
Foz do Iguaçu / PR, 5th November of 2015

Alessandro Trindade, Hussama Ismail, and Lucas Cordeiro

Applying Multi-Core Model Checking to

Hardware-Software Partitioning in

Embedded Systems

1

V Brazilian Symposium on Computing Systems

Engineering

Motivation

• Embedded systems: parts in HW (↑ speed, ↑$$$) and other parts

in SW (↓$, ↓ speed)

• Most critical step in 1st generation of HW/SW Co-design

partitioning

• Model checking: describe the system behavior by a precise and

not ambiguous (mathematical) model

– Early detection of errors

– Explore all states of a system in a automatic way

(so instead of finding code violations, we can explore states until it

solves the partitioning problem)

2

Introduction Objectives Background Partitioning Results Conclusions Future Work

Motivation

• Embedded systems: parts in HW (↑ speed, ↑$$$) and other parts

in SW (↓$, ↓ speed)

• Most critical step in 1st generation of HW/SW Co-design

partitioning

• Model checking: describe the system behavior by a precise and

not ambiguous (mathematical) model

– Early detection of errors

– Explore all states of a system in a automatic way

(so instead of finding code violations, we can explore states until it

solves the partitioning problem)

Introduction Objectives Background Partitioning Results Conclusions Future Work

2

Objectives

• Use OpenMP (Open Multi-Processing API) support to perform multi-

core model checking

• Create and improve algorithms to implement the proposed technique

• Perform experimental evaluation over benchmarks

• Compare our approach with ILP (Integer Linear Programming) and GA

(Genetic Algorithm) using MATLAB

3

Apply multi-core model checking based on satisfiability

modulo theories (SMT) to solve the HW/SW partitioning

Introduction Objectives Background Partitioning Results Conclusions Future Work

Objectives

• Use OpenMP (Open Multi-Processing API) support to perform multi-

core model checking

• Create and improve algorithms to implement the proposed technique

• Perform experimental evaluation over benchmarks

• Compare our approach with ILP (Integer Linear Programming) and GA

(Genetic Algorithm) using MATLAB

Introduction Objectives Background Partitioning Results Conclusions Future Work

3

Apply multi-core model checking based on satisfiability

modulo theories (SMT) to solve the HW/SW partitioning

Objectives

• Use OpenMP (Open Multi-Processing API) support to perform multi-

core model checking

• Create and improve algorithms to implement the proposed technique

• Perform experimental evaluation over benchmarks

• Compare our approach with ILP (Integer Linear Programming) and GA

(Genetic Algorithm) using MATLAB

Introduction Objectives Background Partitioning Results Conclusions Future Work

3

Apply multi-core model checking based on satisfiability

modulo theories (SMT) to solve the HW/SW partitioning

Objectives

• Use OpenMP (Open Multi-Processing API) support to perform multi-

core model checking

• Create and improve algorithms to implement the proposed technique

• Perform experimental evaluation over benchmarks

• Compare our approach with ILP (Integer Linear Programming) and GA

(Genetic Algorithm) using MATLAB

Introduction Objectives Background Partitioning Results Conclusions Future Work

3

Apply multi-core model checking based on satisfiability

modulo theories (SMT) to solve the HW/SW partitioning

Objectives

• Use OpenMP (Open Multi-Processing API) support to perform multi-

core model checking

• Create and improve algorithms to implement the proposed technique

• Perform experimental evaluation over benchmarks

• Compare our approach with ILP (Integer Linear Programming) and GA

(Genetic Algorithm) using MATLAB

Introduction Objectives Background Partitioning Results Conclusions Future Work

3

Apply multi-core model checking based on satisfiability

modulo theories (SMT) to solve the HW/SW partitioning

Optimization

• Find the maximum or minimum value of a function

– Minimize the effort and maximize the benefit

• There is not a unique method to solve all the problems

• Most popular technique: LP (Linear Programming)

– Integer Linear Programming

– Binary Linear Programming

• Heuristics Algorithms: GA (Genetic Algorithm) can solve more

complex problems faster

– Drawback: it may not find the global minimum/maximum (i.e., the optimal result)

Introduction Objectives Background Partitioning Results Conclusions Future Work

4

Optimization

4

• Find the maximum or minimum value of a function

– Minimize the effort and maximize the benefit

• There is not a unique method to solve all the problems

• Most popular technique: LP (Linear Programming)

– Integer Linear Programming

– Binary Linear Programming

• Heuristics Algorithms: GA (Genetic Algorithm) can solve more

complex problems faster

– Drawback: it may not find the global minimum/maximum (i.e., the optimal result)

Introduction Objectives Background Partitioning Results Conclusions Future Work

Optimization

4

• Find the maximum or minimum value of a function

– Minimize the effort and maximize the benefit

• There is not a unique method to solve all the problems

• Most popular technique: LP (Linear Programming)

– Integer Linear Programming

– Binary Linear Programming

• Heuristics Algorithms: GA (Genetic Algorithm) can solve more

complex problems faster

– Drawback: it may not find the global minimum/maximum (i.e., the optimal result)

Introduction Objectives Background Partitioning Results Conclusions Future Work

Optimization

4

• Find the maximum or minimum value of a function

– Minimize the effort and maximize the benefit

• There is not a unique method to solve all the problems

• Most popular technique: LP (Linear Programming)

– Integer Linear Programming

– Binary Linear Programming

• Heuristics Algorithms: GA (Genetic Algorithm) can solve more

complex problems faster

– Drawback: it may not find the global minimum/maximum (i.e., the optimal result)

Introduction Objectives Background Partitioning Results Conclusions Future Work

Mathematical Modeling

5

Informal Model (Assumptions)

• There is only one software context and only one hardware context
– Each component must be mapped into one of these two contexts.

