V Brazilian Symposium on Computing Systems :
Engineering (« ETELI

Fault Localization in Multi-
threaded C Software using
Bounded Model Checking

Erickson H. da S. Alves, Lucas C. Cordeiro,
and Eddie B. de Lima Filho

Multi-threaded Software and Difficulties

» Multi-threaded software are more
common in embedded systems

» Despite several advantages, they Main
resent difficulties related to asserting thread
heir correctness

Thread A [+ Thread B Thread C

Multi-threaded Software and Difficulties

» Multi-threaded software are more
common in embedded systems

» Despite several advantages, they Main
resent difficulties related to asserting thread
heir correctness

» Multi-threaded software difficulties are:

— Concurrent bugs usually occur under
specific thread interleavings

- Thread A [+=— Thread B Thread C

Possible Interleaving: Ty2 T2 T2 Tg2 T2 T,

Multi-threaded Software and Difficulties

» Multi-threaded software are more
common in embedded systems

» Despite several advantages, they Main
resent difficulties related to asserting thread
heir correctness

- Multi-threaded software difficulties are:
— Concurrent bugs usually occur under
specific thread interleavings

—The number of interleavings grows —
exponentially with the nur?lbegr of Thread A Thread B Thread C
threads and program statements

Number of
threads

Execution time

Multi-threaded Software and Difficulties

» Multi-threaded software are more
common in embedded systems

» Despite several advantages, they Main
resent difficulties related to asserting thread
heir correctness

» Multi-threaded software difficulties are:

— Concurrent bugs usually occur under
specific thread interleavings

—The number of interleavings grows —
exponentially with the nur?lbéqr of Thread A Thread B Thread C
threads and program statements

— Context switches among threads
increase the number of possible
executions

Multi-threaded Software and Difficulties

» Multi-threaded software are more
common in embedded systems

» Despite several advantages, they Main
resent difficulties related to asserting thread
heir correctness

» Multi-threaded software difficulties are:

— Concurrent bugs usually occur under
specific thread interleavings

—The number of interleavings grows —
exponentially with the nur?lbéqr of Thread A Thread B Thread C
threads and program statements

— Context switches among threads
increase the number of possible
executions

—However, concurrent bugs usually occur
in few context switches
[Qadeer&Rehof’05]

Bounded Model Checking (BMC)

- Basic Idea: given a transition system M, check negation of a given
property @ up to given depth k

a N\ - Property
Transit P v TP v TP v TPk | v TP
' . Transition < @ . @ ,® ... ©— ®
| System N
l MO M-| M2 Mk—1 Mks Bound
_ Counterexample trace -

- Translated into a VC y such that: w is satisfiable iff ¢ has
counterexample of max. depth k

- BMC has been applied successfully to verify multi-threaded
software since 2005, but there are some limitations

Objectives

Provide a methodology to localize faults in multi-threaded C
software using BMC techniques

- Expand existing fault localization approaches to sequential programs to
handle multi-threaded software and provide a sequentialization method to
translate multi-threaded C software into sequential software

 Design a grammar to model functions and variables related to multi-
threaded programming in C

- Evaluate our proposed method using benchmarks from the Software
Verification Competition (SV-Comp)

The Efficient SMT-Based Context-Bounded Model

Checker (ESBMC)

___________________ ESBMC
C/C++ | C/C++ | GOTO . | GOTO | | SMTSolver |
program Parser | . Program : @ Symex | | (Boolector)

C parser: processes the ANSI-C file and
builds an Abstract Syntax Tree (AST)

The Efficient SMT-Based Context-Bounded Model

Checker (ESBMC)

C/C++
program

C/C++

> —>
. Parser |

GOTO
Program

__

| GOTO | | SMTSolver |
. Symex | | (Boolector)

__

GOTO Program: converts an ANSI-C
program into a GOTO-Program
(replacement of switch and while by if
and goto expressions)

10

The Efficient SMT-Based Context-Bounded Model

Checker (ESBMC)

C/C++
program

C/C++

GOTO | | GOTO | | SMTSolver

" Parser | | Program | | Symex | | (Boolector)

GOTO Symex: performs a symbolic
execution of the program and
generates SMT equations for
constraints (C) and properties (P)

11

The Efficient SMT-Based Context-Bounded Model

Checker (ESBMC)

_______________ ESBMC
CIC++ [C/C++ | GOTO | | GOTO | | SMT Solver
program Parser . Program | | Symex (Boolector)

SMT Solver: evaluates the
expression C /1 =P, using the
specified solver

12

Fault Localization using Model Checking
- [Griesmeyer’07] proposed a method to localize faults in sequential C
code

