Verifying Embedded C Software with
Timing Constraints using an Untimed
Bounded Model Checker

Raimundo Barreto®, Lucas Cordeiro*, and Bernd Fischer?

'Universidade Federal do Amazonas
“University of Southampton

rbarreto@icomp.ufam.edu.br

UNIVERSITY OF

XSBESC douthampton

Symposium on Computing System Engineering

Embedded Systems are everywhere

k-,
£

'

r- Bl |

V y

4
B
- .

’ N
‘!‘*"

e o
; 'i'i:'::" #
Brie e

Smartphone

Embedded Systems are everywhere

Digital Pets: AIBO (Artificial Intelligence roBOt)

Embedded Systems are everywhere

Home Appliances: Microwave Oven

Embedded Systems are everywhere

Wearable Computers: Improving information and communication.

ES are everywhere

Unmanned Aeriel Vehicle: Defense, Environmental, ...

We are particularly interested
in the formal verification of
critical embedded real-time software.

Producer

Other Methods

Consumer

IIIIIIIII

TINA

Time petri Net
Analyzer

Other Methods

Empty slots

Ti

Time petri
Analyzer

@227 Kronos

The main aim of this work is to propose
a method to check timing properties
directly in the actual C code using a

(conventional) software model checker.

Original Code.(muilti-threaded)

Annotated Code

//@ DEFINE UP TIMER timer

//@ DEFINE CS-OVERHEAD 1

void *philosopher(void *arg)

{
int THR_ID = *((int*)arg);
int 1, r;
//@ BLOCK START
//@ WCET 3
1=id; r=(id+1)%N;
//@ BLOCK END
//@ BLOCK START
//@ WCET 9
pthread mutex lock(&frk[r]);
pthread mutex lock(&frk[1l]);
pthread mutex unlock(&frk[1l]);
pthread mutex unlock(&frk[r]);
++count;
//@ BLOCK END
//@ ASSERT TIMER (timer<=DLINE)

SUCCESSFUL

FAILED Model-checker (ESBMC)

Translator

#define CS_OVHD 1
void *philosopher(void *arg)
{
int left, right;
__ESBMC_atomic_begin();
if (_ actThr != THR _ID)
t1mer+—(t1mer s;gn*CS _OVHD) ;
_actThr—THR ID;
timer += (timer_sign*3);
left=id; right=(id+1)3%N;
if (_actThr != THR_ID)
timer+=(timer _sign*CS_OVHD) ;
actThr=THR_ID;

ESBMC__ atomic _end();

__ESBMC atomic hegln(),

imer += (tlmer sign*9);
__ ESBMC_atomic end();

__ ESBMC_atomic hegln();
pthread mutex_lock(&frk[right]);
pthread_mutex_lock(&frk[left]);
pthread_mutex_unlock(&frk[left]);
pthread_mutex_unlock(&frk[right]);
++count,

__ESBMC_atomic_end();
assert (t1mer<—DEADLINE),

Translated Code

Where to use?

e There are at least two scenarios:

* (1) for legacy code that does not have a
model, or where there are no automated
tools to extract a faithful model from the
code; and

* (2) when there Is no guarantee that the final
code Is In strict accordance with the model.

Motivation

Real Time Model Checking is Really Simple

Leslie Lamport

L. Lamport, “Real-time model checking is really simple,” in Correct Hardware
Design and Verification Methods (CHARME'05). LNCS 3725, 2005, pp. 162-175.

Motivation

L. Lamport, “Real-time model checking is really simple,” in Correct Hardware
Design and Verification Methods (CHARME'05). LNCS 3725, 2005, pp. 162-175.

ESBMC

(Efficient SMT-Based Context-Bounded Model Checker)

« ESBMC Is a context-bounded model checker for
embedded C software based on Satisfiability Modulo
Theories (SMT) solver.

e It allows:

() to verify single- and multi-threaded software (with shared
variables and locks);

(1) to reason about arithmetic under- and overflow, pointer
safety, memory leaks, array bounds, atomicity and order
violations, deadlock and data race;

(i) to verify programs that make use of bit-level, pointers,
structs, unions and fixed-point arithmetic.

