

Verifying Fixed-Point Digital Filters using SMT-Based Bounded Model Checking

Renato B. Abreu, Lucas Cordeiro and Eddie B. L. Filho renato.abreu@indt.org.br, lucascordeiro@ufam.edu.br, eddie@ctpim.org.br

1. Introduction

- Fixed-point implementation leads to quantization nonlinearities, round off errors, and overflows due to operations with finite word-length
- Testing and simulation can lead to a limited number of scenarios, which do not exploit all possible behaviors of the system

- 2. SMT-based BMC of Digital Filter

3. Proposed Approach

4. Experimental Setup

- Low Pass, High Pass, Band Pass, Band Stop
- Up to 6th order IIR and up to 30th order FIR
- Word-length up to 16 bits

5. Conclusions

- in filters of different types and orders

- model coded in C

• Environment*: Fedora 64 bits, ESBMC v1.21, SMT Z3 v3.2 • Filters tested (from Matlab design toolbox and from literature)

• The method can detect overflow, limit cycle and time constraint failures

 Can find problems that are hard to detect using tests and simulations • Verification time tends to be higher for high order filters and for longest word-length formats since these lead to harder verification conditions • Exploits the advantages of an state of art model checker ESBMC over a

* Tools and benchmarks available in www.esbmc.org

Verifying Fixed-Point Digital Filters using SMT-Based Bounded Model Checking

Renato B. Abreu, Lucas Cordeiro and Eddie B. L. Filho renato.abreu@indt.org.br, lucascordeiro@ufam.edu.br, eddie@ctpim.org.br

1. Introduction

- Fixed-point implementation leads to quantization nonlinearities, round off errors, and overflows due to operations with finite word-length
- Testing and simulation can lead to a limited number of scenarios, which do not exploit all possible behaviors of the system

2. SMT-based BMC of Digital Filter

3. Proposed Approach

4. Experimental Setup

- Low Pass, High Pass, Band Pass, Band Stop
- Up to 6th order IIR and up to 30th order FIR
- Word-length up to 16 bits

5. Conclusions

- in filters of different types and orders

- model coded in C

• Environment*: Fedora 64 bits, ESBMC v1.21, SMT Z3 v3.2 • Filters tested (from Matlab design toolbox and from literature)

• The method can detect overflow, limit cycle and time constraint failures

 Can find problems that are hard to detect using tests and simulations • Verification time tends to be higher for high order filters and for longest word-length formats since these lead to harder verification conditions • Exploits the advantages of an state of art model checker ESBMC over a

* Tools and benchmarks available in www.esbmc.org

Verifying Fixed-Point Digital Filters using SMT-Based Bounded Model Checking

Renato B. Abreu, Lucas Cordeiro and Eddie B. L. Filho renato.abreu@indt.org.br, lucascordeiro@ufam.edu.br, eddie@ctpim.org.br

1. Introduction

- Fixed-point implementation leads to quantization nonlinearities, round off errors, and overflows due to operations with finite word-length
- Testing and simulation can lead to a limited number of scenarios, which do not exploit all possible behaviors of the system

2. SMT-based BMC of Digital Filter

$$\Rightarrow ((N \times T) \le D)$$

3. Proposed Approach

4. Experimental Setup

- - Low Pass, High Pass, Band Pass, Band Stop
 - Up to 6th order IIR and up to 30th order FIR
 - Word-length up to 16 bits

5. Conclusions

- in filters of different types and orders

- model coded in C

• Environment*: Fedora 64 bits, ESBMC v1.21, SMT Z3 v3.2 • Filters tested (from Matlab design toolbox and from literature)

• The method can detect overflow, limit cycle and time constraint failures

 Can find problems that are hard to detect using tests and simulations • Verification time tends to be higher for high order filters and for longest word-length formats since these lead to harder verification conditions • Exploits the advantages of an state of art model checker ESBMC over a

* Tools and benchmarks available in www.esbmc.org

 \bullet theories so it generalizes the propositional satisfiability

Satisfiability Modulo Theories

An SMT solver decides about the satisfiability of a first order formula using different background

An SMT solver decides about the satisfiability of a first order formula using different background \bullet theories so it generalizes the propositional satisfiability

Theory

Equality

Bit vector

Linear arithmetic

Arrays

Combined theories

Satisfiability Modulo Theories

Example

 $x_1 = x_2 \land \neg (x_1 = x_3) \Rightarrow \neg (x_1 = x_3)$ $(b \gg i) \& 1 = 1$ $(4y_1 + 3y_2 \ge 4) \lor (y_2 - 3y_3 \le 3)$ $(j = k \land a[k] = 2) \Rightarrow a[j] = 2$ $(j \le k \land a[j] = 2) \Rightarrow a[i] < 3$

An SMT solver decides about the satisfiability of a first order formula using different background theories so it generalizes the propositional satisfiability

Theory

Equality

Bit vector

Linear arithmetic

Arrays

Combined theories

Satisfiability Modulo Theories

$\langle k, l \rangle \times \langle k, l \rangle = \langle 2k, 2l \rangle$ $\langle 2k, 2l \rangle \gg f = \langle 2k, f \rangle$

An SMT solver decides about the satisfiability of a first order formula using different background theories so it generalizes the propositional satisfiability