— It uses non-determinism to obtain values for a variable (diag), which represent faulty
lines

—Assignments are replaced by a non-deterministic version of them. If a counterexample
is obtained, it also contains a value for diag

int non_det(); (17)i=7;
int diag;

|= (diag == 17 ? non_det() : 7);

|nt main(void *args) {
diag = non_det();

assert(0);

}

13

Our Proposed Methodology

- No violation found

* GEX - counterexample

- Deadlock property violation Safe
Step 1.A: - Transform pthread statements
Check for deadlocks - Use a sequential framework
Step 2:
Define transformation
- Atleast one rules
multi-threaded_code.c violation found
Step 1.B: l
Check for other errors - Use non-determinism
Yes . Step 3:

- Other properties violation Code transformation

- Add specification
to skip previous
found line

\ 4

- ESBMC

Step 4:

/ Set of faults Verify using a BMC tool

14

Our Proposed Methodology

- No violation found

* GEX - counterexample

- Deadlock property violation Safe

- Transform pthread statements
- Use a sequential framework

Multi-threaded C Step 2:
software Define transformation
- At least
multi-threaded_code.c violati?)isfozgz rules
Step 1.B: !
Check for other errors - Use non-determinism
Yes R Step 3:

- Other properties violation Code transformation

- Add specification
to skip previous
found line

\ 4

- ESBMC

Step 4:

/ Set of faults , :
Verify using a BMC tool

15

Our Proposed Methodology

- No violation found

* GEX - counterexample

- Deadlock property violation Safe
Step 1.A: - Transform pthread statements
Check for deadlocks No - Use a sequential framework
Multi-threaded C Yes Step 2:
software Define transformation

- Atleastone rules

multi-threaded _code.c violation found

\ 4

- Use non-determinism

Yes R Step 3:
Code transformation

- Other properties violation - Add specification

to skip previous
found line

\ 4

- ESBMC

Step 4:

Set of fault
/ et o faunts Verify using a BMC tool

16

Our Proposed Methodology

[

Multi-threaded C
software

multi-threaded_code.c

- Deadlock property violation

- No violation found

Step 1.A:
Check for deadlocks

Safe

Step 1.B:
Check for other errors

- Other properties violation

/ Set of faults

* GEX - counterexample

- At least one
violation found

Step 2:
Define transformation
rules

\ 4

Yes

- Add specification
to skip previous

Step 3:
Code transformation

found line

\ 4

Step 4:
Verify using a BMC tool

- Transform pthread statements
- Use a sequential framework

- Use non-determinism

- ESBMC

17

Our Proposed Methodology

- No violation found

[

Multi-threaded C
software

multi-threaded_code.c

- Deadlock property violation

Step 1.A:
Check for deadlocks

Step 1.B:
Check for other errors

- Other properties violation

* GEX - counterexample

- At least one
violation found

Step 2:
Define transformation
rules

\ 4

Yes

- Add specification
to skip previous
found line

/ Set of faults

Step 3:
Code transformation

\ 4

Step 4:
Verify using a BMC tool

- Transform pthread statements
- Use a sequential framework

- Use non-determinism

- ESBMC

18

Our Proposed Methodology

- No violation found

* GEX - counterexample

- Deadlock property violation Safe
Step 1.A: - Transform pthread statements
Check for deadlocks No - Use a sequential framework
Multi-threaded C Yes
software
- Atleast one
multi-threaded_code.c violation found
Step 1.B:

Check for other errors - Use non-determinism

Yes R Step 3:
Code transformation

- Other properties violation - Add specification

to skip previous
found line

\ 4

- ESBMC

Step 4:

/ Set of faults , :
Verify using a BMC tool

19

Our Proposed Methodology

- No violation found

* GEX - counterexample

- Deadlock property violation Safe
Step 1.A: - Transform pthread statements
Check for deadlocks - Use a sequential framework
Multi-threaded C Step 2:
software Define transformation
- Atleast
multi-threaded_code.c violation foﬂg?j rules

Step 1.B:

Check for other errors - Use non-determinism

Yes

- Other properties violation - Add specification

to skip previous
found line

- ESBMC

Step 4:

/ Set of faults , :
Verify using a BMC tool

20

Our Proposed Methodology

- No violation found

* GEX - counterexample

- Deadlock property violation Safe
Step 1.A: - Transform pthread statements
Check for deadlocks - Use a sequential framework
Multi-threaded C Step2:
software Define transformation
- At least one rules
multi-threaded_code.c violation found
Step 1.B: l
Check for other errors - Use non-determinism
Yes . Step 3:
- Other properties violation - Add specification Code transformation
to skip previous

found line

- ESBMC

No
/ Set of faults

21

Our Proposed Methodology

[

Multi-threaded C
software

multi-threaded_code.c

- Deadlock property violation

- No violation found

Step 1.A:
Check for deadlocks

Safe

Step 1.B:
Check for other errors

- Other properties violation

/ Set of faults

* GEX - counterexample

- At least one
violation found

Step 2:
Define transformation
rules

\ 4

Yes

- Add specification
to skip previous

Step 3:
Code transformation

found line

\ 4

Step 4:
Verify using a BMC tool

- Transform pthread statements
- Use a sequential framework

- Use non-determinism

- ESBMC

22

Our Proposed Methodology

- Deadlock property violation

- No violation found

[

Multi-threaded C
software

Step 1.A:
Check for deadlocks

Safe

multi-threaded_code.c

Step 1.B:
Check for other errors

- Other properties violation

* GEX - counterexample

- At least one
violation found

Step 2:
Define transformation
rules

\ 4

Yes

- Add specification
to skip previous

Step 3:
Code transformation

found line

\ 4

Step 4:
Verify using a BMC tool

- Transform pthread statements
- Use a sequential framework

- Use non-determinism

- ESBMC

23

Our Proposed Methodology — Grammar

pthread t £
pthread_attr t €
pthread cond_attr t €
pthread _create €
pthread_join €
pthread _exit €
pthread _mutex t Integer variable is declared
pthread _mutex_lock 1 is assigned to variable
pthread _mutex_unlock 0 is assigned to variable
pthread cond t Integer variable is declared
pthread cond wait 1 is assigned to variable

pthread cond_signal 0 is assigned to variable
24

Our Proposed Methodology — Rules

* Then, we have to use a framework that simulates multi-threaded

programs execution

#define NCS X
int cs[NCS] ={...};
int main(void *args) {
for (inti=0;i<NCS; i++) {
switch (csJi]) {

.
}

return O;

}

case 1:{
case 11:{ ...
case 12:{ ...

case 20:{ ...
} break;

case 2: {
case 21:{ ...
case 22:{ ...

case 30:{ ...
} break;

e

et

Thread O

25

Our Proposed Methodology — Rules

* Then, we have to use a framework that simulates multi-threaded

programs execution

#define NCS X
int cs[NCS] ={...};
int main(void *args) {
for (inti=0;i<NCS;i++) {
switch (cs]i]) {

-
}

return O;

}

case 1:{
case 11:{ ...
case 12:{ ...

case 20:{ ...
} break;

case 2: {
case 21:{ ...
case 22:{ ...

case 30:{ ...
} break;

}
}

et

/J

Context switch 1

26

Our Proposed Methodology — Rules

* Then, we have to use a framework that simulates multi-threaded

programs execution

#define NCS X
int cs[NCS] ={...};
int main(void *args) {
for (inti=0;i<NCS;i++) {
switch (cs]i]) {

-
}

return O;

}

case 1:{
case 11:{ ...
case 12:{ ...

case 20:{ ...
} break;

case 2: {
case 21:{ ...
case 22:{ ...

case 30:{ ...
} break;

/J

}
}

Context

switch 2

et

27

Our Proposed Methodology — Rules

* Then, we have to use a framework that simulates multi-threaded

programs execution

#define NCS X
int cs[NCS] ={...};
int main(void *args) {
for (inti=0;i<NCS;i++) {
switch (cs]i]) {

-
}

return O;

}

case 1:{
case 11:{ ...
case 12:{ ...

case 20:{ ...
} break;

case 2: {
case 21:{ ...
case 22:{ ...

case 30:{ ...
} break;

}
}

} /J

Context switch 10

et

28

Our Proposed Methodology — Rules

* Then, we have to use a framework that simulates multi-threaded

programs execution

#define NCS X
int cs[NCS] ={...};
int main(void *args) {
for (inti=0;i<NCS; i++) {
switch (csJi]) {

.
}

return O;

}

case 1:{
case 11:{ ... }
case 12:{ ... }

case 20:{ ... }

} break;
case 2: { _—

case 21:{ ... }

Thread 1

case 22:{ ... }

case 30:{ ... }
} break;

29

Our Proposed Methodology — Rules

* Then, we have to use a framework that simulates multi-threaded
programs execution

