3 w V Brazilian Symposium on Computing Systems
fgSB SCE Engineering

Applying Multi-Core Model Checking to
Hardware-Software Partitioning in
Embedded Systems

Alessandro Trindade, Hussama Ismail, and Lucas Cordeiro

Foz do Iguacu / PR, 5th November of 2015

Motivation

« Embedded systems: parts in HW (1 speed, 1$$%) and other parts
in SW (|9, | speed)

« Most critical step in 1st generation of HW/SW Co-design
partitioning

« Model checking: describe the system behavior by a precise and
not ambiguous (mathematical) model

— Early detection of errors
— Explore all states of a system in a automatic way

(so instead of finding code violations, we can explore states until it
solves the partitioning problem)

Motivati

« Embedded systems: parts in HW (1 speed, 1$$3%) and other parts
in SW (|9, | speed)

* Most critical step in 1st generation of HW/SW Co-design
partitioning

* Model checking: describe the system behavior by a precise and
not ambiguous (mathematical) model
— Early detection of errors
— Explore all states of a system in a automatic way

(so instead of finding code violations, we can explore states until it
solves the partitioning problem)

Obijecti

Apply multi-core model checking based on satisfiability
modulo theories (SMT) to solve the HW/SW partitioning

« Use OpenMP (Open Multi-Processing API) support to perform multi-
core model checking

« Create and improve algorithms to implement the proposed technique
« Perform experimental evaluation over benchmarks

« Compare our approach with ILP (Integer Linear Programming) and GA
(Genetic Algorithm) using MATLAB

Obijecti

Apply multi-core model checking based on satisfiability
modulo theories (SMT) to solve the HW/SW partitioning

« Use OpenMP (Open Multi-Processing API) support to perform multi-
core model checking

« Create and improve algorithms to implement the proposed technique
« Perform experimental evaluation over benchmarks

« Compare our approach with ILP (Integer Linear Programming) and GA
(Genetic Algorithm) using MATLAB

Obijecti

Apply multi-core model checking based on satisfiability
modulo theories (SMT) to solve the HW/SW partitioning

« Use OpenMP (Open Multi-Processing API) support to perform multi-
core model checking

« Create and improve algorithms to implement the proposed technique
« Perform experimental evaluation over benchmarks

« Compare our approach with ILP (Integer Linear Programming) and GA
(Genetic Algorithm) using MATLAB

Obijecti

Apply multi-core model checking based on satisfiability
modulo theories (SMT) to solve the HW/SW partitioning

« Use OpenMP (Open Multi-Processing API) support to perform multi-
core model checking

« Create and improve algorithms to implement the proposed technique
« Perform experimental evaluation over benchmarks

« Compare our approach with ILP (Integer Linear Programming) and GA
(Genetic Algorithm) using MATLAB

Obijecti

Apply multi-core model checking based on satisfiability
modulo theories (SMT) to solve the HW/SW partitioning

« Use OpenMP (Open Multi-Processing API) support to perform multi-
core model checking

« Create and improve algorithms to implement the proposed technique
« Perform experimental evaluation over benchmarks

« Compare our approach with ILP (Integer Linear Programming) and GA
(Genetic Algorithm) using MATLAB

Optimization

* Find the maximum or minimum value of a function

— Minimize the effort and maximize the benefit
« There is not a unigue method to solve all the problems

« Most popular technique: LP (Linear Programming)
— Integer Linear Programming

— Binary Linear Programming

« Heuristics Algorithms: GA (Genetic Algorithm) can solve more
complex problems faster

— Drawback: it may not find the global minimum/maximum (i.e., the optimal result)

Optimizati

Find the maximum or minimum value of a function

— Minimize the effort and maximize the benefit
* There is not a unique method to solve all the problems

« Most popular technique: LP (Linear Programming)
— Integer Linear Programming

— Binary Linear Programming

« Heuristics Algorithms: GA (Genetic Algorithm) can solve more
complex problems faster

— Drawback: it may not find the global minimum/maximum (i.e., the optimal result)

Optimizati

Find the maximum or minimum value of a function

— Minimize the effort and maximize the benefit
« There is not a unigue method to solve all the problems

* Most popular technique: LP (Linear Programming)

— Integer Linear Programming

— Binary Linear Programming

« Heuristics Algorithms: GA (Genetic Algorithm) can solve more
complex problems faster

— Drawback: it may not find the global minimum/maximum (i.e., the optimal result)

Optimizati

Find the maximum or minimum value of a function

— Minimize the effort and maximize the benefit
* There is not a unique method to solve all the problems

« Most popular technique: LP (Linear Programming)

— Integer Linear Programming

— Binary Linear Programming

» Heuristics Algorithms: GA (Genetic Algorithm) can solve more
complex problems faster

— Drawback: it may not find the global minimum/maximum (i.e., the optimal result)

Informal Model (Assumptions)

There is only one software context and only one hardware context
— Each component must be mapped into one of these two contexts.