Theory

Equality

Bit vector

Linear arithmetic

Arrays

Combined theories

Satisfiability Modulo Theories

$\langle k, l \rangle \times \langle k, l \rangle = \langle 2k, 2l \rangle$ $\langle 2k, 2l \rangle \gg f = \langle 2k, f \rangle$

Overflow verification

int main() { int a[2], i, x; if (x==0) a[i]=0; else a[i+2]=1; assert(a[i+1]==1);

Nokia Internal Use Only


```
int main() {
 int a[2], i, x;
 if (x==0)
  a[i]=0;
 else
 a[i+2]=1;
assert(a[i+1]==1);
```


Nokia Internal Use Only


```
int main() {
 int a[2], i, x;
 if (x==0)
  a[i]=0;
 else
  a[i+2]=1;
 assert(a[i+1]==1);
```


$$g_1 = x_1 = 0$$

 $a_1 = a_0$ WITH $[i_0:=$
 $a_2 = a_0$
 $a_3 = a_2$ WITH $[2+i_0]$
 $a_4 = g_1 ? a_1 : a_3$
 $t_1 = a_4 [1+i_0] == 1$


```
int main() {
 int a[2], i, x;
 if (x==0)
  a[i]=0;
 else
  a[i+2]=1;
 assert(a[i+1]==1);
```


Convert constraints and properties

$$g_1 \coloneqq (x_1 = 0)$$

$$\land a_1 \coloneqq store(a_0, i_0, 0)$$

$$\land a_2 \coloneqq a_0$$

$$\land a_3 \coloneqq store(a_2, 2 + 0)$$

$$\land a_4 \coloneqq ite(g_1, a_1, a_3)$$

$$P := \begin{bmatrix} i_0 \ge 0 \land i_0 < 2 \\ \land 2 + i_0 \ge 0 \land 2 + i_0 \\ \land 1 + i_0 \ge 0 \land 1 + i_0 < \\ \land select(a_4, i_0 + 1) = 0 \end{bmatrix}$$

Nokia Internal Use Only

Solver SMT

$$(-i_0, 1)$$


```
int main() {
 int a[2], i, x;
 if (x==0)
  a[i]=0;
 else
  a[i+2]=1;
assert(a[i+1]==1);
```


Convert constraints and properties

$$g_1 \coloneqq (x_1 = 0)$$

$$\land a_1 \coloneqq store(a_0, i_0, 0)$$

$$\land a_2 \coloneqq a_0$$

$$\land a_3 \coloneqq store(a_2, 2 + 0)$$

$$\land a_4 \coloneqq ite(g_1, a_1, a_3)$$

$$P := \begin{bmatrix} i_0 \ge 0 \land i_0 < 2 \\ \land 2 + i_0 \ge 0 \land 2 + i_0 < 2 \\ \land 1 + i_0 \ge 0 \land 1 + i_0 < 2 \\ \land select(a_4, i_0 + 1) = 1 \end{bmatrix}$$

Nokia Internal Use Only

- \bullet $- l_{overflow} \Leftrightarrow (-2 \le FP) \land (FP \le 1,984375)$
- \bullet
 - —
 - xaux = { -0.890625f, 0.96875f, -0.890625f }
 - yaux = { 0f, -0.671875f, 0.890625f }

The model checker applies non-deterministic inputs in the interval [-1,1] searching the negation of:

Here the verification returns the following couter-example: x = { 0.0f, 0.015625f, 0.0f, -0.890625f, 0.96875f, -0.890625f }

- For x between [-1,1], $|y(n)| \le 1,82$
- Using format (2, 6)
 - Interval [-2, 1,984375]
 - Error ±0,0078125

- \bullet $- l_{overflow} \Leftrightarrow (-2 \le FP) \land (FP \le 1,984375)$
- Here the verification returns the following couter-example: \bullet
 - x = { 0.0f, 0.015625f, 0.0f, -0.890625f, 0.96875f, -0.890625f } _____
 - xaux = { -0.890625f, 0.96875f, -0.890625f }
 - yaux = { 0f, -0.671875f, 0.890625f }

The model checker applies non-deterministic inputs in the interval [-1,1] searching the negation of:

- For x between [-1,1], $|y(n)| \le 1,82$
- Using format (2, 6)
 - Interval [-2, 1,984375]
 - Error ±0,0078125

- \bullet $- l_{overflow} \Leftrightarrow (-2 \le FP) \land (FP \le 1,984375)$
- \bullet

 - xaux = { -0.890625f, 0.96875f, -0.890625f }
 - yaux = { 0f, -0.671875f, 0.890625f }

The model checker applies non-deterministic inputs in the interval [-1,1] searching the negation of:

Here the verification returns the following <u>couter-example</u>: x = { 0.0f, 0.015625f, 0.0f, -0.890625f, 0.96875f, -0.890625f }

- For x between [-1,1], $|y(n)| \le 1,82$
- Using format $\langle 2, 6 \rangle$
 - Interval [-2, 1,984375]
 - Error ±0,0078125

- \bullet $- l_{overflow} \Leftrightarrow (-2 \le FP) \land (FP \le 1,984375)$
- \bullet

 - xaux = { -0.890625f, 0.96875f, -0.890625f }
 - yaux = { 0f, -0.671875f, 0.890625f }

The model checker applies non-deterministic inputs in the interval [-1,1] searching the negation of:

Here the verification returns the following <u>couter-example</u>: x = { 0.0f, 0.015625f, 0.0f, -0.890625f, 0.96875f, -0.890625f }

