
Mikhail Ramalho, Lucas Cordeiro, Denis Nicole
mikhail.ramalho@gmail.com

Encoding floating-point numbers using the SMT 

theory in ESBMC



Agenda

• Motivation

• Model Checking vs Testing/Simulation

• ESBMC

• Floating-point SMT encoding

• Illustrative Example

• Experimental Evaluation

• Conclusions and Future Works



Why do we need to verify a program?

• Battleship built in 1946 

and automated in 1996 

(27 dual-core 200MHz 

processors and 

Windows NT).

3

USS Yorktown



Why do we need to verify a program?

USS Yorktown

• Battleship built in 1946 

and automated in 1996 

(27 dual-core 200MHz 

processors and 

Windows NT).

• Failure due to a 

division by zero: It had 

to be towed back to its 

naval base.

2



Why do we need to verify a program?

• Is this simple C program

wrong?



Why do we need to verify a program?

• Is this simple C program

wrong?

• Yes! (x = NaN)



Model Checking vs Testing/Simulation

• Checks some of the system executions.

• May miss errors.

• Cheaper compared to model checking.

4

Simulation/ 

testing

OK

error



Model Checking vs Testing/Simulation

• Exhaustively explores all executions.

– Can be bounded to limit number of iterations, 

context-switch, etc.

• Report errors as traces.

• Can be extremely resource-hungry.
5

Model 

Checking 

OK

Error trace

Specification (e.g, LTL)
Line 5: …

Line 12: …

…

Line 41:…



Bounded Model checking

• Bounded model checker 

“slice” the state space

• It’s aimed to find bugs 

and can only prove 

correctness if all states 

are reachable

k = 0

k = 1

k = 2

k = 3

k = 4

k = 5

k = 6



ESBMC: BMC for C and C++

• Exploits SMT solvers and their background theories:

– optimized encodings for pointers, bit operations, 
unions and arithmetic over- and underflow

– Support for Boolector, Z3, MathSAT, CVC4 and Yices

• Supports verifying multi-threaded software that 
uses pthreads threading library



ESBMC: Verification Support

• built-in properties:

– arithmetic under- and overflow, pointer safety, array 
bounds, division by zero, alignment check, memory 
leaks, atomicity and order violations, deadlock, data 
race 

• user-specified assertions:

– (__ESBMC_assume, __ESBMC_assert)

• built-in scheduling functions:

– (__ESBMC_atomic_begin, __ESBMC_atomic_end, 

__ESBMC_yield)



Floating-point SMT Encoding

• The SMT floating-point theory is an addition to 

the SMT standard, proposed in 2010 and 

formalises:

– floating-point arithmetic, 

– positive and negative infinities and zeroes, 

– NaNs, 

– comparison operators, 

– five rounding modes: round nearest with ties choosing 

the even value, round nearest with ties choosing away 

from zero, round towards zero, round towards positive 

infinity and round towards negative infinity



Floating-point SMT Encoding

• Missing from the standard:

– Floating-point exceptions

– Signaling NaNs

• Two solvers currently support the standard:

– Z3: implements all operators

– MathSAT: implements all but two operators (fp.rem
and fp.fma)

• Both solvers offer non-standard functions:

– fp_as_ieeebv: converts floating-point to bitvectors

– fp_from_ieeebv: converts bitvectors to floating-point



How to encode programs?

• Most operations performed at program-level 

to encode floating-point numbers have a one-

to-one conversion to SMT

• Special cases being casts to boolean types and 

the fp.eq operator. 



Cast to/from booleans

• Usually, cast operations 

are encoded using 

extend/extract 

operations



Cast to/from booleans

• Usually, cast operations 

are encoded using 

extend/extract 

operations

• Extending floating-point 

numbers is non-trivial 

because of the format



Cast to/from booleans

• Simpler solutions:

– Casting booleans to floating-point numbers can be 

done using an ite operator



Cast to/from booleans

• Simpler solutions:

– Casting booleans to floating-point numbers can be 

done using an ite operator

If true, assign 1f to b



Cast to/from booleans

• Simpler solutions:

– Casting booleans to floating-point numbers can be 

done using an ite operator

Otherwise, assign 0f to b



Cast to/from booleans

• Simpler solutions:

– Casting floating-point numbers to booleans can be 

done using an equality and one not:



The fp.eq operator



The fp.eq operator

• In SMT, there is no difference between

assignments and comparisons, except when it 

comes to floating-point numbers

• For floating-point numbers, the comparison 

operator is replaced by fp.eq



Unused operators

• fp.max: returns the larger of two floating-

point numbers; equivalent to the fmax, fmaxf, 

fmaxl functions



Unused operators



Unused operators



Unused operators



Unused operators



Unused operators

• fp.min: returns the smaller of two floating-

point numbers; equivalent to the fmin, fminf, 

fminl functions



Unused operators



Unused operators



Unused operators

• fp.rem: returns the floating-point remainder 

of the division operation x/y; equivalent to the 

fmod, fmodf, fmodl functions



Unused operators



Unused operators



Unused operators



Unused operators



Unused operators



Unused operators



Unused operators



Unused operators

• fp.isSubnormal: we could not find any user 

case for it when modelling C11 standard 

functions. 



Illustrative Example



Illustrative Example



Illustrative Example

Variable declarations



Illustrative Example

Nondeterministic symbol 

declaration (optional)



Illustrative Example

Guard used to check 

satisfiability



Illustrative Example

Assignment of 

nondeterministic

value to x



Illustrative Example

Assignment x to y



Illustrative Example

Check if the comparison

satisfies the guard



Illustrative Example

• Z3 produces:



Illustrative Example

• MathSAT produces:



Illustrative Example



Experimental Evaluation

• 172 benchmarks from SV-COMP’17

• Timeout: 900s

• Memory limit: 15GB

• MathSAT v5.3.14

• Z3 v4.5.0



Experimental Evaluation



Experimental Evaluation

• 76 out of the 172 (44%) benchmarks are 

deterministic (no solver is invoked)



Experimental Evaluation

• 76 out of the 172 (44%) benchmarks are 

deterministic (no solver is invoked)

• MathSAT is 4.5x faster than Z3 when verifying 

the same set of benchmarks



Comparison to other Software 

Verifiers 

ESBMC + MathSAT

achieved the highest

score among all verifiers



Conclusions

• We presented an approach to encode C 

programs, using the SMT floating-point theory

• We implemented our approach in ESBMC, 

using two different solvers, Z3 and MathSAT, 

and MathSAT proved to be much faster than 

Z3

• We evaluated our approach against other 

verifiers and ESBMC with MathSAT proved to 

be the state-of-art



Future Work

• Create a floating-point API to encode 

operations using bitvectors

– It will enable verifying programs using other 

solvers (Boolector, CVC4 and Yices)

– Public implementations available (CPROVER and 

Z3)



Thank you!

www.esbmc.org

https://github.com/esbmc/esbmc

mikhail.ramalho@gmail.com