« The software component implementation has a software cost
associated (running time)

« The hardware component implementation has a hardware cost
associated (area, heat dissipation or energy consumption)

* Premisses:
— The hardware is significantly faster than software;
— The running time of hardware is zero;

— If two components are mapped to the same context, there is no overhead of
communication between them.

Informal Model (Assumptions)

There is only one software context and only one hardware context
— Each component must be mapped into one of these two contexts.

« The software component implementation has a software cost
associated (running time)

« The hardware component implementation has a hardware cost
associated (area, heat dissipation or energy consumption)

* Premisses:
— The hardware is significantly faster than software;
— The running time of hardware is zero;

— If two components are mapped to the same context, there is no overhead of
communication between them.

Informal Model (Assumptions)

There is only one software context and only one hardware context
— Each component must be mapped into one of these two contexts.

« The software component implementation has a software cost
associated (running time)

 The hardware component implementation has a hardware cost
associated (area, heat dissipation or energy consumption)

* Premisses:
— The hardware is significantly faster than software;
— The running time of hardware is zero;

— If two components are mapped to the same context, there is no overhead of
communication between them.

Mathematical Modeling

Informal Model (Assumptions)

There is only one software context and only one hardware context
— Each component must be mapped into one of these two contexts.

« The software component implementation has a software cost
associated (running time)

« The hardware component implementation has a hardware cost
associated (area, heat dissipation or energy consumption)

 Premisses:
— The hardware is significantly faster than software
— The running time of hardware is zero

— If two components are mapped to the same context, there is no overhead of
communication between them

Results

Mathematical Modeling

Formal Model

Task graph G = (V, E)
Vertices V = {Xy, X,, ..., X;,} : hodes are the

components of the system to be partitioned
(context)

Each node x; : has the hardware cost h(x))
and the software cost s(x;)

- $ HW (area, heat dissipation, energy
consumption)

- $ SW (execution time)

Edges (E) represent communication between
the components

c(X;, X): represents the communication cost
between x; and x; if they are in different contexts

The HW-SW partitioning P has:
Hp =), h; (hardware cost)
Sp = X5 + X c(x;, x;) (software cost)

Example: 10 nodes & 13 edges

6

Results

Mathematical Modeling

Formal Model

Task graph G = (V, E)

Vertices V = {X4, X,, ..., X} : hodes are the
components of the system to be partitioned
(context)

Each node x; : has the hardware cost h(x;)
and the software cost s(x;)

- $ HW (area, heat dissipation, energy
consumption)

- $ SW (execution time)

Edges (E) represent communication between
the components

c(X;, X): represents the communication cost
between x; and X; if they are in different contexts

The HW-SW partitioning P has:
Hp =), h; (hardware cost)
Sp = X5 + X c(x;, x;) (software cost)

Example: 10 nodes & 13 edges

6

Results

Mathematical Modeling

Formal Model

Task graph G = (V, E)

Vertices V = {Xy, X,, ..., X;,} : hodes are the
components of the system to be partitioned
(context)

Each node x; : has the hardware cost h(x))
and the software cost s(x;)

- $ HW (area, heat dissipation, energy
consumption)

- $ SW (execution time)

Edges (E) represent communication between
the components

c(X;, X): represents the communication cost
between x; and X; if they are in different contexts

The HW-SW partitioning P has:
Hp =), h; (hardware cost)
Sp = X5 + X c(x;, x;) (software cost)

Example: 10 nodes & 13 edges

6

Results

Mathematical Modeling

Formal Model

Task graph G = (V, E)
Vertices V = {Xy, X,, ..., X;,} : hodes are the

components of the system to be partitioned
(context)

Each node x; : has the hardware cost h(x))
and the software cost s(x;)

- $ HW (area, heat dissipation, energy
consumption)

- $ SW (execution time)

Edges (E) represent communication between
the components

c(X;, x): represents the communication cost
between x; and ¥ if they are in different contexts

The HW-SW partitioning P has:
Hp =), h; (hardware cost)
Sp = X5 + X c(x;, x;) (software cost)

Example: 10 nodes & 13 edges

6

Mathematical Modeling

Formal Model
 Task graph G = (V, E)
« Vertices V = {Xy, X,, ..., X} : nodes are the

components of the system to be partitioned
(context)

« [Each node x; : has the hardware cost h(x;)
and the software cost s(x;)

- $ HW (area, heat dissipation, energy
consumption)

- $ SW (execution time)

« Edges (E) represent communication between
the components

* c(x;, X): represents the communication cost
between x; and X; if they are in different contexts

* The HW-SW partitioning P has:
— Hp =) h; (hardware cost)
- Sp = Xs; + X c(x;,x;) (software cost)

Example: 10 nodes & 13 edges

6

« This paper focus on the case where the initial software cost is given
(So)

« We want S, < S, and the minimal necessary hardware cost to resolve
the problem (The complexity is NP-Hard)

ILP GA

MATLAB — Optimization Toolbox

Model Checker
(ESBMC)

Results

Partitioning

Bounded Model Checking

Basic ldea: given a transition system M, check negation of a given
property ¢ up to given depth k

) Transition
System N

Property
Vv 0

M, ~— Bound

\
P v 0 v TP v TP
@) »® Q@ ... Q —
N
My M, M, M,
_ Counterexample trace J

Translated into a VC y such that: g is satisfiable iff ¢ has
counterexample (steps until the violation) of max. depth k

BMC has been applied successfully to verify (embedded) software since
early 2000’s. In 2014, Alessandro used BMC perform HW-SW

partitioning.

