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Motivation

• Embedded systems: parts in HW (↑ speed, ↑$$$) and other parts 

in SW (↓$, ↓ speed)

• Most critical step in 1st generation of HW/SW Co-design 

partitioning 

• Model checking: describe the system behavior by a precise and 

not ambiguous (mathematical) model

– Early detection of errors

– Explore all states of a system in a automatic way 

(so instead of finding code violations, we can explore states until it 

solves the partitioning problem)
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Objectives

• Use OpenMP (Open Multi-Processing API) support to perform multi-

core model checking

• Create and improve algorithms to implement the proposed technique

• Perform experimental evaluation over benchmarks

• Compare our approach with ILP (Integer Linear Programming) and GA 

(Genetic Algorithm) using MATLAB

3

Apply multi-core model checking based on satisfiability 

modulo theories (SMT) to solve the HW/SW partitioning
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Optimization

• Find the maximum or minimum value of a function

– Minimize the effort and maximize the benefit

• There is not a unique method to solve all the problems

• Most popular technique: LP (Linear Programming)

– Integer Linear Programming

– Binary Linear Programming

• Heuristics Algorithms: GA (Genetic Algorithm) can solve more 

complex problems faster

– Drawback: it may not find the global minimum/maximum (i.e., the optimal result)
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Mathematical Modeling

5

Informal Model (Assumptions)

• There is only one software context and only one hardware context
– Each component must be mapped into one of these two contexts.

• The software component implementation has a software cost
associated (running time)

• The hardware component implementation has a hardware cost
associated (area, heat dissipation or energy consumption)

• Premisses: 
– The hardware is significantly faster than software;

– The running time of hardware is zero;

– If two components are mapped to the same context, there is no overhead of
communication between them.
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Example: 10 nodes & 13 edges

Formal Model

• Task graph G = (V, E)

• Vertices V = {x1, x2, …, xn} : nodes are the 

components of the system to be partitioned 

(context)

• Each node xi : has the hardware cost h(xi) 

and the software cost s(xi) 

- $ HW (area, heat dissipation, energy 

consumption)

- $ SW (execution time)

• Edges (E) represent communication between 

the components

• c(xi, xj): represents the communication cost 

between xi and xj if they are in different contexts

• The HW-SW partitioning 𝑃 has:

– 𝐻𝑃 =  ℎ𝑖 (hardware cost)

– 𝑆𝑃 =  𝑠𝑖 +  𝑐(𝑥𝑖 , 𝑥𝑗) (software cost)
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• This paper focus on the case where the initial software cost is given 

(𝑆0)

• We want 𝑆𝑃 < 𝑆0 and the minimal necessary hardware cost to resolve 

the problem (The complexity is NP-Hard)

7

Mathematical Modeling

ILP GA

Model Checker
(ESBMC)

MATLAB – Optimization Toolbox
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• Basic Idea: given a transition system M, check negation of a given 

property φ up to given depth k

• Translated into a VC ψ such that: ψ is satisfiable iff φ has 

counterexample (steps until the violation) of max. depth k

• BMC has been applied successfully to verify (embedded) software since 

early 2000’s. In 2014, Alessandro used BMC perform HW-SW 

partitioning.

8
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ESBMC (Model Checker)

9

• ESBMC (Efficient SMT-Based Context-Bounded Model Checker) is a 

model checker for ANSI-C and C++ source code

– Check overflows, pointer safety, memory leaks, arrays bounds, atomicity, etc.

• Uses Satisfiability Modulo Theories (SMT) (addition to Boolean Satisfiability)

• SMT Solvers as back-end to decrease software complexity

Architecture:

Introduction Objectives Background Partitioning Results Conclusions Future Work



ESBMC Architecture

10

#include<stdio.h>
#include<assert.h>

int main(){
int i = 0;
for (i=0; i<50;i++){

assert(i%8==0);
}

} i=2

i0 := 0 ^ 
i1 := 1 ^
i2 := 2 

i0%8 == 0 ^ 
i1%8 == 0 ^
i2%8 == 0 

C :=

assert(i%8 == 0)

i=0

assert(i%8 == 0)

i=1 assert(i%8 == 0) P :=

Introduction Objectives Background Partitioning Results Conclusions Future Work
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Equations size is proportional to 
the system complexity

(if the equation has many math 
expressions, then it results
in higher verification time)

Introduction Objectives Background Partitioning Results Conclusions Future Work



ESBMC Architecture

10

#include<stdio.h>
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Currently, SMT solvers
doesn’t support parallelism
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Open Multi-Processing

11

• OpenMP (API) is a set of directives for parallel programming

– Support for C/C++, and Fortran

– Support for different operating systems (Windows, Linux, Mac OSX, HP-

UX)

• Use the fork-join model

– Threads are managed by the API

– User customizes the execution

• Compiler directive based:

Introduction Objectives Background Partitioning Results Conclusions Future Work

master thread (main)

𝑇1 𝑇3𝑇2
parallel region

(threads)

join/fork

fork

int k;
#pragma omp parallel for
for (k = 0; k < 10; k++)

a[k] = 2*a[k] ;

𝑇1 𝑇2

join

parallel region
(max threads = 2)

𝑇𝑛



• The first algorithm in ANSI-C for ESBMC solves optimization problems

ESBMC for Optimization

12

These variables are declared
as matrices or vectors

This loop can generate 
many math equations.
It is hard for the SMT solver

We have CPU’s available 
Why not parallelize? 
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Multi-Core ESBMC approach

13

• Solution: use of OpenMP as front-end of ESBMC

• Use fork-join model provided 

by OpenMP

• OpenMP API creates N 

different instances:

– Instead of trying to solve the partitioning 

problem just once, it creates N different 

problems with different TipH values of 

hardware cost

• If a violation occurs then the 

optimal value was found. The

threads are finished

• /esbmc-parallel <𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒. 𝑐> <ℎ𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒> <𝐻𝑚𝑎𝑥>
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The problem is 
modeled to expect 
a TipH parameter

13
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Experimental Evaluation

• Set up

– Desktop with 64-bit Ubuntu 14.04 LTS, 15GB of RAM and  i7 Intel (8-

cores) processor with 3.40 GHz of clock

– ESBMC v1.24

– SMT solver: Boolector v. 2.0.1 

– MathWorks MATLAB R2013a (GA and ILP)

– Time out (TO) = 7200 sec

– Memory out (MO) = 15GB

• Use 7 benchmarks (with different number of nodes)

• Compare with ESBMC, ESBMC Multi-Core, ILP, and GA

• Each time is the average of three measured times 

– (92% of statistical confidence)
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Results

Introduction Objectives Background Partitioning Results Conclusions Future Work

CRC32 Patricia Dijkstra Clustering RC6 Fuzzy Mars

Nodes 25 21 26 150 329 261 417

Edges 32 48 69 331 448 422 600

S0 20 10 20 50 600 4578 300

Exact
Solution

Hp 15 47 31 241 692 13820 876

Sp 19 4 19 46 533 4231 297

ILP Time(s) 2 1 2 649 1806 TO 5429

Hp 15 47 31 241 692 - 876

GA Time(s) 7 7 9 340 2050 1372 5000

Error 13% 0,0% 29,0% 2% -7% -38% -28%

ESBMC Time(s) 30 314 325 MO MO MO MO

Hp 15 47 31 - - - -

Multi-
core 

ESBMC

Time(s) 2 6 7 1609 TO TO TO

Hp 15 47 31 241 - - -

ESBMC Relative 
Speedup

14 54 47 - - - 15
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Conclusions

• 1st generation of co-design:

– Above 400 nodes: none

– Until 400 nodes: ILP

– Until 150 nodes: ESBMC

– GA (error issues)

• ILP e GA: easier to use but ESBMC: no cost (BSD license)

• MC-ESBMC has better performance than Sequential ESBMC 
(speedup from 14 until 54 and no memory out) 

• 150 nodes is a realistic problem? All depends on the granularity of 
problem modeling

Future Work

• ESBMC: study the possibilities to decrease the time to solution 

(solver included)

• Use of ESBMC to more complex types of architecture, including more 

then one CPU (2nd generation of co-design)

Introduction Objectives Background Partitioning Results Conclusions Future Work

16



Conclusions

• 1st generation of co-design:

– Above 400 nodes: none

– Until 400 nodes: ILP

– Until 150 nodes: ESBMC

– GA (error issues)

• ILP e GA: easier to use but ESBMC: no cost (BSD license)

• MC-ESBMC has better performance than Sequential ESBMC 
(speedup from 14 until 54 and no memory out) 

• 150 nodes is a realistic problem? All depends on the granularity of 
problem modeling

Future Work

• ESBMC: study the possibilities to decrease the time to solution 

(solver included)

• Use of ESBMC to more complex types of architecture, including more 

then one CPU (2nd generation of co-design)

16

Introduction Objectives Background Partitioning Results Conclusions Future Work



Conclusions

• 1st generation of co-design:

– Above 400 nodes: none

– Until 400 nodes: ILP

– Until 150 nodes: ESBMC

– GA (error issues)

• ILP e GA: easier to use but ESBMC: no cost (BSD license)

• MC-ESBMC has better performance than Sequential ESBMC 
(speedup from 14 until 54 and no memory out) 

• 150 nodes is a realistic problem? All depends on the granularity of 
problem modeling

Future Work

• ESBMC: study the possibilities to decrease the time to solution 

(solver included)

• Use of ESBMC to more complex types of architecture, including more 

then one CPU (2nd generation of co-design)

16

Introduction Objectives Background Partitioning Results Conclusions Future Work



Conclusions

• 1st generation of co-design:

– Above 400 nodes: none

– Until 400 nodes: ILP

– Until 150 nodes: ESBMC

– GA (error issues)

• ILP e GA: easier to use but ESBMC: no cost (BSD license)

• MC-ESBMC has better performance than Sequential ESBMC 
(speedup from 14 until 54 and no memory out) 

• 150 nodes is a realistic problem? All depends on the granularity of 
problem modeling

Future Work

• ESBMC: study the possibilities to decrease the time to solution 

(solver included)

• Use of ESBMC to more complex types of architecture, including more 

then one CPU (2nd generation of co-design)

16

Introduction Objectives Background Partitioning Results Conclusions Future Work



Conclusions

• 1st generation of co-design:

– Above 400 nodes: none

– Until 400 nodes: ILP

– Until 150 nodes: ESBMC

– GA (error issues)

• ILP e GA: easier to use but ESBMC: no cost (BSD license)

• MC-ESBMC has better performance than Sequential ESBMC 
(speedup from 14 until 54 and no memory out) 

• 150 nodes is a realistic problem? All depends on the granularity of 
problem modeling

Future Work

• ESBMC: study the possibilities to decrease the time to solution 

(solver included)

• Use of ESBMC to more complex types of architecture, including more 

then one CPU (2nd generation of co-design)

16

Introduction Objectives Background Partitioning Results Conclusions Future Work



17

Thank you for your attention!

Contacts:

alessandro.b.trindade@gmail.com

hussamaismail@gmail.com

lucascordeiro@ufam.edu.br

Introduction Objectives Background Partitioning Results Conclusions Future Work


