
OptCE: A Counterexample-Guided

Inductive Optimization Solver

Federal University of Amazonas (UFAM)

Postgraduate Program in Electrical Engineering (PPGEE)

Higo Albuquerque, Rodrigo Araújo, Iury Bessa,

Lucas Cordeiro, and Eddie Lima

Mikhail Ramalho

mikhail.ramalho-gadelha@soton.ac.uk

Agenda

• Inductive Optimization Based on Counterexamples

• Illustrative Example

• CEGIO Algorithms

• OptCE Tool

• Experimental Evaluaion

2

General Steps from Inductive

Optimization Based on Counterexamples

• Modeling – In the modeling step, the optimization

problem is defined for a cost function and then its

constraints are introduced

• Specification – This step consists of describing the

behavior of the system and properties to be verified.

A C code is generated with ESBMC functions to

restrict the state space

• Verification - This step performs the verification of

the C code, and informs if it has found a global

optimization
3

4

• Given a cost function , such that is the

space of decision variables and , where

is the set of constraints

• A multivariate optimization problem consists

of finding the vector of optimal decision

variables , which minimizes f considering

• The problem will be non-convex, if and only if

f(x) is a non-convex function

Inductive Optimization Based on

Counterexamples

� ��, �� = ��
� + �� − 11

� + �� + ��
� − 7 �

5

Function of

Himmelblau

presents four global

minima

Inductive Optimization Based on

Counterexamples

• To extend the verifier to solve an optimization

problem, two code directives are used: ASSUME and

ASSERT

• ASSUME is responsible for defining the constraints

over the non-deterministic variables, from which the

verifier restricts the state space

• ASSERT is used to define the property to be verified

and return “True” or “False” for the optimization

check
6

Inductive Optimization Based on

Counterexamples

7

• The decision variables of the problem are defined as

non-deterministic integers

• An integer variable controls the accuracy and

discretization of the state space

• where n is the number of decimal places of the

decision variables

Inductive Optimization Based on

Counterexamples

8

• Successive verification are executed iteratively

increasing the precision, to converge to the optimal

solution

• Each verification run checks the following property:

Inductive Optimization Based on

Counterexamples

9

• Given the following optimization problem:

• Minimize the Himmelblau function

Illustrative Example

1. int nondet_int();

2. int main(){

3. int p = 1;

4. float fc = 100;

5. int X1 = nondet_int();

6. int X2 = nondet_int();

7. float x1, x2, fobj;

8. __ESBMC_assume((X1>=-5*p) && (X1<=0*p));

9. __ESBMC_assume((X2>=0*p) && (X2<=5*p));

10. x1 = (float) X1/p;

11. x2 = (float) X2/p;

12. fobj = (x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7);

13. __ESBMC_assume(fobj < fc);

14. __ESBMC_assert(fobj > fc, “”);

15. return 0;

16. }

10

Illustrative Example

1. int nondet_int();

2. int main(){

3. int p = 1;

4. float fc = 100;

5. int X1 = nondet_int();

6. int X2 = nondet_int();

7. float x1, x2, fobj;

8. __ESBMC_assume((X1>=-5*p) && (X1<=0*p));

9. __ESBMC_assume((X2>=0*p) && (X2<=5*p));

10. x1 = (float) X1/p;

11. x2 = (float) X2/p;

12. fobj = (x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7);

13. __ESBMC_assume(fobj < fc);

14. __ESBMC_assert(fobj > fc, “”);

15. return 0;

16. }

11

The precision variable

starts as 100

Illustrative Example

1. int nondet_int();

2. int main(){

3. int p = 1;

4. float fc = 100;

5. int X1 = nondet_int();

6. int X2 = nondet_int();

7. float x1, x2, fobj;

8. __ESBMC_assume((X1>=-5*p) && (X1<=0*p));

9. __ESBMC_assume((X2>=0*p) && (X2<=5*p));

10. x1 = (float) X1/p;

11. x2 = (float) X2/p;

12. fobj = (x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7);

13. __ESBMC_assume(fobj < fc);

14. __ESBMC_assert(fobj > fc, “”);

15. return 0;

16. }

12

Decision variables are

declared as

non-deterministic integers

Illustrative Example

1. int nondet_int();

2. int main(){

3. int p = 1;

4. float fc = 100;

5. int X1 = nondet_int();

6. int X2 = nondet_int();

7. float x1, x2, fobj;

8. __ESBMC_assume((X1>=-5*p) && (X1<=0*p));