« ESBMC (Efficient SMT-Based Context-Bounded Model Checker) is a
model checker for ANSI-C and C++ source code

— Check overflows, pointer safety, memory leaks, arrays bounds, atomicity, etc.
« Uses Satisfiability Modulo Theories (SMT) (addition to Boolean Satisfiability)
« SMT Solvers as back-end to decrease software complexity

Architecture:

C/C++ scan__ C/C++ Control-flowb GOTO
Code |typecheck | Parser | graph [Program

symbolic
execution

Verification

v
Successful SMT (Equations GOTO
Verification Solver CA-P | Symex
Failed

Partitioning Results

D feis > Coners) ek
ESBMC Architecture

C/C++ scan C/C++ control-flow | GOTO
Code typecheck | Parser | graph |Program
symbolicl
execution
Verification
Successful SMT equations | GOTO
Verification Solver CA=P [Symex
Failed
include<stdio.h i=0 _ %0 = 9 A
ﬁinclzdz:se:‘c.;> v C:= [11 =17
int main(){ assert(i%8 == 0) 12 := 2
int i = o; x | 10%8 == 0 ~
for (i=0; %<50;i++){ i=1 assert(i%8 == 0) P:= i1%8 == @ ~
, assert(i%8==0); T 0 i2%8 == 0
} assert(i%8 == 0) i=2
k=3 (bound) 10

ESBMC Architecture

C/C++ scan C/C++ control-flow | GOTO
Code |typecheck | Parser @ graph |Program

symbolicl
—— execution
Verification
Successful SMT €quations GOTO
Verification Solver CA=P [Symex
Failed
#include<stdio.h> =0 C = :!.0 : © A
#include<assert.h> v =] 11 :=1
0o i2 1= 2
int main(){ assert(i%8 == 0)
int i = o; x P = ie%8 == @ ~
for (i=0; i<50;i++){ i=1 assert(i%8 == 0) T 1 i1%8 == 9 A
, assert(i%8==0); T 5 i2%8 == @
¥ assert(i%8 ==0) > i=2

k=3 (bound) / 10

ESBMC Architecture

C/C++ scan C/C++ control-flow GOTO
Code |typecheck | Parser | graph Program

symbolicl
—— execution
Verification
Successful SMT €quations GOTO
Verification Solver CA=P [Symex
Failed
#include<stdio.h> =0 C = :!.0 : © A
#include<assert.h> v =] 11 :=1
0o i2 1= 2
int main(){ assert(i%8 == 0)
int i = o; x P = ie%8 == @ ~
for (i=0; i<50;i++){ i=1 assert(i%8 == 0) T 1 i1%8 == 9 A
, assert(i%8==0); T 5 i2%8 == @
¥ assert(i%8 ==0) > i=2

k=3 (bound) 10

ESBMC Architecture

C/C++ scan C/C++ control-flow GOTO
Code |[typecheck | Parser graph ' Program

symboliclv
—— execution
Verification
Successful SMT €quations GOTO
Verification Solver CA=P [Symex
Failed
the CFG of the
#include<stdio.h> =0 program — :!-6 : © :
#include<assert.h> v - 1; = ;
0o i2 :=
int main(){ assert(i%8 == 0)
int i = o; x D= i0%8 == 0 "
for (i=@; i<50;i++){ i=1 assert(i%8 == 0) "T111%8 == @ ~
, assert(i%8==0); T 5 i2%8 == @
¥ assert(i%8 == 0) i=2

k=3 (bound) 10

ESBMC Architecture

C/C++ scan C/C++ control-flow | GOTO
Code |typecheck | Parser | graph |Program

symbolicl
—— execution
Verification
Successful SMT €quations GOTO
Verification Solver CA=P | Symex
Failed
#include<stdio.h> =0 C = :!.0 : © A
#include<assert.h> v =] 11 :=1
0o i2 1= 2
int main(){ assert(i%8 == 0)
int i = o; x P = ie%8 == @ ~
for (i=0; i<50;i++){ i=1 assert(i%8 == 0) T 1 i1%8 == 9 A
, assert(i%8==0); T 5 i2%8 == @
¥ assert(i%8 ==0) > i=2

10

ESBMC Architecture

C/C++ scan C/C++ control-flow | GOTO
Code |typecheck | Parser | graph |Program

symbolicl
—— execution
Verification
Successful SMT < quations GOTO
Verification Solver CA=P [Symex
Failed
#include<stdio.h> =0 C = :!.0 : © A
#include<assert.h> v =] 11 :=1
0o i2 1= 2
int main(){ assert(i%8 == 0)
int i = o; x P = ie%8 == @ ~
for (i=0; i<50;i++){ i=1 assert(i%8 == 0) T 1 i1%8 == 9 A
, assert(i%8==0); T 5 i2%8 == @
¥ assert(i%8 ==0) > i=2

