
Fault Localization in Multi-
threaded C Software using
Bounded Model Checking

Erickson H. da S. Alves, Lucas C. Cordeiro,

and Eddie B. de Lima Filho

V Brazilian Symposium on Computing Systems
Engineering

Multi-threaded Software and Difficulties

• Multi-threaded software are more
common in embedded systems

• Despite several advantages, they
present difficulties related to asserting
their correctness

Multi-threaded software :
Concurrent bugs usually occur under
specific thread interleavings
The number of interleavings grows
exponentially with the number of threads
and program statements
Context switches among threads
increase the number of possible
executions
However, concurrent bugs usually occur
in few context switches
[Qadeer&Rehof’05]

Motivation Background Methodology Results Conclusions

Main
thread

Thread CThread BThread A

2

Main
thread

Multi-threaded Software and Difficulties

• Multi-threaded software are more
common in embedded systems

• Despite several advantages, they
present difficulties related to asserting
their correctness

• Multi-threaded software difficulties are:
‒Concurrent bugs usually occur under

specific thread interleavings
‒ The number of interleavings grows

exponentially with the number of
threads and program statements

‒Context switches among threads
increase the number of possible
executions

‒However, concurrent bugs usually occur
in few context switches
[Qadeer&Rehof’05]

Motivation Background Methodology Results Conclusions

Thread CThread BThread A

Possible Interleaving: TA�TB� TC�TB�TC�TA

3

Multi-threaded Software and Difficulties

• Multi-threaded software are more
common in embedded systems

• Despite several advantages, they
present difficulties related to asserting
their correctness

• Multi-threaded software difficulties are:
‒Concurrent bugs usually occur under

specific thread interleavings
‒ The number of interleavings grows

exponentially with the number of
threads and program statements

‒Context switches among threads
increase the number of possible
executions

‒However, concurrent bugs usually occur
in few context switches
[Qadeer&Rehof’05]

Motivation Background Methodology Results Conclusions

Main
thread

Thread CThread BThread A

Execution time

Number of
threads

4

Multi-threaded Software and Difficulties

• Multi-threaded software are more
common in embedded systems

• Despite several advantages, they
present difficulties related to asserting
their correctness

• Multi-threaded software difficulties are:
‒Concurrent bugs usually occur under

specific thread interleavings
‒ The number of interleavings grows

exponentially with the number of
threads and program statements

‒Context switches among threads
increase the number of possible
executions

‒However, concurrent bugs usually occur
in few context switches
[Qadeer&Rehof’05]

Motivation Background Methodology Results Conclusions

Main
thread

Thread CThread BThread A

5

Multi-threaded Software and Difficulties

• Multi-threaded software are more
common in embedded systems

• Despite several advantages, they
present difficulties related to asserting
their correctness

• Multi-threaded software difficulties are:
‒Concurrent bugs usually occur under

specific thread interleavings
‒ The number of interleavings grows

exponentially with the number of
threads and program statements

‒Context switches among threads
increase the number of possible
executions

‒However, concurrent bugs usually occur
in few context switches
[Qadeer&Rehof’05]

Motivation Background Methodology Results Conclusions

Main
thread

Thread CThread BThread A

6

Bounded Model Checking (BMC)

• Basic Idea: given a transition system M, check negation of a given
property φ up to given depth k

• Translated into a VC ψ such that: ψ is satisfiable iff φ has
counterexample of max. depth k

• BMC has been applied successfully to verify multi-threaded
software since 2005, but there are some limitations

. . .

M0 M1 M2 Mk-1

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1 ¬ϕk∨ ∨ ∨ ∨

Counterexample trace

Transition
System

Property

BoundMk

Motivation Background Methodology Results Conclusions

7

• Expand existing fault localization approaches to sequential programs to
handle multi-threaded software and provide a sequentialization method to
translate multi-threaded C software into sequential software

• Design a grammar to model functions and variables related to multi-
threaded programming in C

• Evaluate our proposed method using benchmarks from the Software
Verification Competition (SV-Comp)

Provide a methodology to localize faults in multi-threaded C
software using BMC techniques

Objectives

Motivation Background Methodology Results Conclusions

8

The Efficient SMT-Based Context-Bounded Model
Checker (ESBMC)