#define NCS X case 1:{
int cs[NCS] ={...}; case 11:{ ...}
int main(void *args) { case 12:{ ... }
for (inti=0;i < NCS; i++) {
switch (csji]) { case 20: { ... }
o > | } break;
}
} case 2: {
return O; case21:{...}
} case 22:{ ... }
case 30:{ ... }
Not del up to 10 context switch tbreak;
ote: we can model up to 10 context switches
for each thread Thread 2..N

Multi- Check for Define Code Verifying
threaded c?ehaedclg gﬁ; other transformat transformat using a ?aeL}lt?sf
software violations ion rules ion BMC tool

(1) #include <pthread.h>

(2) #include <assert.h> (12) (20) int main() {

(3) (13) void *f2(void *arg) { (21) pthread_mutex_init(&m, NULL);

(4) pthread_mutex_t m; (14) pthread_mutex_lock(&m); (22) pthread_tt1, t2;

(5) intc = 0; (15) c=c-1; (23) pthread_create(&t1, NULL, f1, NULL);
(6) (16) assert(c ==1); (24) pthread_create(&t2, NULL, f2, NULL);
(7) void *f1(void *arg) { (17) pthread_mutex_unlock(&m); (25) return O;

(8) pthread_mutex_lock(&m); (18) } (26) }

(9) c=c+1; (19)
(10) pthread_mutex_unlock(&m); ...
(1)}

Running Example

Multi- Check for Define Code Verifying
threaded c?ehaedﬁic() gﬁ; other transformat transformat using a ?aeL}It?sf
software violations ion rules ion BMC tool

esbmc --no-bounds-check --no-div-by-zero-check --no-pointer-check
--deadlock-check --no-slice --boolector example.c

*** Thread interleavings 122 ***

Symex completed in: 0.001s

size of program expression: 110 assignments
Slicing time: 0.000s

Generated 0 VCC(s), 0 remaining after simplification
VERIFICATION SUCCESSFUL

BMC program time: 0.001s

Running Example

Multi- Check for Define Code Verifying
threaded c?ehaedcig gﬁ; other transformat transformat using a ?aeJIt?sf
software violations ion rules ion BMC tool

esbmc --no-bounds-check --no-div-by-zero-check --no-pointer-check
--no-slice --boolector example.c

Counterexample:

State 99 file example.c line 16 function f2 thread 2
c::f2 at /tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 67

Violated property:
file example.c line 16 function 2
assertion
FALSE

VERIFICATION FAILED

Running Example

Multi- Check for Define Code Verifying
threaded c?ehaedcllc(a gﬁ; other transformat transformat using a ?aeL}lt?sf
software violations ion rules ion BMC tool

Counterexample:

State 56 file /tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 101 | J
function pthread_create thread 0 c::pthread_create at example.c line 24 <main invocation>=T | cs[0]=11

State 75 file example.c line 11 function f1 thread 1 c::f1 at
/tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 67

State 99 file example.c line 16 function 2 thread 2 c::f2 at
/tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 67

Violated property:
file example.c line 16 function f2
assertion FALSE
VERIFICATION FAILED

Running Example

Multi- Check for Define Code Verifying
threaded c?ehaedcllc(a gﬁ; other transformat transformat using a ?aeL}lt?sf
software violations ion rules ion BMC tool

Counterexample:

State 56 file tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 101
function pthread_create thread 0 c::pthread_create at example.c line 24 <main invocation>

State 75 file example.c line 11 function f1 thread 1 c::f1 at cs[1]=21
/tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 67 B

State 99 file example.c line 16 function 2 thread 2 c::f2 at
/tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 67

Violated property:
file example.c line 16 function f2
assertion FALSE
VERIFICATION FAILED

Running Example

Multi- Check for Define Code Verifying
threaded c?ehaedcllc(a gﬁ; other transformat transformat using a ?aeL}lt?sf
software violations ion rules ion BMC tool

Counterexample:

State 56 file tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 101
function pthread_create thread 0 c::pthread_create at example.c line 24 <main invocation>

State 75 file example.c line 11 function f1 thread 1 c::f1 at
/tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 67

State 99 file example.c line 16 function f2 thread 2 c::f2 at cs[2]=31
/tmp/esbmc_release_n70Swf/buildrelease/ansi-c/library/pthread_lib.c line 67 NCS=3

Violated property:
file example.c line 16 function f2
assertion FALSE
VERIFICATION FAILED

Running Example

Multi- Check for Define Code Verifying
threaded c?ehaedcig gﬁ; other transformat transformat using a ?aeL}lt?sf
software violations ion rules ion BMC tool