10

Partitioning

Results

ESBMC Architecture

C/C++ scan C/C++ control-flow | GOTO
Code |typecheck | Parser | graph |Program
symbolic l
execution
Verification
Successful ’ SMT equations | GOTO
Verification Solver CA=P [Symex
Failed
include<stdio.h =0 _ %@ :
ﬁinclzdz:se:‘c.;> v C:= [11 :
int main(){ assert(i%8 == 0) 12 :
int i = 0; X | i0%8
for (i=0; %<50;i++){ i=1 assert(i%8 == 0) P:= i1%8
, assert(i%8==0); T 0 i2%8
} assert(i%8 == 0) i=2

(O BN O RN

N RO

> >
>>l ’

10

C/C++

scan

Partitioning

Verification
Successful

Verification
Failed

#tinclude<stdio.h>
#tinclude<assert.h>

int main(){
int i = 0;
for (i=0; i<50;i++){
assert(i%8==0);
}
}

R C/C+-(Equations size is proportional to
Code |typecheck | Parse

the system complexity
(if the equation has many math
expressions, then it results

in higher verification time))

Solver Symex

i=0 io :
T C=|1i1
assert(i%8 == 0) 12 :
X P = 10%8
i=1 assert(i%8 == 0) " | 11%8
T A 12%8

assert(i%8 == 0)

~

ESBMC Architecture

N RO

> >
>>l ’

10

C/C++

scan

Partitioning

I Ny S T I

Verification
Successful

Verification
Failed

C/C+i~
Code |typecheck” Parser

#tinclude<stdio.h>
#tinclude<assert.h>

int main(){
int i = 0;
for (i=0; i<50;i++){
assert(i%8==0);
}
}

Currently, SMT solvers

aqaations

doesn’t support parallelism

GOTO

CA=P | Symex
0 io :
- C:==]1i1
assert(i%8 == 0) 12
X | 10%8
i=1 assert(i%8 == 0) P = 11%8
T % 12%8
assert(i%8 == 0) > i=2

N RO

> >
>>l ’

ESBMC Architecture

10

« OpenMP (API) is a set of directives for parallel programming
— Support for C/C++, and Fortran
— Support for different operating systems (Windows, Linux, Mac OSX, HP-

UX)
. master thread (main)
« Use the fork-join model Jl
— Threads are managed by the API T \{Qik\
L= 34 .
- - llel region
— User customizes the execution r para g
Tl\ 7:2 T3 /T" (threads)
- . . \\ \ / //
« Compiler directive based: o
Tt join/fork
nt k; ara arallel region
#pragma omp parallel for T || T, (rrF:axthreadi—Z)
for (k = 0; k < 10; k++) \T/ o -
a[k] = 2*a[k] ; Jjoin

11

ESBMC for Optimization

* The first algorithm in ANSI-C for ESBMC solves optimization problems

01 Initialize variables —
02 Declare number of nodes and edges

03 Declare hardware cost of each node as array (h)
04 Declare software cost of each node as array (s)

05 Declare communication cost of each edge (c) S— These variables are declared

06 Declare the initial software cost (5;) as matrices or vectors
07 Declare transposed incidence matrix graph G (E)
08 Define the solutions variables (x;) as Boolean

09 main{ —

10 For TipH = 0 to Hmax do { — This loop can generate

11 Populate x; with nondeterministic/test values many math equations.

12 Calculate s(1 — x) + ¢ * |Ex| and store at variable It is hard for the SMT solver

13 Requirement insured by ASSUME (variable < 5;) ‘=
14 Calculate Hp cost based on value tested of x;

o . _ We have CPU’s available
15 Violation check with ASSERT (Hp = TipH) :
16) Why not parallelize?

17 }

12

« Solution: use of OpenMP as front-end of ESBMC

« Use fork-join model provided oroblem specification
by OpenMP
ESBMC parallel «
* OpenMP API creates N P
different instances: OpenMP
— Instead of trying to solve the partitioning v TipH =1 v TipH=2 ¥ TipH =3 ¥ TioH =N
problem just once, it creates N different ESBMC ESBMC ESBMC ESBMC
problems with different TipH values of Instance 1| | Instance 2| | Instance 3| |Instance N

hardware cost

| |
o
 |f a violation occurs then the
optimal value was found. The .{YesAe_ny\No
threads are finished volator”

shows TipH value

* Jesbmc-parallel <filename.c> <hmin_value> <Hmax>

13

The problemis)

modeled to expect

« Solution: use of OpenMP as front-end of ESBMC 3 TipH parameter

« Use fork-join model provided oroblem spec.fcat.on
by OpenMP
ESBMC parallel
 OpenMP API creates N P
different instances: OpenMP
— Instead of trying to solve the partitioning ¥ TiH = 1 ¥ TipH = 2 ¥ TipH =3 ¥ TipH =N
problem just once, it creates N different ESBMC | | ESBMC || ESBMC | | ESBMC
problems with different TipH values of Instance 1| | Instance 2| | Instance 3| |Instance N

hardware cost | | INCLLE

 |f a violation occurs then the *-Eﬁ-

optimal value was found. The .{YeSAW\No

threads are finished oleter?