• The software component implementation has a software cost
associated (running time)

• The hardware component implementation has a hardware cost
associated (area, heat dissipation or energy consumption)

• Premisses:
– The hardware is significantly faster than software;

– The running time of hardware is zero;

– If two components are mapped to the same context, there is no overhead of
communication between them.

Introduction Objectives Background Partitioning Results Conclusions Future Work

Mathematical Modeling

5

Informal Model (Assumptions)

• There is only one software context and only one hardware context
– Each component must be mapped into one of these two contexts.

• The software component implementation has a software cost
associated (running time)

• The hardware component implementation has a hardware cost
associated (area, heat dissipation or energy consumption)

• Premisses:
– The hardware is significantly faster than software;

– The running time of hardware is zero;

– If two components are mapped to the same context, there is no overhead of
communication between them.

Introduction Objectives Background Partitioning Results Conclusions Future Work

Mathematical Modeling

5

Informal Model (Assumptions)

• There is only one software context and only one hardware context
– Each component must be mapped into one of these two contexts.

• The software component implementation has a software cost
associated (running time)

• The hardware component implementation has a hardware cost
associated (area, heat dissipation or energy consumption)

• Premisses:
– The hardware is significantly faster than software;

– The running time of hardware is zero;

– If two components are mapped to the same context, there is no overhead of
communication between them.

Introduction Objectives Background Partitioning Results Conclusions Future Work

Mathematical Modeling

5

Informal Model (Assumptions)

• There is only one software context and only one hardware context
– Each component must be mapped into one of these two contexts.

• The software component implementation has a software cost
associated (running time)

• The hardware component implementation has a hardware cost
associated (area, heat dissipation or energy consumption)

• Premisses:
– The hardware is significantly faster than software

– The running time of hardware is zero

– If two components are mapped to the same context, there is no overhead of
communication between them

Introduction Objectives Background Partitioning Results Conclusions Future Work

6

Mathematical Modeling

Introduction Objectives Background Partitioning Results Conclusions Future Work

𝑒1

𝑥2
𝑥3

𝑥4𝑥5

𝑥6

𝑥7
𝑥8

𝑥9

𝑥10

𝑥1
𝑒2

𝑒3

𝑒4
𝑒5 𝑒6

𝑒7

𝑒8
𝑒9

𝑒10

𝑒11
𝑒12

𝑒13

Example: 10 nodes & 13 edges

Formal Model

• Task graph G = (V, E)

• Vertices V = {x1, x2, …, xn} : nodes are the

components of the system to be partitioned

(context)

• Each node xi : has the hardware cost h(xi)

and the software cost s(xi)

- $ HW (area, heat dissipation, energy

consumption)

- $ SW (execution time)

• Edges (E) represent communication between

the components

• c(xi, xj): represents the communication cost

between xi and xj if they are in different contexts

• The HW-SW partitioning 𝑃 has:

– 𝐻𝑃 = ℎ𝑖 (hardware cost)

– 𝑆𝑃 = 𝑠𝑖 + 𝑐(𝑥𝑖 , 𝑥𝑗) (software cost)

6

Mathematical Modeling

Introduction Objectives Background Partitioning Results Conclusions Future Work

𝑒1

𝑥2
𝑥3

𝑥4𝑥5

𝑥6

𝑥7
𝑥8

𝑥9

𝑥10

𝑥1
𝑒2

𝑒3

𝑒4
𝑒5 𝑒6

𝑒7

𝑒8
𝑒9

𝑒10

𝑒11
𝑒12

𝑒13

Example: 10 nodes & 13 edges

Formal Model

• Task graph G = (V, E)

• Vertices V = {x1, x2, …, xn} : nodes are the

components of the system to be partitioned

(context)

• Each node xi : has the hardware cost h(xi)

and the software cost s(xi)

- $ HW (area, heat dissipation, energy

consumption)

- $ SW (execution time)

• Edges (E) represent communication between

the components

• c(xi, xj): represents the communication cost

between xi and xj if they are in different contexts

• The HW-SW partitioning 𝑃 has:

– 𝐻𝑃 = ℎ𝑖 (hardware cost)

– 𝑆𝑃 = 𝑠𝑖 + 𝑐(𝑥𝑖 , 𝑥𝑗) (software cost)

6

Mathematical Modeling

Introduction Objectives Background Partitioning Results Conclusions Future Work

𝑒1

𝑥2
𝑥3

𝑥4𝑥5

𝑥6

𝑥7
𝑥8

𝑥9

𝑥10

𝑥1
𝑒2

𝑒3

𝑒4
𝑒5 𝑒6

𝑒7

𝑒8
𝑒9

𝑒10

𝑒11
𝑒12

𝑒13

Example: 10 nodes & 13 edges

Formal Model

• Task graph G = (V, E)