- For x between [-1,1], $|y(n)| \le 1,82$
- Using format (2, 6)
 - Interval [-2, 1,984375]
 - Error ±0,0078125

- \bullet $- l_{overflow} \Leftrightarrow (-2 \le FP) \land (FP \le 1,984375)$
- \bullet
 - —
 - xaux = { -0.890625f, 0.96875f, -0.890625f }
 - yaux = { 0f, -0.671875f, 0.890625f }

The model checker applies non-deterministic inputs in the interval [-1,1] searching the negation of:

Here the verification returns the following <u>couter-example</u>: $x = \{ 0.0f, 0.015625f, 0.0f, -0.890625f, 0.96875f, -0.890625f \}$

- For x between [-1,1], $|y(n)| \le 1,82$
- Using format (2, 6)
 - Interval [-2, 1,984375]
 - Error ±0,0078125

- \bullet $l_{overflow} \Leftrightarrow (-2 \leq FP) \land (FP \leq 1,984375)$
- \bullet

 - xaux = { -0.890625f, 0.96875f, -0.890625f }
 - yaux = { 0f, -0.671875f, 0.890625f }

The model checker applies non-deterministic inputs in the interval [-1,1] searching the negation of:

Here the verification returns the following <u>couter-example</u>: $x = \{ 0.0f, 0.015625f, 0.0f, -0.890625f, 0.96875f, -0.890625f \}$

- For x between [-1,1], $|y(n)| \le 1,82$
- Using format $\langle 2, 6 \rangle$
 - Interval [-2, 1,984375]
 - Error ±0,0078125

- \bullet $- l_{overflow} \Leftrightarrow (-2 \le FP) \land (FP \le 1,984375)$
- \bullet

 - xaux = { -0.890625f, 0.96875f, -0.890625f }
 - yaux = { 0f, -0.671875f, 0.890625f }

The model checker applies non-deterministic inputs in the interval [-1,1] searching the negation of:

Here the verification returns the following couter-example: $x = \{ 0.0f, 0.015625f, 0.0f, -0.890625f, 0.96875f, -0.890625f \}$

- For x between [-1,1], $|y(n)| \le 1,82$
- Using format $\langle 2, 6 \rangle$
 - Interval [-2, 1,984375]
 - Error ±0,0078125

- \bullet $- l_{overflow} \Leftrightarrow (-2 \le FP) \land (FP \le 1,984375)$
- \bullet

 - xaux = { -0.890625f, 0.96875f, -0.890625f }
 - yaux = { 0f, -0.671875f, 0.890625f }

The model checker applies non-deterministic inputs in the interval [-1,1] searching the negation of:

Here the verification returns the following <u>couter-example</u>: $x = \{ 0.0f, 0.015625f, 0.0f, -0.890625f, 0.96875f, -0.890625f \}$

The filter also fails in Direct Form II, but does not fail for the Transposed Form II due to the order of operations

 $\sum_{k=0}^{100} |h_k| = 1,8178$

For x between [-1,1], $|y(n)| \le 1,82$

Using format $\langle 2, 6 \rangle$

Interval [-2, 1,984375]

Error ±0,0078125

- \bullet
- \bullet

We use a null input and non-deterministic values to previous outputs An assert detects a failure if the set of previous states of the outputs repeats

- \bullet

We use a null input and non-deterministic values to previous outputs An assert detects a failure if the set of previous states of the outputs repeats

- \bullet

We use a null input and non-deterministic values to previous outputs An assert detects a failure if the set of previous states of the outputs repeats

- \bullet

We use a null input and non-deterministic values to previous outputs An assert detects a failure if the set of previous states of the outputs repeats

We use a null input and non-deterministic values to previous outputs An assert detects a failure if the set of previous states of the outputs repeats

- \bullet

We use a null input and non-deterministic values to previous outputs An assert detects a failure if the set of previous states of the outputs repeats

We use a null input and non-deterministic values to previous outputs An assert detects a failure if the set of previous states of the outputs repeats

- \bullet

We use a null input and non-deterministic values to previous outputs An assert detects a failure if the set of previous states of the outputs repeats

We use a null input and non-deterministic values to previous outputs An assert detects a failure if the set of previous states of the outputs repeats

Based on worst case execution time (WCET) \bullet

- Based on worst case execution time (WCET)
- Example of operation on a code for MSP430:

on time (WCET) ode for MSP430:

Based on worst case execution time (WCET) \bullet Example of operation on a code for MSP430: \bullet

```
float iirFilterI() {
     float yn = 0;
     for (int k = 0; k < M; k++) {
          yn += *b++ * *x--;
     for (int k = 1; k < N; k++) {
          yn -= *a++ * *y--;
     return yn;
```


Based on worst case execution time (WCET) Example of operation on a code for MSP430: \bullet

float	iirE	filte	erI() {			
f	loat	z yn	= 0	;			
f	or	(int	k =	0;	k ·	< M;	k+-
		yn +	-= *	b++	*	*x;	
} f	or	(int	k =	1:	k ·	< N:	k+-
		yn -	·= *	a++	*	*y;] 7 .
}							
r	etur	n yn	;				
}							

+) {

MOV.W	@r9
MOV.W	@r9
SUB.W	#4,r′
MOV.W	4(r1(
MOV.W	6(r1(
CALL	#f
MOV.W	r7,r1
MOV.W	r8,r1
CALL	#f
MOV.W	r12,r
MOV.W	r13,r