Motivation Background Methodology Results Conclusions

C/C++

program

C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC

C parser: processes the ANSI-C file and
builds an Abstract Syntax Tree (AST)

9

Motivation Background Methodology Results Conclusions

C/C++

program

C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC

GOTO Program: converts an ANSI-C
program into a GOTO-Program
(replacement of switch and while by if
and goto expressions)

The Efficient SMT-Based Context-Bounded Model
Checker (ESBMC)

10

Motivation Background Methodology Results Conclusions

C/C++

program

C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC

GOTO Symex: performs a symbolic
execution of the program and
generates SMT equations for
constraints (C) and properties (P)

The Efficient SMT-Based Context-Bounded Model
Checker (ESBMC)

11

Motivation Background Methodology Results Conclusions

C/C++

program

C/C++

Parser
GOTO

Program

GOTO

Symex

SMT Solver

(Boolector)

ESBMC

SMT Solver: evaluates the
expression C ∧ ¬P, using the
specified solver

The Efficient SMT-Based Context-Bounded Model
Checker (ESBMC)

12

Motivation Background Methodology Results Conclusions

Fault Localization using Model Checking

• [Griesmeyer’07] proposed a method to localize faults in sequential C
code

– It uses non-determinism to obtain values for a variable (diag), which represent faulty
lines

– Assignments are replaced by a non-deterministic version of them. If a counterexample
is obtained, it also contains a value for diag

int non_det();
int diag;
...
int main(void *args) {

diag = non_det();
...
assert(0);

}

(17) i = 7;
...
i = (diag == 17 ? non_det() : 7);

13

Our Proposed Methodology

Motivation Background Methodology Results Conclusions

Step 1.B:

Check for other errors

Multi-threaded C
software

Step 1.A:

Check for deadlocks

CEX?
Step 2:

Define transformation

rules

Step 3:

Code transformation

Step 4:

Verify using a BMC tool

Safe

Set of faults CEX?

* CEX - counterexample

multi-threaded_code.c

- Deadlock property violation

- Other properties violation

- No violation found

No

Yes

- At least one
violation found

- Transform pthread statements
- Use a sequential framework

- ESBMC

- Use non-determinism

Yes

No

- Add specification
to skip previous

found line

14

Our Proposed Methodology

Motivation Background Methodology Results Conclusions

Step 1.B:

Check for other errors

Multi-threaded C
software

Step 1.A:

Check for deadlocks

CEX?
Step 2:

Define transformation

rules

Step 3:

Code transformation

Step 4:

Verify using a BMC tool

Safe

Set of faults CEX?

* CEX - counterexample

multi-threaded_code.c

- Deadlock property violation

- Other properties violation

- No violation found

No

Yes

- At least one
violation found

- Transform pthread statements
- Use a sequential framework

- ESBMC

- Use non-determinism

Yes

No

- Add specification
to skip previous

found line

15

Our Proposed Methodology

Motivation Background Methodology Results Conclusions

Step 1.B:

Check for other errors

Multi-threaded C
software

Step 1.A:

Check for deadlocks

CEX?
Step 2:

Define transformation

rules

Step 3:

Code transformation

Step 4:

Verify using a BMC tool

Safe

Set of faults CEX?

* CEX - counterexample

multi-threaded_code.c

- Deadlock property violation

- Other properties violation

- No violation found

No

Yes

- At least one
violation found

- Transform pthread statements
- Use a sequential framework

- ESBMC

- Use non-determinism

Yes

No

- Add specification
to skip previous

found line

16

Our Proposed Methodology

Motivation Background Methodology Results Conclusions

Step 1.B:

Check for other errors

Multi-threaded C
software

Step 1.A:

Check for deadlocks

CEX?
Step 2:

Define transformation

rules

Step 3:

Code transformation

Step 4:

Verify using a BMC tool

Safe

Set of faults CEX?

* CEX - counterexample

multi-threaded_code.c

- Deadlock property violation

- Other properties violation

- No violation found

No

Yes

- At least one
violation found

- Transform pthread statements
- Use a sequential framework

- ESBMC

- Use non-determinism

Yes

No

- Add specification
to skip previous

found line

17

Our Proposed Methodology

Motivation Background Methodology Results Conclusions

Step 1.B:

Check for other errors

Multi-threaded C
software

Step 1.A:

Check for deadlocks

CEX?
Step 2:

Define transformation

rules

Step 3:

Code transformation

Step 4:

Verify using a BMC tool

Safe

Set of faults CEX?