• Vertices V = {x1, x2, …, xn} : nodes are the

components of the system to be partitioned

(context)

• Each node xi : has the hardware cost h(xi)

and the software cost s(xi)

- $ HW (area, heat dissipation, energy

consumption)

- $ SW (execution time)

• Edges (E) represent communication between

the components

• c(xi, xj): represents the communication cost

between xi and xj if they are in different contexts

• The HW-SW partitioning 𝑃 has:

– 𝐻𝑃 = ℎ𝑖 (hardware cost)

– 𝑆𝑃 = 𝑠𝑖 + 𝑐(𝑥𝑖 , 𝑥𝑗) (software cost)

6

Mathematical Modeling

Introduction Objectives Background Partitioning Results Conclusions Future Work

𝑒1

𝑥2
𝑥3

𝑥4𝑥5

𝑥6

𝑥7
𝑥8

𝑥9

𝑥10

𝑥1
𝑒2

𝑒3

𝑒4
𝑒5 𝑒6

𝑒7

𝑒8
𝑒9

𝑒10

𝑒11
𝑒12

𝑒13

Example: 10 nodes & 13 edges

Formal Model

• Task graph G = (V, E)

• Vertices V = {x1, x2, …, xn} : nodes are the

components of the system to be partitioned

(context)

• Each node xi : has the hardware cost h(xi)

and the software cost s(xi)

- $ HW (area, heat dissipation, energy

consumption)

- $ SW (execution time)

• Edges (E) represent communication between

the components

• c(xi, xj): represents the communication cost

between xi and xj if they are in different contexts

• The HW-SW partitioning 𝑃 has:

– 𝐻𝑃 = ℎ𝑖 (hardware cost)

– 𝑆𝑃 = 𝑠𝑖 + 𝑐(𝑥𝑖 , 𝑥𝑗) (software cost)

6

Formal Model

• Task graph G = (V, E)

• Vertices V = {x1, x2, …, xn} : nodes are the

components of the system to be partitioned

(context)

• Each node xi : has the hardware cost h(xi)

and the software cost s(xi)

- $ HW (area, heat dissipation, energy

consumption)

- $ SW (execution time)

• Edges (E) represent communication between

the components

• c(xi, xj): represents the communication cost

between xi and xj if they are in different contexts

• The HW-SW partitioning 𝑃 has:

– 𝐻𝑃 = ℎ𝑖 (hardware cost)

– 𝑆𝑃 = 𝑠𝑖 + 𝑐(𝑥𝑖 , 𝑥𝑗) (software cost)

Mathematical Modeling

Introduction Objectives Background Partitioning Results Conclusions Future Work

𝑒1

𝑥2
𝑥3

𝑥4𝑥5

𝑥6

𝑥7
𝑥8

𝑥9

𝑥10

𝑥1
𝑒2

𝑒3

𝑒4
𝑒5 𝑒6

𝑒7

𝑒8
𝑒9

𝑒10

𝑒11
𝑒12

𝑒13

Example: 10 nodes & 13 edges

• This paper focus on the case where the initial software cost is given

(𝑆0)

• We want 𝑆𝑃 < 𝑆0 and the minimal necessary hardware cost to resolve

the problem (The complexity is NP-Hard)

7

Mathematical Modeling

ILP GA

Model Checker
(ESBMC)

MATLAB – Optimization Toolbox

Introduction Objectives Background Partitioning Results Conclusions Future Work

𝑒1

𝑥2
𝑥3

𝑥4
𝑥5

𝑥6

𝑥7

𝑥8

𝑥9 𝑥10

𝑥1
𝑒2

𝑒3

𝑒4
𝑒5 𝑒6

𝑒7

𝑒8
𝑒9

𝑒10

𝑒11
𝑒12

𝑒13

• Basic Idea: given a transition system M, check negation of a given

property φ up to given depth k

• Translated into a VC ψ such that: ψ is satisfiable iff φ has

counterexample (steps until the violation) of max. depth k

• BMC has been applied successfully to verify (embedded) software since

early 2000’s. In 2014, Alessandro used BMC perform HW-SW

partitioning.

8

Introduction Objectives Background Partitioning Results Conclusions Future Work

Bounded Model Checking

ESBMC (Model Checker)

9

• ESBMC (Efficient SMT-Based Context-Bounded Model Checker) is a

model checker for ANSI-C and C++ source code

– Check overflows, pointer safety, memory leaks, arrays bounds, atomicity, etc.