9+,r12)+,r13 10 0),r14 0),r15 fs_mpy 4 5 fs_add -8

- 5 cycles
- 5 cycles 5 cycles
- 3 cycles
- 3 cycles 5 cycles
- 1 cycle
- 1 cycle
- 5 cycles1 cycle1 cycle

Based on worst case execution time (WCET) Example of operation on a code for MSP430:

float	iirE	filte	erI() {			
f	loat	z yn	= 0	;			
f	or	(int	k =	0;	k ·	< M;	k+-
		yn +	-= *	b++	*	*x;	
} f	or	(int	k =	1:	k ·	< N:	k+-
		yn -	·= *	a++	*	*y;] 7 .
}							
r	etur	n yn	;				
}							

+) {

MOV.W	@r9
MOV.W	@r9
SUB.W	#4,r′
MOV.W	4(r1(
MOV.W	6(r1(
CALL	#f
MOV.W	r7,r1
MOV.W	r8,r1
CALL	#f
MOV.W	r12,r
MOV.W	r13,r

)+,r12 9+,r13 10 0),r14 0),r15 ts_mpy 4 5 fs_add **18**

- 5 cycles 5 cycles
- 5 cycles
- 3 cycles
- 3 cycles
- 5 cycles
- 1 cycle
- 1 cycle
- 5 cycles
- 1 cycle
- 1 cycle
- Number of instructions depends of filter order Execution time will depends of plataform and word length

Based on worst case execution time (WCET) Example of operation on a code for MSP430: \bullet

float	iirE	filte	erI() {			
f	loat	z yn	= 0	;			
f	or	(int	k =	0;	k ·	< M;	k+-
		yn +	-= *	b++	*	*x;	
} f	or	(int	k =	1:	k ·	< N:	k+-
		yn -	·= *	a++	*	*y;] 7 .
}							
r	etur	n yn	;				
}							

+) {

MOV.W	@r9
MOV.W	@r9
SUB.W	#4,r′
MOV.W	4(r1(
MOV.W	6(r1(
CALL	#f
MOV.W	r7,r1
MOV.W	r8,r1
CALL	#f
MOV.W	r12,r
MOV.W	r13,r

9+,r12)+,r13 10 0),r14 0),r15 fs_mpy 4 5 fs_add -8

- 5 cycles
- 5 cycles 5 cycles
- 3 cycles
- 3 cycles 5 cycles
- 1 cycle
- 1 cycle
- 5 cycles1 cycle1 cycle

Based on worst case execution time (WCET) Example of operation on a code for MSP430:

<pre>float iirFilterI() {</pre>	MOV.W	@r9
float $yn = 0;$	MOV.W	@r9
for (int k = 0; k < M; k++) {	SUB.W	#4,r
yn += *b++ * *x;	MOV.W MOV.W	4(r1 6(r1
}	CALL	#
for (int k = 1; k < N; k++) {	MOV.W	r7,r1
vn -= *a++ * *v;	MOV.W	r8,r1
	CALL	#1
r = 1 r = 1 r	MOV.W	r12,
recurn yn,	MOV.W	r13,
}		

 $- l_{timing} \Leftrightarrow ((N \times T) \leq D)$

The model checker aplies and arbitrary input searching for the negation of

-)+,r12 9+,r13 10 10),r14 10),r15 fs_mpy 4 5 fs_add **r7** ,r8

- 5 cycles
- 5 cycles
- 5 cycles
- 3 cycles
- 3 cycles 5 cycles
- 1 cycle
- 1 cycle
- 5 cycles
- 1 cycle
- 1 cycle

Based on worst case execution time (WCET) Example of operation on a code for MSP430:

The model checker aplies and arbitrary input searching for the negation of $l_{timing} \Leftrightarrow ((N \times T) \leq D)$ Deadline Number of cycles Cycle time

MOV.W	@r9
MOV.W	@r9
SUB.W	#4,r
MOV.W	4(r1
MOV.W	6(r1
CALL	# 1
MOV.W	r7,r1
MOV.W	r8,r1
CALL	# 1
MOV.W	r12.
MOV.W	r13,
	MOV.W MOV.W SUB.W MOV.W MOV.W CALL MOV.W CALL MOV.W MOV.W

-)+,r12)+,r13 ·10 10),r14 10),r15 fs_mpy 4 5 fs_add **r**8

- 5 cycles
- 5 cycles
- 5 cycles
- 3 cycles
- 3 cycles 5 cycles
- 1 cycle
- 1 cycle
- 5 cycles
- l cycle
- 1 cycle