shows TipH value

* Jesbmc-parallel <filename.c> <hmin_value> <Hmax>

13

« Solution: use of OpenMP as front-end of ESBMC

« Use fork-join model provided oroblem specification
by OpenMP '
ESBMC parallel <
 OpenMP API creates N P
different instances: OpenMP [fork |
|
— Instead of trying to solve the partitioning ¥ TiH = 1 ¥ TipH = 2 ¥ TipH =3 ¥ TipH =N
problem just once, it creates N different ESBMC | | ESBMC || ESBMC | | ESBMC
problems with different TipH values of Instance 1| | Instance 2| | Instance 3| |Instance N

hardware cost | | L

 |f a violation occurs then the *-Eﬁ-

optimal value was found. The .{YeSAW\No

threads are finished oleter?

shows TipH value

* Jesbmc-parallel <filename.c> <hmin_value> <Hmax>

13

« Solution: use of OpenMP as front-end of ESBMC

« Use fork-join model provided oroblem specification
by OpenMP '
ESBMC parallel <
 OpenMP API creates N P
different instances: OpenMP
— Instead of trying to solve the partitioning v TioH = 1 v TipH =2 v TioH =3 vTipH =N
problem just once, it creates N different ESBMC | ESBMC | ESBMC | ESBMC

Instance 1 Instance 2 Instance 3 Instance N

| | | eee
e
 |f a violation occurs then the
optimal value was found. The .{YesAe_ny\No
threads are finished volator”

problems with different TipH values of
hardware cost

shows TipH value

* Jesbmc-parallel <filename.c> <hmin_value> <Hmax>

13

« Solution: use of OpenMP as front-end of ESBMC

« Use fork-join model provided oroblem specification
by OpenMP '
ESBMC parallel <
 OpenMP API creates N P
different instances: OpenMP
— Instead of trying to solve the partitioning ¥ TiH = 1 ¥ TipH = 2 ¥ TipH =3 ¥ TipH =N
problem just once, it creates N different ESBMC | | ESBMC || ESBMC | | ESBMC
problems with different TipH values of Insta|nce 1 Insta|nce 2 Instalnce 3 InstaTce N
hardware cost I

join

. . |

 |f a violation occurs then the
optimal value was found. The .Yes propery ~~_NoO
threads are finished volaton”

shows TipH value

* Jesbmc-parallel <filename.c> <hmin_value> <Hmax>

13

Multi-Core ESBMC approach

Solution: use of OpenMP as front-end of ESBMC

Use fork-join model provided
by OpenMP

OpenMP API creates N

different instances:
— Instead of trying to solve the partitioning
problem just once, it creates N different

problems with different TipH values of
hardware cost

If a violation occurs then the
optimal value was found. The
threads are finished

Partitioning

Results

problem specification

A

ESBMC parallel

OpenMP
v TipH=1 v TipH=2 v TipH =3 vTipH=N
ESBMC ESBMC ESBMC ESBMC
Instance 1| | Instance 2| | Instance 3| |Instance N

v

Yes properk No
violatiy

shows TipH value

lesbmc-parallel <filename.c> <hmin_value> <Hmax>

12

Multi-Core ESBMC approach

« Solution: use of OpenMP as front-end of ESBMC

« Use fork-join model provided oroblem specification
by OpenMP
ESBMC parallel «
* OpenMP API creates N P
different instances: OpenMP
— Instead of trying to solve the partitioning ¥ TipH = 1 ¥ TipH =2 ¥ TipH = 3 ¥TipH =N
problem just once, it creates N different ESBMC ESBMC ESBMC ESBMC
problems with different TipH values of Instance 1| | Instance 2| | Instance 3| |Instance N

hardware cost

 |f a violation occurs then the *-Eﬂ
optimal value was found. problem Yes A@y\wo
threads are finished specificationin i Lot
ANSI-C file JpHvale

« Jesbmc-parallel <filename.c> <hmin_value> <Hmax>

13

Multi-Core ESBMC approach

« Solution: use of OpenMP as front-end of ESBMC

« Use fork-join model provided oroblem specification
by OpenMP
ESBMC parallel «
* OpenMP API creates N P
different instances: OpenMP
— Instead of trying to solve the partitioning ¥ TipH = 1 ¥ TipH =2 ¥ TipH = 3 ¥TipH =N
problem just once, it creates N different ESBMC ESBMC ESBMC ESBMC
problems with different TipH values of Instance 1| | Instance 2| | Instance 3| |Instance N

hardware cost

| |
 |f a violation occurs then the *-Eﬂ
optimal value was found. The minimal ey ~_No
threads are finished hardware value ["”