• Uses Satisfiability Modulo Theories (SMT) (addition to Boolean Satisfiability)

• SMT Solvers as back-end to decrease software complexity

Architecture:

Introduction Objectives Background Partitioning Results Conclusions Future Work

ESBMC Architecture

10

#include<stdio.h>
#include<assert.h>

int main(){
int i = 0;
for (i=0; i<50;i++){

assert(i%8==0);
}

} i=2

i0 := 0 ^
i1 := 1 ^
i2 := 2

i0%8 == 0 ^
i1%8 == 0 ^
i2%8 == 0

C :=

assert(i%8 == 0)

i=0

assert(i%8 == 0)

i=1 assert(i%8 == 0) P :=

Introduction Objectives Background Partitioning Results Conclusions Future Work

k=3 (bound)

ESBMC Architecture

10

#include<stdio.h>
#include<assert.h>

int main(){
int i = 0;
for (i=0; i<50;i++){

assert(i%8==0);
}

} i=2

i0 := 0 ^
i1 := 1 ^
i2 := 2

i0%8 == 0 ^
i1%8 == 0 ^
i2%8 == 0

C :=

assert(i%8 == 0)

i=0

assert(i%8 == 0)

i=1 assert(i%8 == 0) P :=

Introduction Objectives Background Partitioning Results Conclusions Future Work

k=3 (bound)

ESBMC Architecture

10

#include<stdio.h>
#include<assert.h>

int main(){
int i = 0;
for (i=0; i<50;i++){

assert(i%8==0);
}

} i=2

i0 := 0 ^
i1 := 1 ^
i2 := 2

i0%8 == 0 ^
i1%8 == 0 ^
i2%8 == 0

C :=

assert(i%8 == 0)

i=0

assert(i%8 == 0)

i=1 assert(i%8 == 0) P :=

Introduction Objectives Background Partitioning Results Conclusions Future Work

k=3 (bound)

ESBMC Architecture

10

#include<stdio.h>
#include<assert.h>

int main(){
int i = 0;
for (i=0; i<50;i++){

assert(i%8==0);
}

} i=2

i0 := 0 ^
i1 := 1 ^
i2 := 2

i0%8 == 0 ^
i1%8 == 0 ^
i2%8 == 0

C :=

assert(i%8 == 0)

i=0

assert(i%8 == 0)

i=1 assert(i%8 == 0) P :=

Introduction Objectives Background Partitioning Results Conclusions Future Work

the CFG of the
program

k=3 (bound)

ESBMC Architecture

10

#include<stdio.h>
#include<assert.h>

int main(){
int i = 0;
for (i=0; i<50;i++){

assert(i%8==0);
}

} i=2

i0 := 0 ^
i1 := 1 ^
i2 := 2

i0%8 == 0 ^
i1%8 == 0 ^
i2%8 == 0

C :=

assert(i%8 == 0)

i=0

assert(i%8 == 0)

i=1 assert(i%8 == 0) P :=

Introduction Objectives Background Partitioning Results Conclusions Future Work

ESBMC Architecture

10

#include<stdio.h>
#include<assert.h>

int main(){
int i = 0;
for (i=0; i<50;i++){

assert(i%8==0);
}

} i=2

i0 := 0 ^
i1 := 1 ^
i2 := 2

i0%8 == 0 ^
i1%8 == 0 ^
i2%8 == 0

C :=

assert(i%8 == 0)

i=0

assert(i%8 == 0)

i=1 assert(i%8 == 0) P :=

Introduction Objectives Background Partitioning Results Conclusions Future Work

ESBMC Architecture

10

#include<stdio.h>
#include<assert.h>

int main(){
int i = 0;
for (i=0; i<50;i++){

assert(i%8==0);
}

} i=2

i0 := 0 ^
i1 := 1 ^
i2 := 2

i0%8 == 0 ^
i1%8 == 0 ^
i2%8 == 0

C :=

assert(i%8 == 0)

i=0

assert(i%8 == 0)

i=1 assert(i%8 == 0) P :=

Introduction Objectives Background Partitioning Results Conclusions Future Work

ESBMC Architecture

10

#include<stdio.h>
#include<assert.h>

int main(){
int i = 0;
for (i=0; i<50;i++){

assert(i%8==0);
}

} i=2

i0 := 0 ^
i1 := 1 ^
i2 := 2

i0%8 == 0 ^
i1%8 == 0 ^
i2%8 == 0

C :=

assert(i%8 == 0)

i=0

assert(i%8 == 0)

i=1 assert(i%8 == 0) P :=

Equations size is proportional to
the system complexity

(if the equation has many math
expressions, then it results
in higher verification time)

Introduction Objectives Background Partitioning Results Conclusions Future Work

ESBMC Architecture

10

#include<stdio.h>
#include<assert.h>

int main(){
int i = 0;
for (i=0; i<50;i++){

assert(i%8==0);
}

} i=2

i0 := 0 ^
i1 := 1 ^
i2 := 2

i0%8 == 0 ^
i1%8 == 0 ^
i2%8 == 0

C :=

assert(i%8 == 0)

i=0

assert(i%8 == 0)

i=1 assert(i%8 == 0) P :=

Currently, SMT solvers
doesn’t support parallelism

Introduction Objectives Background Partitioning Results Conclusions Future Work

Open Multi-Processing

11

• OpenMP (API) is a set of directives for parallel programming

– Support for C/C++, and Fortran

– Support for different operating systems (Windows, Linux, Mac OSX, HP-

UX)

• Use the fork-join model

– Threads are managed by the API

– User customizes the execution

• Compiler directive based:

Introduction Objectives Background Partitioning Results Conclusions Future Work

master thread (main)

𝑇1 𝑇3𝑇2
parallel region

(threads)

join/fork

fork

int k;
#pragma omp parallel for
for (k = 0; k < 10; k++)

a[k] = 2*a[k] ;

𝑇1 𝑇2

join

parallel region
(max threads = 2)

𝑇𝑛

• The first algorithm in ANSI-C for ESBMC solves optimization problems

ESBMC for Optimization

12

These variables are declared
as matrices or vectors

This loop can generate
many math equations.
It is hard for the SMT solver

We have CPU’s available
Why not parallelize?