#	Filter		М	Slh. I	Innut range	Word-	Input	Failuras	Verification time (s)			
π				ZI''kl	input range	length	size	ranures	OF	LC	TC	
1	LP-IIR	2	1	2	[-1,1]	<2,4>	6	OF, LC	39	4	<1	
2	LP-Butterworth-IIR	3	3	1.2	[-1.6,1.6]	<2,5>	6	OF	579	634	<1	
3	LP-IIR	3	1	4	[-1,1]	<3,4>	6	OF, LC	210	29	<1	
4	LP-IIR	3	1	1.56	[-1,1]	<2,4>	6	_	110	51	<1	
5	LP-FIR	1	31	1.93	[-1,1]	<2,6>	31	TC	TO	98	1	
6	HP-ChebyshevI-IIR	3	3	1.33	[-1,1]	<2,10>	6	_	853	2058	<1	
7	BP-Elliptic-IIR	3	3	1.24	[-1.0,1.0]	<2,10>	6	LC	546	474	<1	
8	BS-Butterworth-IIR	3	3	1.81	[-1.0,1.0]	<2,8>	6	OF	106	1299	<1	
9	BP-Elliptic-IIR	5	5	0.91	[-1.1,1.1]	<1,8>	10	OF, LC	7	20	<1	
10	HP-Butterworth-IIR	5	5	1.58	[-1.27, 1.27]	<2,6>	10	LC	2468	1508	<1	
11	BP-ChebyshevI-IIR	5	5	1.51	[-1.33, 1.33]	<2,6>	10	_	ТО	TO	<1	
12	HP-Elliptic-IIR	7	7	5.39	[-1,1]	<3,13>	14	TC	73	TO	<1	

#	Filter	N M			Input range	Word-	Input	Failures	Verification time (s)			
T				ZI''kl	input range	length	size	i anui 65	OF	LC	TC	
1	LP-IIR	2	1	2	[-1.1]	<2.4>	6	OF, LC	39	4	<1	
2	LP-Butterworth-IIR	3	3	C	Different types	of	6	OF	579	634	<1	
3	LP-IIR	3	1	fil	ters with diffe	rent	6	OF, LC	210	29	<1	
4	LP-IIR	3	1	S	ize were verif	ed .	6	—	110	51	<1	
5	LP-FIR	1	31	1.93	[-1,1]	<2,6>	31	TC	TO	98	1	
6	HP-ChebyshevI-IIR	3	3	1.33	[-1,1]	<2,10>	6	-	853	2058	<1	
7	BP-Elliptic-IIR	3	3	1.24	[-1.0,1.0]	<2,10>	6	LC	546	474	<1	
8	BS-Butterworth-IIR	3	3	1.81	[-1.0,1.0]	<2,8>	6	OF	106	1299	<1	
9	BP-Elliptic-IIR	5	5	0.91	[-1.1,1.1]	<1,8>	10	OF, LC	7	20	<1	
10	HP-Butterworth-IIR	5	5	1.58	[-1.27, 1.27]	<2,6>	10	LC	2468	1508	<1	
11	BP-ChebyshevI-IIR	5	5	1.51	[-1.33, 1.33]	<2,6>	10	—	TO	ТО	<1	
12	HP-Elliptic-IIR	7	7	5.39	[-1,1]	<3,13>	14	TC	73	TO	<1	

#	Filter		М	Slh. I	Innut range	Word-	Input	Failuras	Verification time (s)			
π				ZI''kl	input range	length	size	ranures	OF	LC	TC	
1	LP-IIR	2	1	2	[-1,1]	<2,4>	6	OF, LC	39	4	<1	
2	LP-Butterworth-IIR	3	3	1.2	[-1.6,1.6]	<2,5>	6	OF	579	634	<1	
3	LP-IIR	3	1	4	[-1,1]	<3,4>	6	OF, LC	210	29	<1	
4	LP-IIR	3	1	1.56	[-1,1]	<2,4>	6	_	110	51	<1	
5	LP-FIR	1	31	1.93	[-1,1]	<2,6>	31	TC	TO	98	1	
6	HP-ChebyshevI-IIR	3	3	1.33	[-1,1]	<2,10>	6	_	853	2058	<1	
7	BP-Elliptic-IIR	3	3	1.24	[-1.0,1.0]	<2,10>	6	LC	546	474	<1	
8	BS-Butterworth-IIR	3	3	1.81	[-1.0,1.0]	<2,8>	6	OF	106	1299	<1	
9	BP-Elliptic-IIR	5	5	0.91	[-1.1,1.1]	<1,8>	10	OF, LC	7	20	<1	
10	HP-Butterworth-IIR	5	5	1.58	[-1.27, 1.27]	<2,6>	10	LC	2468	1508	<1	
11	BP-ChebyshevI-IIR	5	5	1.51	[-1.33, 1.33]	<2,6>	10	_	ТО	TO	<1	
12	HP-Elliptic-IIR	7	7	5.39	[-1,1]	<3,13>	14	TC	73	TO	<1	

#	Filter	NI	NЛ		Input rango	Word-	Input	Failuras	Verification time (s)			
#				∠I''kl	input range	length	size	ranures	OF	LC	TC	
1	LP-IIR	2	1	2	[-1,1]	<2,4>	6	OF, LC	39	4	<1	
2	LP-Butterworth-IIR	3	3	1.2	[-1.6,1.6]	<2,5>	6	OF	579	634	<1	
3	LP-IIR	3	1	4	[-1,1]	<3,4>	6	OF, LC	210	29	<1	
4	LP-IIR	3	1	1.56	[-1,1]	<2,4>	6	-	110	51	<1	
5	LP-FIR	1	31	1.93	[-1,1]	<2,6>	31		ТО	98	1	
6	HP-ChebyshevI-IIR	3	3	1.33	[-1,1]	<2,10>	6	Faster ver	ificatior	n of low	:1	
7	BP-Elliptic-IIR	3	3	1.24	[-1.0,1.0]	<2,10>	6	order fil	ters and	d with	:1	
8	BS-Butterworth-IIR	3	3	1.81	[-1.0,1.0]	<2,8>	6	smaller	word-le	ength	<1	
9	BP-Elliptic-IIR	5	5	0.91	[-1.1,1.1]	<1,8>	10	OF, LC	7	20	<1	
10	HP-Butterworth-IIR	5	5	1.58	[-1.27, 1.27]	<2,6>	10	LC	2468	1508	<1	
11	BP-ChebyshevI-IIR	5	5	1.51	[-1.33, 1.33]	<2,6>	10	-	ТО	ТО	<1	
12	HP-Elliptic-IIR	7	7	5.39	[-1,1]	<3,13>	14	TC	73	ТО	<1	