« Jesbmc-parallel <filename.c> <hmin_value> <Hmax>

13

Multi-Core ESBMC approach

« Solution: use of OpenMP as front-end of ESBMC

« Use fork-join model provided oroblem specification
by OpenMP
ESBMC parallel «
* OpenMP API creates N P
different instances: OpenMP
— Instead of trying to solve the partitioning ¥ TipH = 1 ¥ TipH =2 ¥ TipH = 3 ¥TipH =N
problem just once, it creates N different ESBMC ESBMC ESBMC ESBMC
problems with different TipH values of Instance 1| | Instance 2| | Instance 3| |Instance N

maximal
hardware value

L~

« Jesbmc-parallel <filename.c> <hmin_value> <Hmax>

hardware cost

 |f a violation occurs then the
optimal value was found. The
threads are finished

shows TipH value

13

Introduction Objectives Background Partitioning Future Work

Experimental Evaluation

« Setup

— Desktop with 64-bit Ubuntu 14.04 LTS, 15GB of RAM and i7 Intel (8-
cores) processor with 3.40 GHz of clock

— ESBMC v1.24

— SMT solver: Boolector v. 2.0.1

— MathWorks MATLAB R2013a (GA and ILP)
— Time out (TO) = 7200 sec

— Memory out (MO) = 15GB

« Use 7 benchmarks (with different number of nodes)
 Compare with ESBMC, ESBMC Multi-Core, ILP, and GA

« Each time is the average of three measured times
— (92% of statistical confidence)

14

Introduction Objectives Background Partitioning Future Work

Experimental Evaluation

« Setup

— Desktop with 64-bit Ubuntu 14.04 LTS, 15GB of RAM and i7 Intel (8-
cores) processor with 3.40 GHz of clock

— ESBMC v1.24

— SMT solver: Boolector v. 2.0.1

— MathWorks MATLAB R2013a (GA and ILP)
— Time out (TO) = 7200 sec

— Memory out (MO) = 15GB

« Use 7 benchmarks (with different number of nodes)
 Compare with ESBMC, ESBMC Multi-Core, ILP, and GA

« Each time is the average of three measured times
— (92% of statistical confidence)

14

Introduction Objectives Background Partitioning Future Work

Experimental Evaluation

« Setup

— Desktop with 64-bit Ubuntu 14.04 LTS, 15GB of RAM and i7 Intel (8-
cores) processor with 3.40 GHz of clock

— ESBMC v1.24

— SMT solver: Boolector v. 2.0.1

— MathWorks MATLAB R2013a (GA and ILP)
— Time out (TO) = 7200 sec

— Memory out (MO) = 15GB

« Use 7 benchmarks (with different number of nodes)
« Compare with ESBMC, ESBMC Multi-Core, ILP, and GA

« Each time is the average of three measured times
— (92% of statistical confidence)

14

Partitioning

CRC32 | Patricia| Dijkstra | Clustering | RC6 Fuzzy | Mars
Nodes 25 21 26 150 329 261 417
Edges 32 48 69 331 448 422 600
Sy 20 10 20 50 600 4578 300
Exact Hp 15 47 31 241 692| 13820 876
Solution
Sp 19 4 19 46 533 4231 297
ILP Time(s) 2 1 2 649 1806 TO 5429
Hp 15 47 31 241 692 - 876
GA Time(s) 7 7 9 340 2050 1372 5000
Error 13% 0,0% 29,0% 2% -71% -38% -28%
ESBMC |Time(s) 30 314 325 MO MO MO MO
Hp 15 47 31 - - - -
Multi- Ti
core ime(s) 2 6 7 1609 TO TO TO
ESBMC
Hp 15 47 31 241 - - -
ESBMC Relative 14 54 47 _ - _

Speedup

15

Partitioning

Results sechmark_ |
CRC32 | Patricia| Dijkstra | Clustering | RC6 Fuzzy | Mars

Nodes 25 21 26 150 329 261 417

Edges 32 48 69 331 448 422 600

Sy 20 10 20 50 600 4578 300
Exact Hp 15 47 31 241 692| 13820 876
Solution

Sp 19 4 19 46 533 4231 297
ILP Time(s) 2 1 2 649 1806 TO 5429

Hp 15 47 31 241 692 - 876
GA Time(s) 7 7 9 340 2050 1372 5000

Error 13% 0,0% 29,0% 2% -71% -38% -28%
ESBMC |_Time(s) 30 314 325 MO MO MO MO

Hp 15 47 31 - - - -
Multi- Ti
core ime(s) 2 6 7 1609 TO TO TO
ESBMC

Hp 15 47 31 241 : - -
ESBMC Relative 14 54 47 - - S| 15

Speedup

Initial Software
Cost

\

Partitioning

CRC32 | Patricia| Dijkstra | Clustering | RC6 Fuzzy | Mars
Nodes 25 21 26 150 329 261 417
‘\“~:E;\,Edges 32 48 69 331 448 422 600
N\
Sy 20 10 20 50 600 4578 300
Exact Hp 15 47 31 241 692| 13820 876
Solution
Sp 19 4 19 46 533 4231 297
ILP Time(s) 2 1 2 649 1806 TO 5429
Hp 15 47 31 241 692 - 876
GA Time(s) 7 7 9 340 2050 1372 5000
Error 13% 0,0% 29,0% 2% -71% -38% -28%
ESBMC |Time(s) 30 314 325 MO MO MO MO
Hp 15 47 31 - - - -
Multi- Ti
core ime(s) 2 6 7 1609 TO TO TO
ESBMC
Hp 15 47 31 241 - - -
ESBMC Relative 14 54 47 _ _ _