Introduction Objectives Background Partitioning Results Conclusions Future Work

Multi-Core ESBMC approach

13

• Solution: use of OpenMP as front-end of ESBMC

• Use fork-join model provided

by OpenMP

• OpenMP API creates N

different instances:

– Instead of trying to solve the partitioning

problem just once, it creates N different

problems with different TipH values of

hardware cost

• If a violation occurs then the

optimal value was found. The

threads are finished

• /esbmc-parallel <𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒. 𝑐> <ℎ𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒> <𝐻𝑚𝑎𝑥>

Introduction Objectives Background Partitioning Results Conclusions Future Work

Multi-Core ESBMC approach

• Solution: use of OpenMP as front-end of ESBMC

• Use fork-join model provided

by OpenMP

• OpenMP API creates N

different instances:

– Instead of trying to solve the partitioning

problem just once, it creates N different

problems with different TipH values of

hardware cost

• If a violation occurs then the

optimal value was found. The

threads are finished

• /esbmc-parallel <𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒. 𝑐> <ℎ𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒> <𝐻𝑚𝑎𝑥>

Introduction Objectives Background Partitioning Results Conclusions Future Work

The problem is
modeled to expect
a TipH parameter

13

Multi-Core ESBMC approach

• Solution: use of OpenMP as front-end of ESBMC

• Use fork-join model provided

by OpenMP

• OpenMP API creates N

different instances:

– Instead of trying to solve the partitioning

problem just once, it creates N different

problems with different TipH values of

hardware cost

• If a violation occurs then the

optimal value was found. The

threads are finished

• /esbmc-parallel <𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒. 𝑐> <ℎ𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒> <𝐻𝑚𝑎𝑥>

Introduction Objectives Background Partitioning Results Conclusions Future Work

13

Multi-Core ESBMC approach

• Solution: use of OpenMP as front-end of ESBMC

• Use fork-join model provided

by OpenMP

• OpenMP API creates N

different instances:

– Instead of trying to solve the partitioning

problem just once, it creates N different

problems with different TipH values of

hardware cost

• If a violation occurs then the

optimal value was found. The

threads are finished

• /esbmc-parallel <𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒. 𝑐> <ℎ𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒> <𝐻𝑚𝑎𝑥>

Introduction Objectives Background Partitioning Results Conclusions Future Work

13

Multi-Core ESBMC approach

• Solution: use of OpenMP as front-end of ESBMC

• Use fork-join model provided

by OpenMP

• OpenMP API creates N

different instances:

– Instead of trying to solve the partitioning

problem just once, it creates N different

problems with different TipH values of

hardware cost

• If a violation occurs then the

optimal value was found. The

threads are finished

• /esbmc-parallel <𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒. 𝑐> <ℎ𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒> <𝐻𝑚𝑎𝑥>

Introduction Objectives Background Partitioning Results Conclusions Future Work

13

Multi-Core ESBMC approach

12

• Solution: use of OpenMP as front-end of ESBMC

• Use fork-join model provided

by OpenMP

• OpenMP API creates N

different instances:

– Instead of trying to solve the partitioning

problem just once, it creates N different

problems with different TipH values of

hardware cost

• If a violation occurs then the

optimal value was found. The

threads are finished

• /esbmc-parallel <𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒. 𝑐> <ℎ𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒> <𝐻𝑚𝑎𝑥>

Introduction Objectives Background Partitioning Results Conclusions Future Work

Multi-Core ESBMC approach

• Solution: use of OpenMP as front-end of ESBMC

• Use fork-join model provided

by OpenMP

• OpenMP API creates N

different instances:

– Instead of trying to solve the partitioning

problem just once, it creates N different

problems with different TipH values of

hardware cost

• If a violation occurs then the

optimal value was found. The

threads are finished

• /esbmc-parallel <𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒. 𝑐> <ℎ𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒> <𝐻𝑚𝑎𝑥>

problem
specification in

ANSI-C file

Introduction Objectives Background Partitioning Results Conclusions Future Work

13

Multi-Core ESBMC approach

• Solution: use of OpenMP as front-end of ESBMC

• Use fork-join model provided

by OpenMP

• OpenMP API creates N

different instances:

– Instead of trying to solve the partitioning

problem just once, it creates N different

problems with different TipH values of

hardware cost

• If a violation occurs then the

optimal value was found. The

threads are finished

• /esbmc-parallel <𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒. 𝑐> <ℎ𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒> <𝐻𝑚𝑎𝑥>

minimal
hardware value

Introduction Objectives Background Partitioning Results Conclusions Future Work

13

Multi-Core ESBMC approach

• Solution: use of OpenMP as front-end of ESBMC

• Use fork-join model provided

by OpenMP

• OpenMP API creates N

different instances:

– Instead of trying to solve the partitioning

problem just once, it creates N different

problems with different TipH values of

hardware cost

• If a violation occurs then the

optimal value was found. The

threads are finished

• /esbmc-parallel <𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒. 𝑐> <ℎ𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒> <𝐻𝑚𝑎𝑥>

maximal
hardware value

Introduction Objectives Background Partitioning Results Conclusions Future Work

13

Experimental Evaluation

• Set up

– Desktop with 64-bit Ubuntu 14.04 LTS, 15GB of RAM and i7 Intel (8-

cores) processor with 3.40 GHz of clock

– ESBMC v1.24

– SMT solver: Boolector v. 2.0.1

– MathWorks MATLAB R2013a (GA and ILP)

– Time out (TO) = 7200 sec

– Memory out (MO) = 15GB

• Use 7 benchmarks (with different number of nodes)

• Compare with ESBMC, ESBMC Multi-Core, ILP, and GA

• Each time is the average of three measured times

– (92% of statistical confidence)

Introduction Objectives Background Partitioning Results Conclusions Future Work

14

Experimental Evaluation

• Set up

– Desktop with 64-bit Ubuntu 14.04 LTS, 15GB of RAM and i7 Intel (8-

cores) processor with 3.40 GHz of clock

– ESBMC v1.24

– SMT solver: Boolector v. 2.0.1

– MathWorks MATLAB R2013a (GA and ILP)

– Time out (TO) = 7200 sec

– Memory out (MO) = 15GB

• Use 7 benchmarks (with different number of nodes)

• Compare with ESBMC, ESBMC Multi-Core, ILP, and GA

• Each time is the average of three measured times

– (92% of statistical confidence)

Introduction Objectives Background Partitioning Results Conclusions Future Work

14

Experimental Evaluation

• Set up

– Desktop with 64-bit Ubuntu 14.04 LTS, 15GB of RAM and i7 Intel (8-

cores) processor with 3.40 GHz of clock

– ESBMC v1.24

– SMT solver: Boolector v. 2.0.1

– MathWorks MATLAB R2013a (GA and ILP)

– Time out (TO) = 7200 sec

– Memory out (MO) = 15GB

• Use 7 benchmarks (with different number of nodes)

• Compare with ESBMC, ESBMC Multi-Core, ILP, and GA

• Each time is the average of three measured times

– (92% of statistical confidence)