#	Filtor		NЛ	∑lh I	Innut range	Word-	Input	Failures OF, LC OF, LC - TC - LC OF OF, LC	Verification time (s)			
π				ZI''kl	input range	length	size	i anui 65	OF	LC	TC	
1	LP-IIR	2	1	2	[-1,1]	<2,4>	6	OF, LC	39	4	<1	
2	LP-Butterworth-IIR	3	3	1.2	[-1.6,1.6]	<2,5>	6	OF	579	634	<1	
3	LP-IIR	3	1	4	[-1,1]	<3,4>	6	OF, LC	210	29	<1	
4	LP-IIR	3	1	1.56	[-1,1]	<2,4>	6	_	110	51	<1	
5	LP-FIR	1	31	1.93	[-1,1]	<2,6>	31	TC	TO	98	1	
6	HP-ChebyshevI-IIR	3	3	1.33	[-1,1]	<2,10>	6	-	853	2058	<1	
7	BP-Elliptic-IIR	3	3	1.24	[-1.0,1.0]	<2,10>	6	LC	546	474	<1	
8	BS-Butterworth-IIR	3	3	1.81	[-1.0,1.0]	<2,8>	6	OF	106	1299	<1	
9	BP-Elliptic-IIR	5	5	0.91	[-1.1,1.1]	<1,8>	10	OF, LC	7	20	<1	
10	HP-Butterworth-IIR	5	5	1.58	[-1.27, 1.27]	<2,6>	10	LC	2468	1508	<1	
11	BP-ChebyshevI-IIR	5	5	1.51	[-1.33, 1.33]	<2,6>	10	—	TO	ТО	<1	
12	HP-Elliptic-IIR	7	7	5.39	[-1,1]	<3,13>	14	TC	73	ТО	<1	

#	Eiltor	N	Μ		Innut range	Word-	Input	Failuras	Verifi	cation time	me (s)	
π				ZI^ukl	input range	length	size	I allui 5	OF	LC	ТС	
1	LP-IIR	2	1	2	[-1,1]	<2,4>	6	Fast ve	Fast verification of		<1	
2	LP-Butterworth-IIR	3	3	1.2	[-1.6,1.6]	<2,5>	6	time	time constraints		<1	
3	LP-IIR	3	1	4	[-1,1]	<3,4>	6	(seque	(sequential code)			
4	LP-IIR	3	1	1.56	[-1,1]	<2,4>	6	_	- 110 J		<1	
5	LP-FIR	1	31	1.93	[-1,1]	<2,6>	31	TC	TO	98	1	
6	HP-ChebyshevI-IIR	3	3	1.33	[-1,1]	<2,10>	6	-	853	2058	<1	
7	BP-Elliptic-IIR	3	3	1.24	[-1.0,1.0]	<2,10>	6	LC	546	474	<1	
8	BS-Butterworth-IIR	3	3	1.81	[-1.0,1.0]	<2,8>	6	OF	106	1299	<1	
9	BP-Elliptic-IIR	5	5	0.91	[-1.1,1.1]	<1,8>	10	OF, LC	7	20	<1	
10	HP-Butterworth-IIR	5	5	1.58	[-1.27, 1.27]	<2,6>	10	LC	2468	1508	<1	
11	BP-ChebyshevI-IIR	5	5	1.51	[-1.33, 1.33]	<2,6>	10	_	TO	TO	<1	
12	HP-Elliptic-IIR	7	7	5.39	[-1,1]	<3,13>	14	TC	73	TO	<1	

#	Filtor		NЛ	∑lh I	Innut range	Word-	Input	Failures OF, LC OF, LC - TC - LC OF OF, LC	Verification time (s)			
π				ZI''kl	input range	length	size	i anui 65	OF	LC	TC	
1	LP-IIR	2	1	2	[-1,1]	<2,4>	6	OF, LC	39	4	<1	
2	LP-Butterworth-IIR	3	3	1.2	[-1.6,1.6]	<2,5>	6	OF	579	634	<1	
3	LP-IIR	3	1	4	[-1,1]	<3,4>	6	OF, LC	210	29	<1	
4	LP-IIR	3	1	1.56	[-1,1]	<2,4>	6	_	110	51	<1	
5	LP-FIR	1	31	1.93	[-1,1]	<2,6>	31	TC	TO	98	1	
6	HP-ChebyshevI-IIR	3	3	1.33	[-1,1]	<2,10>	6	-	853	2058	<1	
7	BP-Elliptic-IIR	3	3	1.24	[-1.0,1.0]	<2,10>	6	LC	546	474	<1	
8	BS-Butterworth-IIR	3	3	1.81	[-1.0,1.0]	<2,8>	6	OF	106	1299	<1	
9	BP-Elliptic-IIR	5	5	0.91	[-1.1,1.1]	<1,8>	10	OF, LC	7	20	<1	
10	HP-Butterworth-IIR	5	5	1.58	[-1.27, 1.27]	<2,6>	10	LC	2468	1508	<1	
11	BP-ChebyshevI-IIR	5	5	1.51	[-1.33, 1.33]	<2,6>	10	—	TO	ТО	<1	
12	HP-Elliptic-IIR	7	7	5.39	[-1,1]	<3,13>	14	TC	73	ТО	<1	