* CEX - counterexample

multi-threaded_code.c

- Deadlock property violation

- Other properties violation

- No violation found

No

Yes

- At least one
violation found

- Transform pthread statements
- Use a sequential framework

- ESBMC

- Use non-determinism

Yes

No

- Add specification
to skip previous

found line

18

Our Proposed Methodology

Motivation Background Methodology Results Conclusions

Step 1.B:

Check for other errors

Multi-threaded C
software

Step 1.A:

Check for deadlocks

CEX?
Step 2:

Define transformation

rules

Step 3:

Code transformation

Step 4:

Verify using a BMC tool

Safe

Set of faults CEX?

* CEX - counterexample

multi-threaded_code.c

- Deadlock property violation

- Other properties violation

- No violation found

No

Yes

- At least one
violation found

- Transform pthread statements
- Use a sequential framework

- ESBMC

- Use non-determinism

Yes

No

- Add specification
to skip previous

found line

19

Our Proposed Methodology

Motivation Background Methodology Results Conclusions

Step 1.B:

Check for other errors

Multi-threaded C
software

Step 1.A:

Check for deadlocks

CEX?
Step 2:

Define transformation

rules

Step 3:

Code transformation

Step 4:

Verify using a BMC tool

Safe

Set of faults CEX?

* CEX - counterexample

multi-threaded_code.c

- Deadlock property violation

- Other properties violation

- No violation found

No

Yes

- At least one
violation found

- Transform pthread statements
- Use a sequential framework

- ESBMC

- Use non-determinism

Yes

No

- Add specification
to skip previous

found line

20

Our Proposed Methodology

Motivation Background Methodology Results Conclusions

Step 1.B:

Check for other errors

Multi-threaded C
software

Step 1.A:

Check for deadlocks

CEX?
Step 2:

Define transformation

rules

Step 3:

Code transformation

Step 4:

Verify using a BMC tool

Safe

Set of faults CEX?

* CEX - counterexample

multi-threaded_code.c

- Deadlock property violation

- Other properties violation

- No violation found

No

Yes

- At least one
violation found

- Transform pthread statements
- Use a sequential framework

- ESBMC

- Use non-determinism

Yes

No

- Add specification
to skip previous

found line

21

Our Proposed Methodology

Motivation Background Methodology Results Conclusions

Step 1.B:

Check for other errors

Multi-threaded C
software

Step 1.A:

Check for deadlocks

CEX?
Step 2:

Define transformation

rules

Step 3:

Code transformation

Step 4:

Verify using a BMC tool

Safe

Set of faults CEX?

* CEX - counterexample

multi-threaded_code.c

- Deadlock property violation

- Other properties violation

- No violation found

No

Yes

- At least one
violation found

- Transform pthread statements
- Use a sequential framework

- ESBMC

- Use non-determinism

Yes

No

- Add specification
to skip previous

found line

22

Our Proposed Methodology

Motivation Background Methodology Results Conclusions

Step 1.B:

Check for other errors

Multi-threaded C
software

Step 1.A:

Check for deadlocks

CEX?
Step 2:

Define transformation

rules

Step 3:

Code transformation

Step 4:

Verify using a BMC tool

Safe

Set of faults CEX?

* CEX - counterexample

multi-threaded_code.c

- Deadlock property violation

- Other properties violation

- No violation found

No

Yes

- At least one
violation found

- Transform pthread statements
- Use a sequential framework

- ESBMC

- Use non-determinism

Yes

No

- Add specification
to skip previous

found line

23

Our Proposed Methodology – Grammar

Motivation Background Methodology Results Conclusions

Statement Transformation

pthread_t ε

pthread_attr_t ε

pthread_cond_attr_t ε

pthread_create ε

pthread_join ε

pthread_exit ε

pthread_mutex_t Integer variable is declared

pthread_mutex_lock 1 is assigned to variable

pthread_mutex_unlock 0 is assigned to variable

pthread_cond_t Integer variable is declared

pthread_cond_wait 1 is assigned to variable

pthread_cond_signal 0 is assigned to variable

24

Our Proposed Methodology – Rules

Motivation Background Methodology Results Conclusions

• Then, we have to use a framework that simulates multi-threaded
programs execution

#define NCS X
int cs[NCS] = {...};
int main(void *args) {

for (int i = 0; i < NCS; i++) {
switch (cs[i]) {

...
}

}
return 0;

}

case 1: {
case 11: { ... }
case 12: { ... }
...
case 20: { ... }

} break;

case 2: {
case 21: { ... }
case 22: { ... }
...
case 30: { ... }

} break;
...