Introduction Objectives Background Partitioning Results Conclusions Future Work

14

Results

Introduction Objectives Background Partitioning Results Conclusions Future Work

CRC32 Patricia Dijkstra Clustering RC6 Fuzzy Mars

Nodes 25 21 26 150 329 261 417

Edges 32 48 69 331 448 422 600

S0 20 10 20 50 600 4578 300

Exact
Solution

Hp 15 47 31 241 692 13820 876

Sp 19 4 19 46 533 4231 297

ILP Time(s) 2 1 2 649 1806 TO 5429

Hp 15 47 31 241 692 - 876

GA Time(s) 7 7 9 340 2050 1372 5000

Error 13% 0,0% 29,0% 2% -7% -38% -28%

ESBMC Time(s) 30 314 325 MO MO MO MO

Hp 15 47 31 - - - -

Multi-
core

ESBMC

Time(s) 2 6 7 1609 TO TO TO

Hp 15 47 31 241 - - -

ESBMC Relative
Speedup

14 54 47 - - - 15

Results

Introduction Objectives Background Partitioning Results Conclusions Future Work

CRC32 Patricia Dijkstra Clustering RC6 Fuzzy Mars

Nodes 25 21 26 150 329 261 417

Edges 32 48 69 331 448 422 600

S0 20 10 20 50 600 4578 300

Exact
Solution

Hp 15 47 31 241 692 13820 876

Sp 19 4 19 46 533 4231 297

ILP Time(s) 2 1 2 649 1806 TO 5429

Hp 15 47 31 241 692 - 876

GA Time(s) 7 7 9 340 2050 1372 5000

Error 13% 0,0% 29,0% 2% -7% -38% -28%

ESBMC Time(s) 30 314 325 MO MO MO MO

Hp 15 47 31 - - - -

Multi-
core

ESBMC

Time(s) 2 6 7 1609 TO TO TO

Hp 15 47 31 241 - - -

ESBMC Relative
Speedup

14 54 47 - - -

Bechmark

15

Results

Introduction Objectives Background Partitioning Results Conclusions Future Work

CRC32 Patricia Dijkstra Clustering RC6 Fuzzy Mars

Nodes 25 21 26 150 329 261 417

Edges 32 48 69 331 448 422 600

S0 20 10 20 50 600 4578 300

Exact
Solution

Hp 15 47 31 241 692 13820 876

Sp 19 4 19 46 533 4231 297

ILP Time(s) 2 1 2 649 1806 TO 5429

Hp 15 47 31 241 692 - 876

GA Time(s) 7 7 9 340 2050 1372 5000

Error 13% 0,0% 29,0% 2% -7% -38% -28%

ESBMC Time(s) 30 314 325 MO MO MO MO

Hp 15 47 31 - - - -

Multi-
core

ESBMC

Time(s) 2 6 7 1609 TO TO TO

Hp 15 47 31 241 - - -

ESBMC Relative
Speedup

14 54 47 - - -

Initial Software
Cost

15

Results

Introduction Objectives Background Partitioning Results Conclusions Future Work

CRC32 Patricia Dijkstra Clustering RC6 Fuzzy Mars

Nodes 25 21 26 150 329 261 417

Edges 32 48 69 331 448 422 600

S0 20 10 20 50 600 4578 300

Exact
Solution

Hp 15 47 31 241 692 13820 876

Sp 19 4 19 46 533 4231 297

ILP Time(s) 2 1 2 649 1806 TO 5429

Hp 15 47 31 241 692 - 876

GA Time(s) 7 7 9 340 2050 1372 5000

Error 13% 0,0% 29,0% 2% -7% -38% -28%

ESBMC Time(s) 30 314 325 MO MO MO MO

Hp 15 47 31 - - - -

Multi-
core

ESBMC

Time(s) 2 6 7 1609 TO TO TO

Hp 15 47 31 241 - - -

ESBMC Relative
Speedup

14 54 47 - - -

Hardware
Partitioned Cost

(solution)

15

Results

Introduction Objectives Background Partitioning Results Conclusions Future Work

CRC32 Patricia Dijkstra Clustering RC6 Fuzzy Mars

Nodes 25 21 26 150 329 261 417

Edges 32 48 69 331 448 422 600

S0 20 10 20 50 600 4578 300

Exact
Solution

Hp 15 47 31 241 692 13820 876

Sp 19 4 19 46 533 4231 297

ILP Time(s) 2 1 2 649 1806 TO 5429

Hp 15 47 31 241 692 - 876

GA Time(s) 7 7 9 340 2050 1372 5000

Error 13% 0,0% 29,0% 2% -7% -38% -28%

ESBMC Time(s) 30 314 325 MO MO MO MO

Hp 15 47 31 - - - -

Multi-
core

ESBMC

Time(s) 2 6 7 1609 TO TO TO

Hp 15 47 31 241 - - -

ESBMC Relative
Speedup

14 54 47 - - -

Software
Partitioned Cost

(solution)