#	Filtor	N	М		Innut range	Word-	Input	Failuras	Verifi	cation tim	ne (s)
Ħ				∠I''kl	input range	length	size	raiiui c s	OF	LC	TC
1	LP-IIR	2	1	2	[-1,1]	<2,4>	6	OF, LC	39	4	<1
2	LP-Butterworth-IIR	3	3	1.2	[-1.6,1.6]	<2,5>	6	OF	579	634	<1
3	LP-IIR	3	1	4	[-1,1]	<3,4>	6	OF, LC	210	29	<1
4	LP-IIR	3	1	1.56	[-1,1]	<2,4>	6	-	110	51	<1
5	LP-FIR	1	31	1.93	[-1,1]	<2,6>	31	TC	TO	98	1
6	HP-ChebyshevI-IIR	3	3		[-1,1]	<2,10>	6	—	853	2058	<1
7	BP-Elliptic-IIR	3	3	Tim	e constraint fa	ailure	6	LC	546	474	<1
8	BS-Butterworth-IIR	3	3	fo	r high order fil	ters	6	OF	106	1299	<1
9	BP-Elliptic-IIR	5	5	0.91		<1,0>	10	OF, LC	7	20	<1
10	HP-Butterworth-IIR	5	5	1.58	[-1.27, 1.27]	<2,6>	10	LC	2468	1508	<1
11	BP-ChebyshevI-IIR	5	5	1.51	[-1.33, 1.33]	<2,6>	10	-	ТО	ТО	<1
12	HP-Elliptic-IIR	7	7	5.39	[-1,1]	<3,13>	14	TC	73	ТО	<1

#	Filtor		NЛ	∑lh I	Innut range	Word-	Input	Failures OF, LC OF, LC - TC - LC OF OF, LC	Verification time (s)			
π				ZI''kl	input range	length	size	i anui 65	OF	LC	TC	
1	LP-IIR	2	1	2	[-1,1]	<2,4>	6	OF, LC	39	4	<1	
2	LP-Butterworth-IIR	3	3	1.2	[-1.6,1.6]	<2,5>	6	OF	579	634	<1	
3	LP-IIR	3	1	4	[-1,1]	<3,4>	6	OF, LC	210	29	<1	
4	LP-IIR	3	1	1.56	[-1,1]	<2,4>	6	_	110	51	<1	
5	LP-FIR	1	31	1.93	[-1,1]	<2,6>	31	TC	TO	98	1	
6	HP-ChebyshevI-IIR	3	3	1.33	[-1,1]	<2,10>	6	-	853	2058	<1	
7	BP-Elliptic-IIR	3	3	1.24	[-1.0,1.0]	<2,10>	6	LC	546	474	<1	
8	BS-Butterworth-IIR	3	3	1.81	[-1.0,1.0]	<2,8>	6	OF	106	1299	<1	
9	BP-Elliptic-IIR	5	5	0.91	[-1.1,1.1]	<1,8>	10	OF, LC	7	20	<1	
10	HP-Butterworth-IIR	5	5	1.58	[-1.27, 1.27]	<2,6>	10	LC	2468	1508	<1	
11	BP-ChebyshevI-IIR	5	5	1.51	[-1.33, 1.33]	<2,6>	10	—	TO	ТО	<1	
12	HP-Elliptic-IIR	7	7	5.39	[-1,1]	<3,13>	14	TC	73	ТО	<1	

#	Filtor	N	NЛ	∑ h _k	Innut range	Word-	Input	Failures	Verification time (s)			
Ħ				∠I''kl	input range	length	size	raiiui c s	OF	LC	TC	
1	LP-IIR	2	1	2	[-1,1]	<2,4>	6	OF, LC	39	4	<1	
2	LP-Butterworth-IIR	3	3	1.2	[-1.6,1.6]	<2,5>	6	OF	579	634	<1	
3	LP-IIR	3	1	4	[-1,1]	<3,4>	6	OF, LC	210	29	<1	
4	LP-IIR	3	1	1.56	[-1,1]	<2,4>	6	_	110	51	<1	
5	LP-FIR	1	31	1.93	[-1,	rflow dat	ТО	98	1			
6	HP-ChebyshevI-IIR	3	3	1.33	[-1, for	[-1, for concorvative cace.					<1	
7	BP-Elliptic-IIR	3	3	1.24	[-1.0,			.C	546	474	<1	
8	BS-Butterworth-IIR	3	3	1.81	[-1.0,1.0]	<2,8>	6	OF	106	1299	<1	
9	BP-Elliptic-IIR	5	5	0.91	[-1.1,1.1]	<1,8>	10	OF, LC	7	20	<1	
10	HP-Butterworth-IIR	5	5	1.58	[-1.27, 1.27]	<2,6>	10	LC	2468	1508	<1	
11	BP-ChebyshevI-IIR	5	5	1.51	[-1.33, 1.33]	<2,6>	10	_	ТО	ТО	<1	
12	HP-Elliptic-IIR	7	7	5.39	[-1,1]	<3,13>	14	TC	73	ТО	<1	