Speedup

15

Hardware R CRC32 | Patricia| Dijkstra | Clustering | RC6 | Fuzzy | Mars
Partitioned Cost |, 25 21 26 150|329 261|417
(solution)
\TEBJges 32 48 69 331 448 422 600
\\ Sy 20 10 20 50 600 4578 300
N
Exact Hp 15 47 31 241 692| 13820 876
Solution
Sp 19 4 19 46 533 4231 297
ILP Time(s) 2 1 2 649 1806 T0 5429
Hp 15 47 31 241 692 - 876
GA Time(s) 7 7 9 340 2050 1372 5000
Error 13%| 0,0% 29,0% 2% -71%| -38%| -28%
ESBMC |_Time(s) 30 314 325 MO MO MO MO
Hp 15 47 31 - - - -
Multi- |
core ime(s) 2 6 7 1609 T0 TO T0
ESBMC
Hp 15 47 31 241 - s]
ESBMC Relative 14 54 47 - - S| 15
Speedup

CRC32 | Patricia| Dijkstra | Clustering | RC6 Fuzzy | Mars

Software Yes 25 21 26 150] 329 261 417
Partitioned Cost s 32 48 69 331 448 422 600
(solution)
; 20 10 20 50 600| 4578 300
Exact \ \ Hp 15 47 31 241 692| 13820 876
Solution \
Sp 19 4 19 46 533] 4231 297
ILp |LTime(s) 2 1 2 649| 1806 TO| 5429
Hp 15 47 31 241 692 - 876
GA | Time(s) 7 7 9 340 2050 1372 5000
Error 13%| 0,0% 29,0% 2% T%| -38%| -28%
EsBMC LTime(s) 30 314 325 MO MO MO MO
Hp 15 47 31 - - - -
Multi- Ti
ore ime(s) 2 6 7 1609 TO TO TO
ESBMC
Hp 15 47 31 241 : _)
ESBMC Relative 14 54 47 - - S| 15
Speedup

CRC32 | Patricia| Dijkstra | Clustering | RC6 Fuzzy | Mars

Nodes 25 21 26 150 329 261 417

Edges 32 48 69 331 448 422 600

[4 approaches] S, 20 10 20 50 600 4578 300

\ %n Hp 15 47 31 241 692 13820 876

Sp 19 4 19 46 933 4231 297

Time(s) 2 1 2 649 1806 TO 5429

Hp 15 47 31 241 692 - 876

Time(s) 7 7 9 340 2050 1372 5000

Error 13% 0,0% 29,0% 2% -7%| -38%| -28%

EsBMC LTime(s) 30| 314 325 MO| MOl MO| MO

Hp 15 47 31 - - - -

Time(s) 2 6 7 1609 T0 10 T0

Hp 15 47 31 241 - - -
ES%II\J/Ie(e:dIEEIative 14 54 47 - - S| 15

Partitioning

[

CRC32 | Patricia| Dijkstra | Clustering | RC6 Fuzzy | Mars
Nodes 25 21 26 150 329 261 417
Edges 32 48 69 331 448 422 600
Best]
Sy 20 10 20 50 600 4578 300
Performance
ct Hp 15 47 31 241 692 13820 876
S\ fion

GA Time(s) 7 7 9 340 2050 1372 5000
Error 13% 0,0% 29,0% 2% -1%| -38%| -28%
ESBMC |_Time(s) 30 314 325 MO MO MO MO
Hp 15 47 31 - - - -
Multi- |
core ime(s) 2 6 7 1609 TO T0 TO
ESBMC
Hp 15 47 31 241 - - -
ESBMC Relative 14 54 47 _ - _
Speedup

15

Partitioning

Results

[

CRC32 | Patricia| Dijkstra | Clustering | RC6 Fuzzy | Mars
Nodes 25 21 26 150 329 261 417
Edges 32 48 69 331 448 422 600
Sy 20 10 20 50 600 4578 300
Exact Hp 15 47 31 241 692 13820 876
Solved all,
. Sp 19 4 19 46 533 4231 297
but with errors
I\ Time(s) 2 1 2 649 1806 TO 5429
Hp 15 47 31 241 692 - 876

Speedup

ESBMC |Time(s) 30 314 325 MO MO MO MO
Hp 15 47 31 - - - -
Multi- |
core ime(s) 2 6 7 1609 TO T0 TO
ESBMC
Hp 15 47 31 241 - - -
ESBMC Relative 14 54 47 _ - _

