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General Steps from Inductive 

Optimization Based on Counterexamples

• Modeling – In the modeling step, the optimization

problem is defined for a cost function and then its

constraints are introduced

• Specification – This step consists of describing the

behavior of the system and properties to be verified.

A C code is generated with ESBMC functions to

restrict the state space

• Verification - This step performs the verification of

the C code, and informs if it has found a global

optimization
3
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• Given a cost function , such that is the 

space of decision variables and         , where    

is the set of constraints

• A multivariate optimization problem consists 

of finding the vector of optimal decision 

variables    , which minimizes f considering   

• The problem will be non-convex, if and only if

f(x) is a non-convex function

Inductive Optimization Based on 

Counterexamples
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Function of 

Himmelblau

presents four global 

minima

Inductive Optimization Based on 

Counterexamples



• To extend the verifier to solve an optimization

problem, two code directives are used: ASSUME and

ASSERT

• ASSUME is responsible for defining the constraints

over the non-deterministic variables, from which the

verifier restricts the state space

• ASSERT is used to define the property to be verified

and return “True” or “False” for the optimization

check
6

Inductive Optimization Based on 

Counterexamples
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• The decision variables of the problem are defined as 

non-deterministic integers

• An integer variable controls the accuracy and 

discretization of the state space

• where n is the number of decimal places of the 

decision variables

Inductive Optimization Based on 

Counterexamples
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• Successive verification are executed iteratively 

increasing the precision, to converge to the optimal 

solution

• Each verification run checks the following property:

Inductive Optimization Based on 

Counterexamples
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• Given the following optimization problem:

• Minimize the Himmelblau function

Illustrative Example



1. int nondet_int();

2. int main(){

3. int p = 1;

4. float fc = 100;

5. int X1 = nondet_int();

6. int X2 = nondet_int();

7. float x1, x2, fobj;

8. __ESBMC_assume((X1>=-5*p) && (X1<=0*p));

9. __ESBMC_assume((X2>=0*p) && (X2<=5*p));

10. x1 = (float) X1/p;

11. x2 = (float) X2/p;

12. fobj = (x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7);

13. __ESBMC_assume( fobj < fc );

14. __ESBMC_assert( fobj > fc, “” );

15. return 0;

16. }
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Illustrative Example
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The precision variable 

starts as 100

Illustrative Example
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Decision variables are 

declared as 

non-deterministic integers

Illustrative Example
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Statements of 

ASSUMEs are used to 

specify constraints and 

reduce state space

Illustrative Example
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Illustrative Example



CEGIO Algorithms
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• CEGIO-G - Applies to general functions

• CEGIO-F - Applies to semi-definite and positive 

functions

• CEGIO-S - Applies to convex functions
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CEGIO-G Algorithm
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CEGIO-G Algorithm
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Updates the 

restrictions based on 

the counter example

CEGIO-G Algorithm
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If No, update 

the precision 

variable

CEGIO-G Algorithm
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Repeat until desired 

accuracy is reached

CEGIO-G Algorithm
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• We evaluated the performance of our methodology

to minimize the Himmelblau function, and we

compared with the downward gradient (GD) and

genetic algorithm (GA) methods.

• The proposed methodology does not report

minimum locations as in GD and GA, and it is able to

find the global minimum

Deviating from local minima



24Local Minimum

• Mathematical techniques and heuristics depend on 

initialization and can not ensure overall optimization.

Deviating from local minima
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These techniques can easily 

stop in a local minimum

• Mathematical techniques and heuristics depend on 

initialization and can not ensure overall optimization.

Deviating from local minima



Deviating from local minima
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Global Minimum

• Mathematical techniques and heuristics dependent on 

initialization and can not assure global optimization

Optimization based 

on SMT achieves the 

global solution
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Functions with prior knowledge

• There are functions, in which we have some a priori

knowledge, for example, semi-defined or positive

definite functions.

• Distance or energy functions belong to that class of

functions

• From this, it is possible to propose modifications in

the previous algorithm to improve the convergence

time
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CEGIO-F Algorithm
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CEGIO-F Algorithm
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CEGIO-F Algorithm
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CEGIO-F Algorithm
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• Another type of special functions are convex 

functions. These are functions that satisfy triangular 

inequality.