25

Thread 0

Our Proposed Methodology – Rules

Motivation Background Methodology Results Conclusions

• Then, we have to use a framework that simulates multi-threaded
programs execution

#define NCS X
int cs[NCS] = {...};
int main(void *args) {

for (int i = 0; i < NCS; i++) {
switch (cs[i]) {

...
}

}
return 0;

}

case 1: {
case 11: { ... }
case 12: { ... }
...
case 20: { ... }

} break;

case 2: {
case 21: { ... }
case 22: { ... }
...
case 30: { ... }

} break;
...

26

Context switch 1

Our Proposed Methodology – Rules

Motivation Background Methodology Results Conclusions

• Then, we have to use a framework that simulates multi-threaded
programs execution

#define NCS X
int cs[NCS] = {...};
int main(void *args) {

for (int i = 0; i < NCS; i++) {
switch (cs[i]) {

...
}

}
return 0;

}

case 1: {
case 11: { ... }
case 12: { ... }
...
case 20: { ... }

} break;

case 2: {
case 21: { ... }
case 22: { ... }
...
case 30: { ... }

} break;
...

27

Context switch 2

Our Proposed Methodology – Rules

Motivation Background Methodology Results Conclusions

• Then, we have to use a framework that simulates multi-threaded
programs execution

#define NCS X
int cs[NCS] = {...};
int main(void *args) {

for (int i = 0; i < NCS; i++) {
switch (cs[i]) {

...
}

}
return 0;

}

case 1: {
case 11: { ... }
case 12: { ... }
...
case 20: { ... }

} break;

case 2: {
case 21: { ... }
case 22: { ... }
...
case 30: { ... }

} break;
...

28

Context switch 10

Our Proposed Methodology – Rules

Motivation Background Methodology Results Conclusions

• Then, we have to use a framework that simulates multi-threaded
programs execution

#define NCS X
int cs[NCS] = {...};
int main(void *args) {

for (int i = 0; i < NCS; i++) {
switch (cs[i]) {

...
}

}
return 0;

}

case 1: {
case 11: { ... }
case 12: { ... }
...
case 20: { ... }

} break;

case 2: {
case 21: { ... }
case 22: { ... }
...
case 30: { ... }

} break;
...

29

Thread 1

Our Proposed Methodology – Rules

Motivation Background Methodology Results Conclusions

• Then, we have to use a framework that simulates multi-threaded
programs execution

#define NCS X
int cs[NCS] = {...};
int main(void *args) {

for (int i = 0; i < NCS; i++) {
switch (cs[i]) {

...
}

}
return 0;

}

case 1: {
case 11: { ... }
case 12: { ... }
...
case 20: { ... }

} break;

case 2: {
case 21: { ... }
case 22: { ... }
...
case 30: { ... }

} break;
...

30

Thread 2..N
Note: we can model up to 10 context switches
for each thread

Running Example

Motivation Background Methodology Results Conclusions

(1) #include <pthread.h>
(2) #include <assert.h>
(3)
(4) pthread_mutex_t m;

(5) int c = 0;
(6)
(7) void *f1(void *arg) {

(8) pthread_mutex_lock(&m);
(9) c = c + 1;
(10) pthread_mutex_unlock(&m);
(11) }
...

...
(12)
(13) void *f2(void *arg) {
(14) pthread_mutex_lock(&m);

(15) c = c - 1;
(16) assert(c == 1);
(17) pthread_mutex_unlock(&m);

(18) }
(19)
...