#	Filtor		NЛ	∑lh I	Innut range	Word-	Input	Failures OF, LC OF, LC - TC - LC OF OF, LC	Verification time (s)			
π				ZI''kl	input range	length	size	i anui 65	OF	LC	TC	
1	LP-IIR	2	1	2	[-1,1]	<2,4>	6	OF, LC	39	4	<1	
2	LP-Butterworth-IIR	3	3	1.2	[-1.6,1.6]	<2,5>	6	OF	579	634	<1	
3	LP-IIR	3	1	4	[-1,1]	<3,4>	6	OF, LC	210	29	<1	
4	LP-IIR	3	1	1.56	[-1,1]	<2,4>	6	_	110	51	<1	
5	LP-FIR	1	31	1.93	[-1,1]	<2,6>	31	TC	TO	98	1	
6	HP-ChebyshevI-IIR	3	3	1.33	[-1,1]	<2,10>	6	-	853	2058	<1	
7	BP-Elliptic-IIR	3	3	1.24	[-1.0,1.0]	<2,10>	6	LC	546	474	<1	
8	BS-Butterworth-IIR	3	3	1.81	[-1.0,1.0]	<2,8>	6	OF	106	1299	<1	
9	BP-Elliptic-IIR	5	5	0.91	[-1.1,1.1]	<1,8>	10	OF, LC	7	20	<1	
10	HP-Butterworth-IIR	5	5	1.58	[-1.27, 1.27]	<2,6>	10	LC	2468	1508	<1	
11	BP-ChebyshevI-IIR	5	5	1.51	[-1.33, 1.33]	<2,6>	10	—	TO	ТО	<1	
12	HP-Elliptic-IIR	7	7	5.39	[-1,1]	<3,13>	14	TC	73	ТО	<1	

#	Eiltor	N	NЛ		Innut rango	Word-	Input	Failuras	Verifi	cation tim	ne (s)
Ħ	FIICEI			ZI^ukl	input range	length	size	raiiui c s	OF	LC	TC
1	LP-IIR	2	1	2	[-1,1]	<2,4>	6	OF, LC	39	4	<1
2	LP-Butterworth-IIR	3	3	1.2	[-1.6,1.6]	<2,5>	6	OF	579	634	<1
3	LP-IIR	3	1	4	[-1,1]	<3,4>	6	OF, LC	210	29	<1
4	LP-IIR	3	1	1.56	[-1,1]	<2,4>	6	-	110	51	<1
5	LP-FIR	1	31	1.93	[-1,1]	<2,6>	31	TC	TO	98	1
6	HP-ChebyshevI-IIR	3	3	1.33	[-1,1]	<2,10>	6	_	853	2058	<1
7	BP-Elliptic-IIR	3	3	1.24	[-1.0,1.0]	<2,10>	6	Higher ve	erificati	on time	for
8	BS-Butterworth-IIR	3	3	1.81	[-1.0,1.0]	<2,8>	6	high	norder	filters	
9	BP-Elliptic-IIR	5	5	0.91	[-1.1,1.1]	<1,8>	10	OF		20	<1
10	HP-Butterworth-IIR	5	5	1.58	[-1.27, 1.27]	<2,6>	10	LC	2468	1508	<1
11	BP-ChebyshevI-IIR	5	5	1.51	[-1.33, 1.33]	<2,6>	10	-	ТО	TO	<1
12	HP-Elliptic-IIR	7	7	5.39	[-1,1]	<3,13>	14	TC	73	ТО	<1

#	Filtor		NЛ	∑lh I	Innut range	Word-	Input	Failures OF, LC OF, LC - TC - LC OF OF, LC	Verification time (s)			
π				ZI''kl	input range	length	size	i anui 65	OF	LC	TC	
1	LP-IIR	2	1	2	[-1,1]	<2,4>	6	OF, LC	39	4	<1	
2	LP-Butterworth-IIR	3	3	1.2	[-1.6,1.6]	<2,5>	6	OF	579	634	<1	
3	LP-IIR	3	1	4	[-1,1]	<3,4>	6	OF, LC	210	29	<1	
4	LP-IIR	3	1	1.56	[-1,1]	<2,4>	6	_	110	51	<1	
5	LP-FIR	1	31	1.93	[-1,1]	<2,6>	31	TC	TO	98	1	
6	HP-ChebyshevI-IIR	3	3	1.33	[-1,1]	<2,10>	6	-	853	2058	<1	
7	BP-Elliptic-IIR	3	3	1.24	[-1.0,1.0]	<2,10>	6	LC	546	474	<1	
8	BS-Butterworth-IIR	3	3	1.81	[-1.0,1.0]	<2,8>	6	OF	106	1299	<1	
9	BP-Elliptic-IIR	5	5	0.91	[-1.1,1.1]	<1,8>	10	OF, LC	7	20	<1	
10	HP-Butterworth-IIR	5	5	1.58	[-1.27, 1.27]	<2,6>	10	LC	2468	1508	<1	
11	BP-ChebyshevI-IIR	5	5	1.51	[-1.33, 1.33]	<2,6>	10	—	TO	ТО	<1	
12	HP-Elliptic-IIR	7	7	5.39	[-1,1]	<3,13>	14	TC	73	ТО	<1	