(Iv) to state additional properties using assert-statements.

ESBMC

Overview
multi-threaded :
goto : symbolic OF formula
guide the . execution eneration
g
programs . symbolic execution /. ngine '
C code > Itlfeeep S R SN
: v i
. A 3 scheduler ——> BMC ——> venﬂpgtlon ——> el
| : conditions | | | solver
scan, - 1 | B
parse, and | properties CTTTTTTT T TT T TET e S
type-check check satisfiability.”
2 using an SMT solver
deadlock, atomicity, o

user-assertions, etc

stop the genefate-and-test
reused/extended from the loop if there is an error

Cprover framework

Timing Annotations & Translation

// DEFINE-TIMER TIMERI1

// DEFINE-TIMER TIMER2

// WCET-FUNCTION [d1l]
void f1l(void) {

}

// WCET-FUNCTION [d2]
void f2(void) {

// DEFINE-TIMER TIMERI1
unsigned int TIMERI;

I

// DEFINE-TIMER TIMER2
unsigned int TIMER2;

// WCET-FUNCTION [dl]
oid fl(void) {

TIMER]1 += dl; TIMER2 += dl;

}

// WCET-FUNCTION [d2]

id) {
|TIMER1 += d2; TIMER2 += d2;

;

Coarse-grained timing resolution, since
we specify timing attributes for C functions.

Timing Annotation & Translation

int main(int argc, char *argv[])

//@ RESET-TIMER TIMER1
//@ RESET-TIMER TIMER2

£1(

)i
£2();

//@ ASSERT-TIMER(TIMER1<=alpha)

int main(int argc, char *argv[])

// RESET-TIMER TIMERI1
ITIMER1 = 0;

// RESET-TIMER TIMER2
ITIMER2 = 0;

£1(

) ;
F2();

// ASSERT-TIMER(TIMER1<=alpha)
assert (TIMER1 <= alpha);

We verify timing constraints by using user-defined assertions
on explicit-defined timer variables.

On-going work

#f | Annotation Translation
1 | /(@ DEFINE UP TIMER timerl unsigned int timerl = O;
timerl_sign = +1;
2 | //w DEFINE DOWN TIMER timer2 | unsigned int timer2 = 0;
timer2_sign = -1;
3 | /(@ DEFINE CS-OVERHEAD N #define CS_OVHD N
unsigned int __actThr = UNDEF;
4| //@ RESET TIMER timerl M timerl = M;
5| //@ ASSERT TIMER(timerl<<=DL) | assert (timerl<<=DL);
//@ ASSERT TIMER(timerl >=DL) | assert (timerl>=DL);
6 |//(@ WCET BLOCK M __ESBMC_atomic_begin();
"""""""""""""""""""""""""""""""" if (__actThr !'= THR_ID) {
timerl += (timerl_sign®*CS_OVHD);
timerN += (timerN_sign*CS_OVHD);
¥
__actThr = THR_ID;
timerl += (timerl_sign®*M);
timerN += (timerN_sign*M);
7 | /(@ END BLOCK __ESBMC_atomic_end();

Fine-grained timing resolution on the block level.

Example: Bridge Crossing Problem

It is a mathematical puzzle with real-time aspects.
The main aim is to verify the best-case timing properties.

Four persons, P1 to P4, have to cross a narrow bridge. It is dark, so they can cross
only if they carry a light. Only one light is available and at most two persons can cross at
the same time. When a pair crosses the bridge, they move at the speed of the slowest
person in the pair.

What is the timing best-case for the whole group to be on the other side?

e A

Two observations:

1) we may have an infinite timing in the worst-
case scenario, since the system can livelock
(i.e. the same persons can continuously cross
back and forth); and
2) the main aim of this experiment is to verify
the best-case timing scenario.

