Verifying Security Vulnerabilities for
Blockchain-based Smart Contracts

Nedas Matulevicius and Lucas C. Cordeiro

University of Manchester, UK

November 2021

Contents

Introduction
Aims and Objectives
Motivation

Contributions

Background: testing approach, static analysis tools, tools and equipment, performance metrics and smart contract
tests

Evaluation and Analysis: description of benchmarks, setup, summary of tests, objectives, results and threats to
validity

Conclusions

10/12/2021 Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

Introduction

Blockchain technology becomes more popular and more people are interested in
the field

New technology — new opportunities:

e Cryptocurrencies — Bitcoin, Ethereum, Litecoin etc.
e Secure sensitive data transfer

e |oT device management systems

e Online auctions

e Electronic voting systems

Blockchain technology being relatively new poses a cybersecurity challenge

10/12/2021 Verifying Security Vulnerabilities for Blockchain-based Smart Contracts 3

Introduction

e A piece of code which handles the logic required for the intended use
e Written in languages compatible with blockchain platforms (Solidity)
Interaction with the [ikd PuincIy visible to anyone

blockchain — through . .
el e Once deployed, it is hard to remove them from the blockchain

e Logical errors
e Uncaught exceptions
e Buffer overflow

Smart contract code
cpeslEice] e Unsafe usage of low-level functions

10/12/2021 Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

Aims and Objectives

Main objective: find out the best publicly available
Solidity smart contract static analysis tool

Specific aims:

Writing various smart Finding, using and adapting Performing analysis and

contracts as tests for tests where applicable to Performing benchmarking statistics given benchmarks
verifiers to check their various existing smart tests on verifiers and verifier accuracy to
accuracy and efficiency contract verifiers derive conclusions

10/12/2021 Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

Motivation

Unsafe smart contract code = financial losses

e DAO attack - S50 million (2016, over S5 billion in 2021) worth of Ether stolen

e Parity wallet hacks — $50-150 million (2017, $777 million in 2021) worth of Ether
stolen

e Integer overflow abuse - ~S$1 million (2021) worth of Ether stolen

e 51% attack on Ethereum Classic - double-spending of tokens with value of $1.1
million (2019)

Unsafe smart contract code = system abuse and illegal exploits

e King of the Ether Throne game — possibility of taking the “throne” indefinitely

e Rubixi — a classical Ponzi scheme with a bug where users could withdraw all their
fees

e GovernMental — miners can impersonate users in order to win the scheme

10/12/2021 Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

Contributions

Creation of Solidity smart contract tests:

e May or may not contain security vulnerabilities

e Can be verified with various static analysis tools adapted for Solidity
smart contracts

e Security vulnerabilities included are evaluated against cybersecurity
properties (CIA triad, SEI CERT Coding Standard)

Evaluation of state-of-the-art static analysis tools w.r.t.

cybersecurity properties

10/12/2021 Verifying Security Vulnerabilities for Blockchain-based Smart Contracts 7

Background

e Blockchain:

e Write-only list of data structures (blocks) chained together into a list (chain)
e Technology not bound to specific applications (e.g. cryptocurrency)
e Each block contains a timestamp of creation as well as hashed data

e To submit a block onto the blockchain, it needs to be approved by a majority
vote (consensus mechanism)

e Cthereum blockchain contains:

e States
e Transactions
e Blocks

10/12/2021 Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

10/12/2021

-

\3

) 4)
Block 10 Block 11
Prev_Hash Timestamp Prev_Hash Timestamp
L
Tx_Root Nonce Tx_Root Nonce
~/ \Z K ~/
HashO1 Hash23
HashO Hash1 Hash2 Hash3
Tx0 Tx1 Tx2 Tx3

4 N
Block 12
Prev_Hash Timestamp
Tx_Root Nonce
Ny /

Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

Background

s OMart contracts:

e A set of rules and protocols, which are deployed in the blockchain to verify and validate
the transactions between users

e Main interaction point for users with the blockchain

e Can contain malicious code and blockchain cannot protect against dangerous smart
contracts

e Smart contract code is visible to anyone using the blockchain
e Ethereum smart contracts are written in Solidity
e Code can be verified with static analysis tools