9. __ESBMC_assume((X2>=0*p) && (X2<=5*p));

10. x1 = (float) X1/p;

11. x2 = (float) X2/p;

12. fobj = (x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7);

13. __ESBMC_assume(fobj < fc);

14. __ESBMC_assert(fobj > fc, “”);

15. return 0;

16. }

13

Statements of

ASSUMEs are used to

specify constraints and

reduce state space

Illustrative Example

1. int nondet_int();

2. int main(){

3. int p = 1;

4. float fc = 100;

5. int X1 = nondet_int();

6. int X2 = nondet_int();

7. float x1, x2, fobj;

8. __ESBMC_assume((X1>=-5*p) && (X1<=0*p));

9. __ESBMC_assume((X2>=0*p) && (X2<=5*p));

10. x1 = (float) X1/p;

11. x2 = (float) X2/p;

12. fobj = (x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7);

13. __ESBMC_assume(fobj < fc);

14. __ESBMC_assert(fobj > fc, “”);

15. return 0;

16. }

14

Illustrative Example

1. int nondet_int();

2. int main(){

3. int p = 1;

4. float fc = 100;

5. int X1 = nondet_int();

6. int X2 = nondet_int();

7. float x1, x2, fobj;

8. __ESBMC_assume((X1>=-5*p) && (X1<=0*p));

9. __ESBMC_assume((X2>=0*p) && (X2<=5*p));

10. x1 = (float) X1/p;

11. x2 = (float) X2/p;

12. fobj = (x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7);

13. __ESBMC_assume(fobj < fc);

14. __ESBMC_assert(fobj > fc, “”);

15. return 0;

16. }

15

Illustrative Example

1. int nondet_int();

2. int main(){

3. int p = 1;

4. float fc = 100;

5. int X1 = nondet_int();

6. int X2 = nondet_int();

7. float x1, x2, fobj;

8. __ESBMC_assume((X1>=-5*p) && (X1<=0*p));

9. __ESBMC_assume((X2>=0*p) && (X2<=5*p));

10. x1 = (float) X1/p;

11. x2 = (float) X2/p;

12. fobj = (x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7);

13. __ESBMC_assume(fobj < fc);

14. __ESBMC_assert(fobj > fc, “”);

15. return 0;

16. }

16

Illustrative Example

CEGIO Algorithms

17

• CEGIO-G - Applies to general functions

• CEGIO-F - Applies to semi-definite and positive

functions

• CEGIO-S - Applies to convex functions

18

CEGIO-G Algorithm

19

CEGIO-G Algorithm

20

Updates the

restrictions based on

the counter example

CEGIO-G Algorithm

21

If No, update

the precision

variable

CEGIO-G Algorithm

22

Repeat until desired

accuracy is reached

CEGIO-G Algorithm

23

• We evaluated the performance of our methodology

to minimize the Himmelblau function, and we

compared with the downward gradient (GD) and

genetic algorithm (GA) methods.

• The proposed methodology does not report

minimum locations as in GD and GA, and it is able to

find the global minimum

Deviating from local minima

24Local Minimum

• Mathematical techniques and heuristics depend on

initialization and can not ensure overall optimization.

Deviating from local minima

25

These techniques can easily

stop in a local minimum

• Mathematical techniques and heuristics depend on

initialization and can not ensure overall optimization.

Deviating from local minima

Deviating from local minima

26
Global Minimum

• Mathematical techniques and heuristics dependent on

initialization and can not assure global optimization

Optimization based

on SMT achieves the

global solution

27

Functions with prior knowledge

• There are functions, in which we have some a priori

knowledge, for example, semi-defined or positive

definite functions.

• Distance or energy functions belong to that class of

functions

• From this, it is possible to propose modifications in

the previous algorithm to improve the convergence

time

28

CEGIO-F Algorithm

29

CEGIO-F Algorithm

30

CEGIO-F Algorithm

31

CEGIO-F Algorithm

32

• Another type of special functions are convex

functions. These are functions that satisfy triangular

inequality.