Four persons, P1 to P4, have to cross a narrow bridge. It is dark, so they can cross
only if they carry a light. Only one light is available and at most two persons can cross at
the same time. When a pair crosses the bridge, they move at the speed of the slowest
person in the pair.

What is the timing best-case for the whole group to be on the other side?

Example: Bridge Crossing Problem

1) The elapsed time cannot be less than 60.
* Modelled as:
assume (timer<60);

assert (FALSE) ;

« ESBMC result was sucessful, since it failed to
reach assert (FALSE) => no execution path

where the condition (timer<60)is true.
* Proof by contradiction!

Example: Bridge Crossing Problem

2)The elapsed time is greater than or equal to 60 t.u.
* Modelled as:

assert (timer >= 60)

e« ESBMC succeeded => asserted condition Is
always true.

Conclusion: The best-case Is 60 t.u.

Experimental Evaluation
Pulse Oximeter

The pulse oximeter is responsible for measuring the oxygen saturation (Sp0O2)
and heart rate (HR) in the blood system using a nhon-invasive method.

Experimental Evaluation
Pulse Oximeter

Packet Description

+ | Bytel Byte2 Byte3 Byte4 | Byteb
1 01 | STATUS | PLETH | HR MSB | CHK
2 01| STATUS | PLETH | HR LSB | CHK
3 01| STATUS | PLETH SpO2 | CHK

25 01| STATUS | PLETH | reserved | CHK

We should receive 3 packets in each second

Experimental Evaluation
Pulse Oximeter

ID Function Description WCET(118)
fl recerveSensorData receives data from the sensor 1000
f2 checkStatus checks status 700
t3 printStatusError displays status error 10000
f5 printCheckSumError displays checksum error 10000
16 storedRMSB stores OR data 200
f7 storeHRLSB stores HR data 200
f8 storeSpO?2 stores SpO?2 data 200
9 averageHR calculates average of HR data 800
f10 averageSpO2 calculates average of SpO2 data 800
f11 getHR returns the stored HR value 200
f12 getSpO2 returns the stored SpO2 value 200
f13 printHR displays HR on the LCD 5000
f14 printSpO2 displays SpO2 on the LCD 5000

f15 insertLog

inserts HR/SpO2 in RAM microcontroller

500

Experimental Evaluation
Pulse Oximeter

for (k=0; k<3; k++) A
for (j=0; j<25; j++) |
for (i=0; i<5; i++) {
Byte[1] = receiveSensorData () ;

1if ((1==1) && (checkStatus (Bytel[1])))

printStatusErroxr (LINE1) ;

1if ((1==4) && |(checkSum (Byte ﬁ)
printCheckSumError (;
if (i==3) {

if (j==0) storeHRMSB (Bytel[il],
if (j==1) storeHRLSB (Bytel[il],
if (j==2) storeSpO2 (Byte[i],

The implementation is relatively complex.

k) ;
k) ;
k) ;

It has approximately 3500 lines of ANSI-C code and 80 functions.

Experimental Evaluation
Pulse Oximeter

We experimented several scenarios

1 O% successful

30% successful

50% failed

Conclusions

« This work described how to use an untimed software model
checker to verify timing constraints in C code.

« No other method model checks timing constraints directly in the
actual C code without explicitly generating a high-level model.

« We specified the timing behavior using an explicit-time code
annotation technique.

« We provide a method able to use languages and tools not
specially designed for real-time model checking.

« We show experimental evaluation on a medical device case study.

« We show that using our proposed method it is possible to
Investigate several scenarios.

Future Work

 To consider multi-threaded code;

e To extend the code annotation method to
consider fine-grained timing constraints

* To express context-dependent execution time
bounds, e.g. loops, arrays, etc.

UNIVERSITY OF

Southampton

http://esbmc.org

rbarreto@icomp.ufam.edu.br

http://esbmc.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