.

e Fsdfds
o dsf

Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

10

Smart contract static analysis tools

Smart contract verification — via static analysis tools and methods:

e E.g.: lexical and dataflow analysis, symbolic execution (symex) and model checking

Tools used:

e Remix IDE:
e Written in JS, the Remix Analyzer for static analysis plugin is used

e Detect-and-report approach, no complex Maths required, uses Abstract Syntax Trees (AST) for
detection and evaluation of vulnerabilities

e Plugin is fast and the IDE is easy to use, with vulnerabilities classified into several categories
e Slither:
e Written in Python

e Works similar to other SMT-based BMC tools (Source code -> AST -> CFG -> IR -> Code analysis and
vulnerability detection -> Results printed out)

e 75 different vulnerability detectors

Verifying Security Vulnerabilities for Blockchain-based Smart Contracts 11

Smart contract static analysis tools

Oyente:

e Written in Python

e Utilises Z3 SMT solver for vulnerability detection

e Catches only 4 types of vulnerabilities: callstack, money concurrency, time dependency and reentrancy bugs
e QOutdated but referenced quite often in other articles and papers

Mythril:

e Uses Z3 SMT solver as well for its custom backend, LASER-Ethereum
e Works on the same concepts as Slither and Oyente
e Mythril's vulnerability detection list is closely related to the SWC registry, which is well-documented

SmartCheck:

e Written in Java

e Uses ANTLR and a custom Solidity grammar to build its own AST, which generates an XML parse tree acting as IR

e Detect-and-report approach utilised, similar to Remix IDE plugin

Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

12

10/12/2021

Write down the
verdict and
obtain results

2 Lifecycle of a Solidity
smart contract Find out

Test out the
smart contract
with static
analysis tools

Check if the
vulnerability
satisfies the
cybersecurity
properties

Run tests with
various options:
full CPU load,
memory load,
full stress test

Write down the
verdict and
obtain results

4

vulnerability
which can be
exploited
through smart
contracts

Write a smart
contract test
containing the
vulnerability

Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

y %

13

Tools and equipment

s Laptop for running the tests:

e Intel i7-3667U 4 Core CPU @ 2 GHz

e 8 GB of available RAM

e Hard drive of 180 GB

e Linux OS, Ubuntu distribution v. 20.04

Benchmarking tools:

e htop, an improved version of in-built top tool

e hyperfine, benchmarking tool for running several tests at once with
visual reports

Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

14

10/12/2021

>

Accuracy

2

Performance metrics

FOﬁO.

Speed

Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

CPU and memory
consumption

15

Smart contract tests

Example 1: double-spend vulnerability

e A smart contract allowing users to book a hotel room and
pay for a booking in Ether

e The function book() checks if the user has enough money
AND if the room is not occupied already

e The function receive() does not check for the availability ->
rooms can be overbooked

e Calling book() and receive() gives only one room for the price
of two!

10/12/2021 Verifying Security Vulnerabilities for Blockchain-based Smart Contracts 16

pragma solidity 8.7
contract Booking |11

Occupied}

.
¥

event Booked(address _occupant, uint _amount);

These functions do
the same operation

-)’ I
4 L

- _amount, "Insufficient funds!™); Checking for
availability here...

(} public payvable onlyIfVacant costs(3
Fer(ralue’;

. but not here

10/12/2021 Verifying Security Vulnerabilities for Blockchain-based Smart Contracts 17

Smart contract tests

Example 2: dead code

e A smart contract which transfers Ether to owner from user after
some calculations

e The function doSomethingElse() takes the user’s Ether into
account but the result returned from that function does not go
any further

e The functions doSomethingElse() and doUselessCalculations() do
not contribute to the final answer and can be safely deleted

e Running the functions takes a long time and consumes a
significant amount of CPU and memory

10/12/2021 Verifying Security Vulnerabilities for Blockchain-based Smart Contracts 18

ble public
P; uint

The value of function
variable answer anount.

is not used
anywhere, the
value of variable
amount is

b) private returns (uint value) [§

Everything else done
here is just consuming
the resources of the
machine

10/12/2021 Verifying Security Vulnerabilities for Blockchain-based Smart Contracts 19