#include <pthread.h>
#include <assert.h> int main() { case 3: {
#define NCS 3 int i; diag = nondet(); case 31: {
int cs[NCS] = {11, 21, 31}, nondet(), diag, ¢ = 0; for (i=0;i < NCS; i++) { f2_1();
switch (csi]) { if (cs[i] == 31) break;
void f1_1() { case 1:{ } break;
intt=c+1; case 11:{ } break;
¢ = (diag == 9 ? nondet() : t); if (cs[i] == 11) break; }
} } }
} break; assert(0);
void f2_1() { case 2: { return 0;
intt=c-1; case 21: { }
¢ = (diag == 15 ? nondet() : t); f1_1();
__ESBMC_assume(c == 1); if (cs[i] == 21) break;
} } break;
. } break;

Running Example

Multi- Check for Define Code Verifying
threaded c?ehaedcllc(a gﬁ; other transformat transformat using a ?aeL}lt?sf
software violations ion rules ion BMC tool

esbmc --no-bounds-check --no-div-by-zero-check --no-pointer-check
--no-slice --boolector transformed_example.c

Counterexample:

State 27 thread 0 Violated property:
State 9 file example-hawk.c line 5 thread 0 c::f2_1 at example-hawk.c line 35 file example-hawk.c line 41 function main
<main invocation> assertion
diag=15 (15) FALSE
c::f2_1::$tmp::tmp$1=TRUE
State 26 file example-hawk.c line 13 VERIFICATION FAILED
function f2_1 thread 0 State 29 file example-hawk.c line 14
c::f2_1 at example-hawk.c line 35 function f2_1 thread 0
<main invocation> c::f2_1 at example-hawk.c line 35

<main invocation>

example-hawk::f2_1::1::t=0 (0)

c=1(1)

Running Example

Multi- Check for Define Code Verifying
threaded c?ehaedcig gﬁ; other transformat transformat using a fSaeJItc;f
software violations ion rules ion BMC tool

F = <Line=15, Correct Value=1>

esbmc --no-bounds-check --no-div-by-zero-check --no-pointer-check
--no-slice --boolector repaired_example.c

*** Thread interleavings 197 ***

Symex completed in: 0.004s

size of program expression: 120 assignments
Slicing time: 0.000s

Generated 0 VCC(s), 0 remaining after simplification
VERIFICATION SUCCESSFUL

BMC program time: 0.004s

v

(15) c=1;

Experimental Objectives and Setup

* Objectives

— Verify and validate our method using standard multi-threaded C software

* Specs
—ESBMC v1.24.1 with SMT solver Boolector version 2.1.0
—Core i7 4500 1.8 GHz
—8 GB of RAM
—Fedora 21 64-bits

 Benchmarks

—11 benchmarks extracted from the Software Verification Competition, and the same
used to evaluate ESBMC for multi-threaded C code

40

Experimental Results

Correct faulty
lines in 54.55%
of benchmarks

Timeouts in
27.27% of
benchmarks

Benchmarks

No useful faulty
lines in 18.18%
of benchmarks

m Success = Failed Timeout

41

Experimental Results

- No useful faulty lines occur when ESBMC retrieves unreasonable diag in
the counterexample for the translated software under verification

—E.g. diag == 0, since there is no line 0 in the code, we cannot say anything about this
fault

* Timeouts

—If we run out of memory when first checking a benchmark using ESBMC, we denote
that execution as a timeout

—Thus, we cannot state it is a safe program, neither model it using our methodology

42

Experimental Results

- However, since we entirely rely on BMC tools to provide
counterexamples to then translate the program under verification,
timeouts are not due to our methodology

* This way, correct faulty lines are found in 6 out of 8 (75%) benchmarks

43

Experimental Results

100
90
80
70
__ 60
)
[
£ 50
= 40
30
20
. -
0 “— S | (i (—]
o o o o o o o o
6. 6 6. b. b. b. b‘ b
i VAN SN 4 M S 4 s
& & $e o & » & &
& O) @ & N N N
> X % N2
&Q &0)
3 ©
& ©
Benchmark

m Time to obtain counterexample m Time to verify translated version 44

Conclusions

* A novel method for localizing faults in multi-threaded C programs was
proposed

—It is based in BMC techniques and is also an extension to a sequential method to
localize faults [Griesmeyer’'07]

—Useful for embedded systems

- Our methodology showed itself to be useful to assist in fault localization
in standard multi-threaded software

Future Work

- Improve our code transformation
—Use GOTO structure to model iterations
—Model pthread statements more accurately

* Develop a tool to automate this process, such as an Eclipse plugin

45