...
(20) int main() {
(21) pthread_mutex_init(&m, NULL);
(22) pthread_t t1, t2;

(23) pthread_create(&t1, NULL, f1, NULL);
(24) pthread_create(&t2, NULL, f2, NULL);
(25) return 0;

(26) }

Multi-
threaded
software

Check for
deadlocks

Check for
other

violations

Define
transformat

ion rules

Code
transformat

ion

Verifying
using a

BMC tool

Set of
faults

Running Example

Motivation Background Methodology Results Conclusions

Multi-
threaded
software

Check for
deadlocks

Check for
other

violations

Define
transformat

ion rules

Code
transformat

ion

Verifying
using a

BMC tool

Set of
faults

*** Thread interleavings 122 ***
Symex completed in: 0.001s
size of program expression: 110 assignments
Slicing time: 0.000s
Generated 0 VCC(s), 0 remaining after simplification
VERIFICATION SUCCESSFUL
BMC program time: 0.001s

esbmc --no-bounds-check --no-div-by-zero-check --no-pointer-check

--deadlock-check --no-slice --boolector example.c

Running Example

Motivation Background Methodology Results Conclusions

Multi-
threaded
software

Check for
deadlocks

Check for
other

violations

Define
transformat

ion rules

Code
transformat

ion

Verifying
using a

BMC tool

Set of
faults

Counterexample:
...
State 99 file example.c line 16 function f2 thread 2
c::f2 at /tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 67
--
Violated property:

file example.c line 16 function f2
assertion
FALSE

VERIFICATION FAILED

esbmc --no-bounds-check --no-div-by-zero-check --no-pointer-check

--no-slice --boolector example.c

Running Example

Motivation Background Methodology Results Conclusions

Multi-
threaded
software

Check for
deadlocks

Check for
other

violations

Define
transformat

ion rules

Code
transformat

ion

Verifying
using a

BMC tool

Set of
faults

Counterexample:
...
State 56 file /tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 101
function pthread_create thread 0 c::pthread_create at example.c line 24 <main invocation>
--
State 75 file example.c line 11 function f1 thread 1 c::f1 at
/tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 67
--
State 99 file example.c line 16 function f2 thread 2 c::f2 at
/tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 67
--
Violated property:

file example.c line 16 function f2
assertion FALSE
VERIFICATION FAILED

cs[0]=11

Running Example

Motivation Background Methodology Results Conclusions

Multi-
threaded
software

Check for
deadlocks

Check for
other

violations

Define
transformat

ion rules

Code
transformat

ion

Verifying
using a

BMC tool

Set of
faults

Counterexample:
...
State 56 file /tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 101
function pthread_create thread 0 c::pthread_create at example.c line 24 <main invocation>
--
State 75 file example.c line 11 function f1 thread 1 c::f1 at
/tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 67
--
State 99 file example.c line 16 function f2 thread 2 c::f2 at
/tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 67
--
Violated property:

file example.c line 16 function f2
assertion FALSE
VERIFICATION FAILED

cs[1]=21

Running Example

Motivation Background Methodology Results Conclusions

Multi-
threaded
software

Check for
deadlocks

Check for
other

violations

Define
transformat

ion rules

Code
transformat

ion

Verifying
using a

BMC tool

Set of
faults

Counterexample:
...
State 56 file /tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 101
function pthread_create thread 0 c::pthread_create at example.c line 24 <main invocation>
--
State 75 file example.c line 11 function f1 thread 1 c::f1 at
/tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 67
--
State 99 file example.c line 16 function f2 thread 2 c::f2 at
/tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 67
--
Violated property:

file example.c line 16 function f2
assertion FALSE
VERIFICATION FAILED

cs[2]=31
NCS=3

Running Example

Motivation Background Methodology Results Conclusions

Multi-
threaded
software

Check for
deadlocks

Check for
other

violations

Define
transformat

ion rules

Code
transformat

ion

Verifying
using a

BMC tool

Set of
faults

#include <pthread.h>
#include <assert.h>
#define NCS 3
int cs[NCS] = {11, 21, 31}, nondet(), diag, c = 0;

void f1_1() {

int t = c + 1;

c = (diag == 9 ? nondet() : t);
}

void f2_1() {

int t = c - 1;
c = (diag == 15 ? nondet() : t);

__ESBMC_assume(c == 1);

}
...

...
int main() {

int i; diag = nondet();

for (i = 0; i < NCS; i++) {
switch (cs[i]) {

case 1: {

case 11: {

if (cs[i] == 11) break;
}

} break;

case 2: {

case 21: {
f1_1();

if (cs[i] == 21) break;
} break;

} break;

...