Smart contract tests

e A smart contract which transfers Ether to owner from user in
a loop and increments a counter

e Each operation in Solidity costs gas, a unit of operational
costs

e Operations are limited to the amount of gas provided; if the
code runs out of gas, it throws an exception

e Code not handling out-of-gas exceptions properly is prone to
DDoS attacks

10/12/2021

uint counter

function run() public
for{uint 1 = @; i
send(msg. vi

counter++;

Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

The loop is infinite,
execution costs of
this loop is also
infinite

21

Evaluation and Analysis

All 5 static analysis tools were measured with all 13 tests

Each test was run 10 times with each static analysis tool -> 130 times for each static analysis tool -> 650 test

runs in total

The benchmarks were divided into several parts:

e Normal conditions — no extra load given to the computer (time and accuracy test)

e Normal conditions — no extra load given to the computer (resource management test)
e Maximum CPU load

e 77% memory load

* 90% memory load

e Maximum CPU load + 90% memory load combined

Main goal — to find out the fastest and most accurate static analysis tool

Verifying Security Vulnerabilities for Blockchain-based Smart Contracts 22

Test No. | Remix | Slither | Oyente | Mythril | smartCheck |

T1
T2
T3
T4
T5
T6
T7
TS
T9
T10
T10.1
T11

Accuracy % | 66.67% | 75.00% | 25.00% | 41.67% | 25.00% |

Accuracy table for each of the smart contract tests:
Y stands for “vulnerability found”, N — “vulnerability not found”

10/12/2021 Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

Time T (log,,), mm:ss.ms

14:24.000

01:26.400

00:08.640

00:00.864

00:00.086

10/12/2021

Tl

T2

Avg. running times for each test in log,,

T3 T4 T5 T6 T7 T8 T9
—_— e S — | ——
Test No.

e=@u=Remix e=@==S|ither e=@==Qyente ==O==Mythril ==@==Smartcheck

Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

T10

T10-1 T11 T12

C o~ _—

24

CPU consumption, %

105

90

75

60

45

30

15

10/12/2021

Remix CPU

=== Remix RAM

Avg. CPU and memory consumption per test

N

il

N

4 4

[-
T4 T5 T6 T7 T8 T9
Test No.
Slither CPU Oyente CPU . Mythril CPU

@ Slither RAM ==@==Oyente RAM =@ \ythril RAM

Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

SmartCheck CPU

e=@== Smartcheck RAM

T12

25

50
47
44
41
38
35
32
29
26
23
20
17
14
11

Memory consumption, %

Staitc analysis tool

Avg. static analysers' running time under full stress test

Smartcheck

Mythril

Slither

Remix

]
-
[
]

00:00.000 00:17.280 00:34.560 00:51.840 01:09.120 01:26.400 01:43.680 02:00.960 02:18.240 02:35.520 02:52.800 03:10.080

Avg. time to run across all tests, mm:ss.ms

10/12/2021 Verifying Security Vulnerabilities for Blockchain-based Smart Contracts 26

Results

Slither by far is the most accurate and balanced on resource management out of 5 static
analysers tested

Remix IDE plugin provides good accuracy and fast results considering its approach to
vulnerability detection

Mythril is resource-hungry, therefore can be prone to timeouts

SmartCheck is comparable to Mythril in accuracy, but its resource management is better

Oyente is by far the least accurate and prone to code explosion

Verifying Security Vulnerabilities for Blockchain-based Smart Contracts

Conclusions

Main contributions of this paper is the compilation and evaluation of Solidity smart
contract tests, which fit into the cybersecurity properties

Not many surveys or analyses carried out (at least to the authors’ knowledge) where
smart contracts with security vulnerabilities had risk assessments or comparisons to the

CIA triad — a significant achievement unique to this paper

The obtained data from the tests allow prioritisation of vulnerability checking —accuracy
vs speed trade-off

Future work - extending the ESBMC to perform in-depth security analysis for Solidity
smart contracts from the cybersecurity perspective

Verifying Security Vulnerabilities for Blockchain-based Smart Contracts 28