15

Results

Introduction Objectives Background Partitioning Results Conclusions Future Work

CRC32 Patricia Dijkstra Clustering RC6 Fuzzy Mars

Nodes 25 21 26 150 329 261 417

Edges 32 48 69 331 448 422 600

S0 20 10 20 50 600 4578 300

Exact
Solution

Hp 15 47 31 241 692 13820 876

Sp 19 4 19 46 533 4231 297

ILP Time(s) 2 1 2 649 1806 TO 5429

Hp 15 47 31 241 692 - 876

GA Time(s) 7 7 9 340 2050 1372 5000

Error 13% 0,0% 29,0% 2% -7% -38% -28%

ESBMC Time(s) 30 314 325 MO MO MO MO

Hp 15 47 31 - - - -

Multi-
core

ESBMC

Time(s) 2 6 7 1609 TO TO TO

Hp 15 47 31 241 - - -

ESBMC Relative
Speedup

14 54 47 - - -

4 approaches

15

Results

Introduction Objectives Background Partitioning Results Conclusions Future Work

CRC32 Patricia Dijkstra Clustering RC6 Fuzzy Mars

Nodes 25 21 26 150 329 261 417

Edges 32 48 69 331 448 422 600

S0 20 10 20 50 600 4578 300

Exact
Solution

Hp 15 47 31 241 692 13820 876

Sp 19 4 19 46 533 4231 297

ILP Time(s) 2 1 2 649 1806 TO 5429

Hp 15 47 31 241 692 - 876

GA Time(s) 7 7 9 340 2050 1372 5000

Error 13% 0,0% 29,0% 2% -7% -38% -28%

ESBMC Time(s) 30 314 325 MO MO MO MO

Hp 15 47 31 - - - -

Multi-
core

ESBMC

Time(s) 2 6 7 1609 TO TO TO

Hp 15 47 31 241 - - -

ESBMC Relative
Speedup

14 54 47 - - -

Best
Performance

15

Results

Introduction Objectives Background Partitioning Results Conclusions Future Work

CRC32 Patricia Dijkstra Clustering RC6 Fuzzy Mars

Nodes 25 21 26 150 329 261 417

Edges 32 48 69 331 448 422 600

S0 20 10 20 50 600 4578 300

Exact
Solution

Hp 15 47 31 241 692 13820 876

Sp 19 4 19 46 533 4231 297

ILP Time(s) 2 1 2 649 1806 TO 5429

Hp 15 47 31 241 692 - 876

GA Time(s) 7 7 9 340 2050 1372 5000

Error 13% 0,0% 29,0% 2% -7% -38% -28%

ESBMC Time(s) 30 314 325 MO MO MO MO

Hp 15 47 31 - - - -

Multi-
core

ESBMC

Time(s) 2 6 7 1609 TO TO TO

Hp 15 47 31 241 - - -

ESBMC Relative
Speedup

14 54 47 - - -

Solved all,
but with errors

15

Results

Introduction Objectives Background Partitioning Results Conclusions Future Work

CRC32 Patricia Dijkstra Clustering RC6 Fuzzy Mars

Nodes 25 21 26 150 329 261 417

Edges 32 48 69 331 448 422 600

S0 20 10 20 50 600 4578 300

Exact
Solution

Hp 15 47 31 241 692 13820 876

Sp 19 4 19 46 533 4231 297

ILP Time(s) 2 1 2 649 1806 TO 5429

Hp 15 47 31 241 692 - 876

GA Time(s) 7 7 9 340 2050 1372 5000

Error 13% 0,0% 29,0% 2% -7% -38% -28%

ESBMC Time(s) 30 314 325 MO MO MO MO

Hp 15 47 31 - - - -

Multi-
core

ESBMC

Time(s) 2 6 7 1609 TO TO TO

Hp 15 47 31 241 - - -

ESBMC Relative
Speedup

14 54 47 - - -

Worst
Performance

15

Results

Introduction Objectives Background Partitioning Results Conclusions Future Work

CRC32 Patricia Dijkstra Clustering RC6 Fuzzy Mars

Nodes 25 21 26 150 329 261 417

Edges 32 48 69 331 448 422 600

S0 20 10 20 50 600 4578 300

Exact
Solution

Hp 15 47 31 241 692 13820 876

Sp 19 4 19 46 533 4231 297

ILP Time(s) 2 1 2 649 1806 TO 5429

Hp 15 47 31 241 692 - 876

GA Time(s) 7 7 9 340 2050 1372 5000

Error 13% 0,0% 29,0% 2% -7% -38% -28%

ESBMC Time(s) 30 314 325 MO MO MO MO

Hp 15 47 31 - - - -

Multi-
core

ESBMC

Time(s) 2 6 7 1609 TO TO TO

Hp 15 47 31 241 - - -

ESBMC Relative
Speedup

14 54 47 - - -

Speedup over
ESBMC

15

Conclusions

• 1st generation of co-design:

– Above 400 nodes: none

– Until 400 nodes: ILP

– Until 150 nodes: ESBMC

– GA (error issues)

• ILP e GA: easier to use but ESBMC: no cost (BSD license)

• MC-ESBMC has better performance than Sequential ESBMC
(speedup from 14 until 54 and no memory out)

• 150 nodes is a realistic problem? All depends on the granularity of
problem modeling

Future Work

• ESBMC: study the possibilities to decrease the time to solution

(solver included)

• Use of ESBMC to more complex types of architecture, including more

then one CPU (2nd generation of co-design)

Introduction Objectives Background Partitioning Results Conclusions Future Work

16

Conclusions

• 1st generation of co-design:

– Above 400 nodes: none

– Until 400 nodes: ILP

– Until 150 nodes: ESBMC

– GA (error issues)

• ILP e GA: easier to use but ESBMC: no cost (BSD license)

• MC-ESBMC has better performance than Sequential ESBMC
(speedup from 14 until 54 and no memory out)

• 150 nodes is a realistic problem? All depends on the granularity of
problem modeling

Future Work

• ESBMC: study the possibilities to decrease the time to solution

(solver included)

• Use of ESBMC to more complex types of architecture, including more

then one CPU (2nd generation of co-design)

16

Introduction Objectives Background Partitioning Results Conclusions Future Work

Conclusions

• 1st generation of co-design:

– Above 400 nodes: none

– Until 400 nodes: ILP

– Until 150 nodes: ESBMC

– GA (error issues)

• ILP e GA: easier to use but ESBMC: no cost (BSD license)

• MC-ESBMC has better performance than Sequential ESBMC
(speedup from 14 until 54 and no memory out)

• 150 nodes is a realistic problem? All depends on the granularity of
problem modeling

Future Work

• ESBMC: study the possibilities to decrease the time to solution

(solver included)

• Use of ESBMC to more complex types of architecture, including more

then one CPU (2nd generation of co-design)

16

Introduction Objectives Background Partitioning Results Conclusions Future Work

Conclusions

• 1st generation of co-design:

– Above 400 nodes: none

– Until 400 nodes: ILP

– Until 150 nodes: ESBMC

– GA (error issues)

• ILP e GA: easier to use but ESBMC: no cost (BSD license)

• MC-ESBMC has better performance than Sequential ESBMC
(speedup from 14 until 54 and no memory out)

• 150 nodes is a realistic problem? All depends on the granularity of
problem modeling

Future Work

• ESBMC: study the possibilities to decrease the time to solution

(solver included)

• Use of ESBMC to more complex types of architecture, including more

then one CPU (2nd generation of co-design)

16

Introduction Objectives Background Partitioning Results Conclusions Future Work

Conclusions

• 1st generation of co-design:

– Above 400 nodes: none

– Until 400 nodes: ILP

– Until 150 nodes: ESBMC

– GA (error issues)

• ILP e GA: easier to use but ESBMC: no cost (BSD license)

• MC-ESBMC has better performance than Sequential ESBMC
(speedup from 14 until 54 and no memory out)

• 150 nodes is a realistic problem? All depends on the granularity of
problem modeling

Future Work

• ESBMC: study the possibilities to decrease the time to solution

(solver included)

• Use of ESBMC to more complex types of architecture, including more

then one CPU (2nd generation of co-design)

16

Introduction Objectives Background Partitioning Results Conclusions Future Work

17

Thank you for your attention!

Contacts:

alessandro.b.trindade@gmail.com

hussamaismail@gmail.com

lucascordeiro@ufam.edu.br

Introduction Objectives Background Partitioning Results Conclusions Future Work