15

Partitioning

Results

[

Multi-

CRC32 | Patricia| Dijkstra | Clustering | RC6 Fuzzy | Mars
Nodes 25 21 26 150 329 261 417
Edges 32 48 69 331 448 422 600
Sy 20 10 20 50 600 4578 300
S(I)El)l(ﬁ%n Hp 15 47 31 241 692| 13820 876
Sp 19 4 19 46 533 4231 297
ILP Time(s) 2 1 2 649 1806 TO 5429
Worst Hp 15 47 31 241 692 - 876
Performance) i) 7 7 9 340| 2050| 1372|5000
Error 13% 0,0% 29.0% 2% -7%| -38%]| -28%

Speedup

core Time(s) 2 6 7 1609 TO T0 TO
ESBMC

Hp 15 47 31 241 - - -

ESBMC Relative 14 54 47 _ - _

15

Partitioning

Results

|

ESBMC Relative
Speedup

CRC32 | Patricia| Dijkstra | Clustering | RC6 Fuzzy | Mars

Nodes 25 21 26 150 329 261 417

Edges 32 48 69 331 448 422 600

Sy 20 10 20 50 600 4578 300

Exact Hp 15 47 31 241 692| 13820 876
Solution

Sp 19 4 19 46 533 4231 297

ILP Time(s) 2 1 2 649 1806 TO 5429

Hp 15 47 31 241 692 - 876

GA Time(s) 7 7 9 340 2050 1372 5000

Speedup over Error 13% 0,0% 29,0% 2% -71% -38% -28%

ESBMC _
\ , Time(s) 30 314 325 MO MO MO MO

54

Conclusions

« 1stgeneration of co-design:

— Above 400 nodes: none
— Until 400 nodes: ILP

— Until 150 nodes: ESBMC
— GA (error issues)

 |LP e GA: easier to use but ESBMC: no cost (BSD license)

« MC-ESBMC has better performance than Sequential ESBMC
(speedup from 14 until 54 and no memory out)

* 150 nodes is a realistic problem? All depends on the granularity of
problem modeling

Future Work

« ESBMC: study the possibilities to decrease the time to solution
(solver included)

+ Use of ESBMC to more complex types of architecture, including more
then one CPU (2"d generation of co-design)

16

Conclusi

« 1St generation of co-design:

— Above 400 nodes: none
— Until 400 nodes: ILP

— Until 150 nodes: ESBMC
— GA (error issues)

 |LP e GA: easier to use but ESBMC: no cost (BSD license)

« MC-ESBMC has better performance than Sequential ESBMC
(speedup from 14 until 54 and no memory out)

* 150 nodes is a realistic problem? All depends on the granularity of
problem modeling

Future Work

« ESBMC: study the possibilities to decrease the time to solution
(solver included)

+ Use of ESBMC to more complex types of architecture, including more
then one CPU (2"d generation of co-design)

16

Conclusions

« 1St generation of co-design:

— Above 400 nodes: none
— Until 400 nodes: ILP

— Until 150 nodes: ESBMC
— GA (error issues)

 |LP e GA: easier to use but ESBMC: no cost (BSD license)

« MC-ESBMC has better performance than Sequential ESBMC
(speedup from 14 until 54 and no memory out)

* 150 nodes is a realistic problem? All depends on the granularity of
problem modeling

Future Work

« ESBMC: study the possibilities to decrease the time to solution
(solver included)

+ Use of ESBMC to more complex types of architecture, including more
then one CPU (2"d generation of co-design)

16

Conclusi

« 1St generation of co-design:

— Above 400 nodes: none
— Until 400 nodes: ILP

— Until 150 nodes: ESBMC
— GA (error issues)

 |LP e GA: easier to use but ESBMC: no cost (BSD license)

« MC-ESBMC has better performance than Sequential ESBMC
(speedup from 14 until 54 and no memory out)

« 150 nodes is a realistic problem? All depends on the granularity of
problem modeling

Future Work

« ESBMC: study the possibilities to decrease the time to solution
(solver included)

+ Use of ESBMC to more complex types of architecture, including more
then one CPU (2"d generation of co-design)

16

« 1St generation of co-design:

— Above 400 nodes: none
— Until 400 nodes: ILP

— Until 150 nodes: ESBMC
— GA (error issues)

 |LP e GA: easier to use but ESBMC: no cost (BSD license)

« MC-ESBMC has better performance than Sequential ESBMC
(speedup from 14 until 54 and no memory out)

« 150 nodes is a realistic problem? All depends on the granularity of
problem modeling

Future Work

« ESBMC: study the possibilities to decrease the time to solution
(solver included)

« Use of ESBMC to more complex types of architecture, including more
then one CPU (2"d generation of co-design)

16

Introduction Objectives Background Partitioning Future Work

Thank you for your attention!

Contacts:
alessandro.b.trindade@gmail.com
hussamaismail@gmail.com
lucascordeiro@ufam.edu.br

17