Convex functions
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• A local minimum of a convex function f, in a convex

set, is always a global minimum of f

• It is possible to update the set of constraints of the

problem from the solution obtained before

increasing the precision

– The limits are defined by the predecessor and successor

values of the solution found so far

Convex functions
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CEGIO-S Algorithm
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Restriction set 

update

CEGIO-S Algorithm



OptCE: A Counterexample-Guided 

Inductive Optimization Solver 
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• The OptCE tool implements the CEGIOs algorithms

• Performs optimization based on counterexamples

with various configurations of verifiers and solvers

• Establishes a new approach to optimize functions



OptCE: Architecture

38

input file and 

parameters in 

terminal
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generation of the 

C file with 

specification

OptCE: Architecture
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Verification of the C 

code with the verifier

and solver established

OptCE: Architecture
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if the result is “failed”, 

we obtain a new 

minimum candidate 

function

OptCE: Architecture
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The value found is used to specify a new C file,

The new candidate function value is used as the 

start of the algorithm

OptCE: Architecture
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This cycle remains until the check is SUCCESSFUL.

OptCE: Architecture
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When the check is SUCCESSFUL, it means that we 

have found the global minimum of the function 

with the defined precision

OptCE: Architecture
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Precision is incremented and checked if it still 

belongs to the desired precision limit

OptCE: Architecture
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If not (FALSE), we find the global minimum wanted with that precision.

If yes (TRUE), we update the precision in the algorithm at runtime to generate a 

new specification

OptCE: Architecture



OptCE: Input File

• Format adopted for constraint matrices

• Ex: Input file for function adjiman

Fobj = cos2(x1)*sin2(x2) – ( x1/(x2*x2+1) );

#

A = [-1 2; -1 1];

• Mathematical functions have been rewritten to

simplify the verification process

• The user can write the math function and insert it

into the OptCE math library
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OptCE Features

• BMC Configuration: CBMC or ESBMC

• Solver Configuration: Boolector, Z3, MathSAT, MiniSAT

• Algorithm Configuration: CEGIO-G, CEGIO-S, CEGIO-F

• Initialization: Set the optimization start point

• Insert Library: Insert personal libraries with math

functions

• Timeout: configures the time limit, in seconds

• Precision: set the desired precision, number of

decimal places of a solution

48



Optimizing via OptCE
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Call Set Properties

./optCE name.func --timeout=?

--generalized

--positive

--convex

--start-value=? --library=name --timeout=?

--mathsat

--boolector

--z3

--minisat

--esbmc

--cbmc



Experimental Evaluation

• Objectives

– Evaluate the performance of the proposed algorithms

– Check the performance of the SAT and SMT solvers for 

optimizing the functions

– Compare the methodology with traditional techniques, 

such as: genetic algorithm, particle swarm, pattern search, 

simulated annealing and nonlinear programming
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Experimental Evaluation

• Configuration of Experiments

– A set of 10 functions used for testing optimization 

algorithms. These have different characteristics, such as: 

differentiable or non-differentiable, separable or non-

separable, unimodal or multimodal etc.
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• Configuration of Experiments

– CEGIO-G Algorithm { --generalized} - was employed in all 

functions

– CEGIO-S Algorithm { --positive} - was applied to functions 

Booth, Himmelblau and Leon

– CEGIO-F Algorithm { --convex} - was used for functions 

Zettl, Rotated Ellipse and Sum Square
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Experimental Evaluation



• Experimental Results - CEGIO-G { --generalized}
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Experimental Evaluation

• Considering the proposed combinations, the 

optimization time varies significantly, where ESBMC + 

MathSAT is 2.8 times faster than CBMC + MiniSAT, 

while ESBMC + Z3 presents higher execution time.



• Experimental Results - CEGIO-S { --positive}
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Experimental Evaluation

• The benchmarks executed with the --positive flag 

had the time reduced considerably, therefore,  no 

checks are made in the negative domain, which 

reduces the search space.



• Experimental Results – CEGIO-F { --convex}
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Experimental Evaluation

• The tests with the benchmarks 8,9,10 using the flag -

convex presented a significant reduction in the 

optimization time, this because, with each step of 

the verification the search space is reduced.



• Experimental Results – CEGIO algorithms x traditional 

techniques
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Experimental Evaluation

• The great difference of the OptCE in relation to the 

other techniques is the rate of success. While the other 

technicians get stuck in local minima, OptCE finds the 

global minimum.



Conclusion

• The OptCE tool formalizes a new optimization 

proposal, which is based on the counter-example 

analysis of software verifiers.

• This work allowed to implement the GEGIOs 

algorithms.

• The comparisons show that the approach evolved 

among the CEGIO algorithms, proposing better and 

more specific solutions in the case of convex and 

non-negative functions.

• It is also seen that the tool hit rate is higher than the 

other analysis techniques.
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Future work

• Incorporate checks using other solvers with the 

MiniSAT.

• Adapt the tool to run in different cores, increasing 

the optimization time linearly.

• Improve the input file.
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