage, which significantly differs
from other recent verification tools based on
model checking.

W | ;
SBSeg|23

Experimental Results: Properties violated and CWE categories

Table 1. Dataset analysis using LSVerifier tool.

Software Property violations | Files analyzed | Functions verified | Overall time | Peak memory usage
VIM 5 184 8804 406.02 s 36.46 MB
RUFUS 186 142 1575 101.59 s 32.6 MB
OpenSSH 337 286 3033 49033 s 15.32 MB
Wireshark 122 2194 108824 3941397 s 119.52 MB
PuTTY 2019 244 4575 01448.89 s 53.79 MB

Dataset: https://github.com/janislley/LSVerifier Benchmarks

Issues reported and fixed:

o RUFUS: https://github.com/pbatard/rufus/issues/1856 (CWE-119)
o WIlreshark: https://gitlab.com/wireshark/wireshark/-/issues/17897 (CWE-416)

RUFUS presented property violations such as array out of bounds, with 3 issues opened and 1

fixed regarding imported libraries.

The Wireshark’s property violations, which are related to array out of bounds and invalid pointers,

were due to errors in the NPL third-party library.

p iﬁ&?ﬁﬁ%gg 123

20

https://github.com/janislley/LSVerifier_Benchmarks
https://github.com/pbatard/rufus/issues/1856
https://gitlab.com/wireshark/wireshark/-/issues/17897

Experimental Results: Properties violated on RUFUS

void re_print(regex_t* pattern)

{
- nst char* types[] = { "UNUSED", "DOT", "BEGIN", "END",
"QUESTIONMARK", "STAR", "PLUS", "CHAR", "CHAR_CLASS",
"INV_CHAR_CLASS", "DIGIT", "NOT_DIGIT", "ALPHA", "NOT_ALPHA",
"WHITESPACE", "NOT_WHITESPACE", "BRANCH" };

int i;
int j;

H

printf("type: %s", types[pattern[i].typ

+

void re_print(regex_t* pattern)
{

nst char* types[] = { "UNUSED", "DOT", "BEGIN", "END",
"QUESTIONMARK", "STAR", "PLUS", "CHAR", "CHAR_CLASS",
"INV_CHAR_CLASS", "DIGIT", "NOT_DIGIT", "ALPHA", "NOT_ALPHA",
"WHITESFACE", "NOT_WHITESPACE"| /* BERANCH" %% };

int i;
int j;

if (pattern[i].type <= NOT_WHITESPACE)
printf("type: %s", types[pattern[i].type]);

printf("invalid type: %d", pattern[i].type);

Array bounds violated: array "types' upper bound fix (CWE-119).
This issue was fixed and others 9 fixes were provide for another parts in re.c

in tyne-regex third-party library. More details: https://github.com/kokke/tiny-regex-c/pull/78

https://github.com/kokke/tiny-regex-c/pull/78

Experimental Results

¢ int matchdigit(char c)
return isdigit(c);
tic int matchalpha(char ¢)

return isalpha(c);

printf("type: %s", types[pattern[i].type]);

. Properties violated on RUFUS

int matchdigit(char c)
n isdigit((unsigned char)c);
atic int matchalpha(char c)

n isalpha({unsigned char)c);

if (pattern[i].type <= NOT_WHITESPACE)
printf("type: %s", types[pattern[i].type]);

BlEp

printf("invalid type: ¥d", pattern[i].type);

Array bounds violated: array "types' upper bound fix (CWE-119).
This issue was fixed and others 9 fixes were provide for another parts in re.c

in tyne-regex third-party library. More details: https://github.com/kokke/tiny-regex-c/pull/78

https://github.com/kokke/tiny-regex-c/pull/78

Experimental Results: Properties violated on Wireshark

Q@ Search (e.g. *vue) (Ctrl+P) l

Tools: Remove NPL. 6e48F973 | [3
P tools/npl Gerald Combs authored 1 year ago
h asth +0-419 @ Remove tools/npl. It doesn't appear to be used and hasn't had any
activity for many years. Ping #17897.
¢ npl.c +0-1993 @
5 parser.l +0-1429 @
h xmem.h +0-26 @ v tools/npl/ast.h deleted [? 100644 50 +0 -419 @

e Dereference failure (invalid pointer and Null pointer) issues (CWE-416) were found in the NPL
third-party library.

e The fix involved removing this library, as it is no longer used in Wireshark.

e More details: https://qgitlab.com/wireshark/wireshark/-/merge requests/6021

* 4
ﬁi?ﬁé%ﬁgm

23

https://gitlab.com/wireshark/wireshark/-/merge_requests/6021

Conclusion and Future Work

The LSVerifier tool is released (v0.3.0) as Apache License 2.0 open-source software.

The proposed tool was possible to check the files that make up the application one by one,
identifying the functions listed in each file. It then executes the ESBMC verification, thus
identifying vulnerabilities and generating an output report summarizing all software
weaknesses found.

While its design opens the door to directions like whole-system exploitation, LSVerifier tool
implementation is mature enough to handle large and complex open-source software like
Wireshark and RUFUS.

The results show that the approach of vulnerability analysis is feasible and can be helpful to the
open-source software community. It proved to be an important tool to check the security of
third-party libraries.

For future work, we aim to enhance the counterexample verification method by incorporating
machine learning techniques to automatically suggest solutions for property violations.

p iﬁ P lﬁsﬂgg 123

XXl Brazilian Symposium on Information
and Computational Systems Security
Juiz de Fora/Mg - 2023

LSVerifier: A BMC Approach to ldentify Security
Vulnerabilities in C Open-Source Software Projects

Thank You!

Email: janislley.sousa@sidia.com Tool: https://github.com/janislley/LSVerifier

MANCHESTER

1824

	Slide 1: LSVerifier: A BMC Approach to Identify Security Vulnerabilities in C Open-Source Software Projects
	Slide 2: LSVerifier Team:
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5
	Slide 6: The problem
	Slide 7: Objective
	Slide 8: LSVerifier
	Slide 9: Verification Algorithm
	Slide 10: Verification Algorithm
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Experimental Methodology
	Slide 19: Experimental Results
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: LSVerifier: A BMC Approach to Identify Security Vulnerabilities in C Open-Source Software Projects