...
case 3: {

case 31: {

f2_1();
if (cs[i] == 31) break;

} break;

} break;

}
}

assert(0);

return 0;

}
...

Running Example

Motivation Background Methodology Results Conclusions

Multi-
threaded
software

Check for
deadlocks

Check for
other

violations

Define
transformat

ion rules

Code
transformat

ion

Verifying
using a

BMC tool

Set of
faults

Counterexample:
...
State 9 file example-hawk.c line 5 thread 0
--

diag=15 (15)
...
State 26 file example-hawk.c line 13
function f2_1 thread 0
c::f2_1 at example-hawk.c line 35
<main invocation>
--

example-hawk::f2_1::1::t=0 (0)
...

...
State 27 thread 0
c::f2_1 at example-hawk.c line 35
<main invocation>
--

c::f2_1::$tmp::tmp$1=TRUE
...
State 29 file example-hawk.c line 14
function f2_1 thread 0
c::f2_1 at example-hawk.c line 35
<main invocation>
--

c=1 (1)
...

--
Violated property:

file example-hawk.c line 41 function main
assertion
FALSE

VERIFICATION FAILED

esbmc --no-bounds-check --no-div-by-zero-check --no-pointer-check

--no-slice --boolector transformed_example.c

Running Example

Motivation Background Methodology Results Conclusions

Multi-
threaded
software

Check for
deadlocks

Check for
other

violations

Define
transformat

ion rules

Code
transformat

ion

Verifying
using a

BMC tool

Set of
faults

F = <Line=15, Correct Value=1>

...

(15) c = 1;

...

*** Thread interleavings 197 ***
Symex completed in: 0.004s
size of program expression: 120 assignments
Slicing time: 0.000s
Generated 0 VCC(s), 0 remaining after simplification
VERIFICATION SUCCESSFUL
BMC program time: 0.004s

esbmc --no-bounds-check --no-div-by-zero-check --no-pointer-check

--no-slice --boolector repaired_example.c

Motivation Background Methodology Results Conclusions

Experimental Objectives and Setup

• Objectives

– Verify and validate our method using standard multi-threaded C software

• Specs

– ESBMC v1.24.1 with SMT solver Boolector version 2.1.0

– Core i7 4500 1.8 GHz

– 8 GB of RAM

– Fedora 21 64-bits

• Benchmarks

– 11 benchmarks extracted from the Software Verification Competition, and the same
used to evaluate ESBMC for multi-threaded C code

40

Motivation Background Methodology Results Conclusions

Benchmarks

Success Failed Timeout

No useful faulty
lines in 18.18%
of benchmarks

Experimental Results

Timeouts in
27.27% of

benchmarks

Correct faulty
lines in 54.55%
of benchmarks

41

Motivation Background Methodology Results Conclusions

• No useful faulty lines occur when ESBMC retrieves unreasonable diag in
the counterexample for the translated software under verification
– E.g. diag == 0, since there is no line 0 in the code, we cannot say anything about this

fault

• Timeouts

– If we run out of memory when first checking a benchmark using ESBMC, we denote
that execution as a timeout

– Thus, we cannot state it is a safe program, neither model it using our methodology

Experimental Results

42

Motivation Background Methodology Results Conclusions

• However, since we entirely rely on BMC tools to provide
counterexamples to then translate the program under verification,
timeouts are not due to our methodology

• This way, correct faulty lines are found in 6 out of 8 (75%) benchmarks

Experimental Results

43

Motivation Background Methodology Results Conclusions

Experimental Results

44

0

10

20

30

40

50

60

70

80

90

100
T

im
e
 (

s
)

Benchmark

Time to obtain counterexample Time to verify translated version

• A novel method for localizing faults in multi-threaded C programs was
proposed
– It is based in BMC techniques and is also an extension to a sequential method to

localize faults [Griesmeyer’07]

– Useful for embedded systems

• Our methodology showed itself to be useful to assist in fault localization
in standard multi-threaded software

Future Work

• Improve our code transformation
– Use GOTO structure to model iterations

– Model pthread statements more accurately

• Develop a tool to automate this process, such as an Eclipse plugin

Conclusions

Motivation Background Methodology Results Conclusions

45