Convex functions

33

-2 -1 0 1 2
-1

0

1

2

3

4

5

x

y

Convex functions

34

• A local minimum of a convex function f, in a convex

set, is always a global minimum of f

• It is possible to update the set of constraints of the

problem from the solution obtained before

increasing the precision

– The limits are defined by the predecessor and successor

values of the solution found so far

Convex functions

35

CEGIO-S Algorithm

36

Restriction set

update

CEGIO-S Algorithm

OptCE: A Counterexample-Guided

Inductive Optimization Solver

37

• The OptCE tool implements the CEGIOs algorithms

• Performs optimization based on counterexamples

with various configurations of verifiers and solvers

• Establishes a new approach to optimize functions

OptCE: Architecture

38

input file and

parameters in

terminal

39

generation of the

C file with

specification

OptCE: Architecture

40

Verification of the C

code with the verifier

and solver established

OptCE: Architecture

41

if the result is “failed”,

we obtain a new

minimum candidate

function

OptCE: Architecture

42

The value found is used to specify a new C file,

The new candidate function value is used as the

start of the algorithm

OptCE: Architecture

43

This cycle remains until the check is SUCCESSFUL.

OptCE: Architecture

44

When the check is SUCCESSFUL, it means that we

have found the global minimum of the function

with the defined precision

OptCE: Architecture

45

Precision is incremented and checked if it still

belongs to the desired precision limit

OptCE: Architecture

46

If not (FALSE), we find the global minimum wanted with that precision.

If yes (TRUE), we update the precision in the algorithm at runtime to generate a

new specification

OptCE: Architecture

OptCE: Input File

• Format adopted for constraint matrices

• Ex: Input file for function adjiman

Fobj = cos2(x1)*sin2(x2) – (x1/(x2*x2+1));

#

A = [-1 2; -1 1];

• Mathematical functions have been rewritten to

simplify the verification process

• The user can write the math function and insert it

into the OptCE math library

47

OptCE Features

• BMC Configuration: CBMC or ESBMC

• Solver Configuration: Boolector, Z3, MathSAT, MiniSAT

• Algorithm Configuration: CEGIO-G, CEGIO-S, CEGIO-F

• Initialization: Set the optimization start point

• Insert Library: Insert personal libraries with math

functions

• Timeout: configures the time limit, in seconds

• Precision: set the desired precision, number of

decimal places of a solution

48

Optimizing via OptCE

49

Call Set Properties

./optCE name.func --timeout=?

--generalized

--positive

--convex

--start-value=? --library=name --timeout=?

--mathsat

--boolector

--z3

--minisat

--esbmc

--cbmc

Experimental Evaluation

• Objectives

– Evaluate the performance of the proposed algorithms

– Check the performance of the SAT and SMT solvers for

optimizing the functions

– Compare the methodology with traditional techniques,

such as: genetic algorithm, particle swarm, pattern search,

simulated annealing and nonlinear programming

50

Experimental Evaluation

• Configuration of Experiments

– A set of 10 functions used for testing optimization

algorithms. These have different characteristics, such as:

differentiable or non-differentiable, separable or non-

separable, unimodal or multimodal etc.

51

• Configuration of Experiments

– CEGIO-G Algorithm { --generalized} - was employed in all

functions

– CEGIO-S Algorithm { --positive} - was applied to functions

Booth, Himmelblau and Leon

– CEGIO-F Algorithm { --convex} - was used for functions

Zettl, Rotated Ellipse and Sum Square

52

Experimental Evaluation

• Experimental Results - CEGIO-G { --generalized}

53

Experimental Evaluation

• Considering the proposed combinations, the

optimization time varies significantly, where ESBMC +

MathSAT is 2.8 times faster than CBMC + MiniSAT,

while ESBMC + Z3 presents higher execution time.

• Experimental Results - CEGIO-S { --positive}

54

Experimental Evaluation

• The benchmarks executed with the --positive flag

had the time reduced considerably, therefore, no

checks are made in the negative domain, which

reduces the search space.

• Experimental Results – CEGIO-F { --convex}

55

Experimental Evaluation

• The tests with the benchmarks 8,9,10 using the flag -

convex presented a significant reduction in the

optimization time, this because, with each step of

the verification the search space is reduced.

• Experimental Results – CEGIO algorithms x traditional

techniques

56

Experimental Evaluation

• The great difference of the OptCE in relation to the

other techniques is the rate of success. While the other

technicians get stuck in local minima, OptCE finds the

global minimum.

Conclusion

• The OptCE tool formalizes a new optimization

proposal, which is based on the counter-example

analysis of software verifiers.

• This work allowed to implement the GEGIOs

algorithms.

• The comparisons show that the approach evolved

among the CEGIO algorithms, proposing better and

more specific solutions in the case of convex and

non-negative functions.

• It is also seen that the tool hit rate is higher than the

other analysis techniques.

57

Future work

• Incorporate checks using other solvers with the

MiniSAT.

• Adapt the tool to run in different cores, increasing

the optimization time linearly.

• Improve the input file.

58

