

Verifying Embedded C Software with Verifying Embedded C Software with
Timing Constraints using an Untimed Timing Constraints using an Untimed

Bounded Model CheckerBounded Model Checker

Raimundo Barreto1, Lucas Cordeiro1, and Bernd Fischer2

1Universidade Federal do Amazonas
2University of Southampton

rbarreto@icomp.ufam.edu.br

Symposium on Computing System Engineering

Embedded Systems are everywhere

Smartphone

Embedded Systems are everywhere

Digital Pets: AIBO (Artificial Intelligence roBOt)

Embedded Systems are everywhere

Home Appliances: Microwave Oven

Embedded Systems are everywhere

Wearable Computers: Improving information and communication.

ES are everywhere

Unmanned Aeriel Vehicle: Defense, Environmental, ...

We are particularly interested
in the formal verification of

critical embedded real-time software.

We are particularly interested
in the formal verification of

critical embedded real-time software.

Kronos

Other Methods

We propose a

We propose a

diffe
rent m

ethod!

diffe
rent m

ethod!

We propose a

We propose a

diffe
rent m

ethod!

diffe
rent m

ethod!

Other Methods

Kronos

The main aim of this work is to propose
a method to check timing properties
directly in the actual C code using a

(conventional) software model checker.

The main aim of this work is to propose
a method to check timing properties
directly in the actual C code using a

(conventional) software model checker.

FAILED

SUCCESSFUL

//@ DEFINE UP TIMER timer
//@ DEFINE CSOVERHEAD 1
void *philosopher(void *arg)
{
 int THR_ID = *((int*)arg);
 int l, r;
 //@ BLOCK START
 //@ WCET 3
 l=id; r=(id+1)%N;
 //@ BLOCK END
 //@ BLOCK START
 //@ WCET 9
 pthread_mutex_lock(&frk[r]);
 pthread_mutex_lock(&frk[l]);
 pthread_mutex_unlock(&frk[l]);
 pthread_mutex_unlock(&frk[r]);
 ++count;
 //@ BLOCK END
 //@ ASSERT TIMER (timer<=DLINE)
}

Annotated Code

#define CS_OVHD 1
void *philosopher(void *arg)
{
 int left, right;
 __ESBMC_atomic_begin();
 if (_actThr != THR_ID)
 timer+=(timer_sign*CS_OVHD);
 _actThr=THR_ID;
 timer += (timer_sign*3);
 left=id; right=(id+1)%N;
 if (_actThr != THR_ID)
 timer+=(timer_sign*CS_OVHD);
 _actThr=THR_ID;
 __ESBMC_atomic_end();
 __ESBMC_atomic_begin();
 timer += (timer_sign*9);
 __ESBMC_atomic_end();
 __ESBMC_atomic_begin();
 pthread_mutex_lock(&frk[right]);
 pthread_mutex_lock(&frk[left]);
 pthread_mutex_unlock(&frk[left]);
 pthread_mutex_unlock(&frk[right]);
 ++count;
 __ESBMC_atomic_end();
 assert (timer<=DEADLINE);
}

Translated Code

Translator

Model-checker (ESBMC)

Original Code (multi-threaded)

Where to use?

● There are at least two scenarios:
● (1) for legacy code that does not have a

model, or where there are no automated
tools to extract a faithful model from the
code; and

● (2) when there is no guarantee that the final
code is in strict accordance with the model.

Motivation

Real Time Model Checking is Really Simple

Leslie Lamport

Real Time Model Checking is Really Simple

Leslie Lamport

L. Lamport, “Real-time model checking is really simple,” in Correct Hardware
Design and Verification Methods (CHARME’05). LNCS 3725, 2005, pp. 162–175.

Motivation

L. Lamport, “Real-time model checking is really simple,” in Correct Hardware
Design and Verification Methods (CHARME’05). LNCS 3725, 2005, pp. 162–175.

Real Time Model Checking is Really Simple

Leslie Lamport

Real Time Model Checking is Really Simple

Leslie Lamport

He just represents time

as an ordinary variable

and expresses timing

requirements with

special tim
er variables.

ESBMC
(Efficient SMT-Based Context-Bounded Model Checker)

● ESBMC is a context-bounded model checker for
embedded C software based on Satisfiability Modulo
Theories (SMT) solver.

● It allows:

(i) to verify single- and multi-threaded software (with shared
variables and locks);

(ii) to reason about arithmetic under- and overflow, pointer
safety, memory leaks, array bounds, atomicity and order
violations, deadlock and data race;

(iii) to verify programs that make use of bit-level, pointers,
structs, unions and fixed-point arithmetic.

(iv) to state additional properties using assert-statements.

ESBMC
Overview

C code

scan,
parse, and
type-check

verification
conditions

SMT
solver

deadlock, atomicity,
user-assertions, etc

guide the
symbolic execution

QF formula
generation

check satisfiability
using an SMT solver

stop the generate-and-test
loop if there is an error

scheduler

multi-threaded
goto
programs

reused/extended from the
Cprover framework

properties

IRep
tree

BMC

symbolic
execution
engine

Timing Annotations & Translation

// DEFINETIMER TIMER1

// DEFINETIMER TIMER2

...

// WCETFUNCTION [d1]
void f1(void) {
...

}

// WCETFUNCTION [d2]
void f2(void) {
...

}

// DEFINETIMER TIMER1
unsigned int TIMER1;

// DEFINETIMER TIMER2
unsigned int TIMER2;

...

// WCETFUNCTION [d1]
void f1(void) {
TIMER1 += d1; TIMER2 += d1;
...
}

// WCETFUNCTION [d2]
void f2(void) {
TIMER1 += d2; TIMER2 += d2;
...
}

Coarse-grained timing resolution, since
we specify timing attributes for C functions.

Timing Annotation & Translation

int main(int argc, char *argv[])
...
//@ RESETTIMER TIMER1

//@ RESETTIMER TIMER2

f1();
f2();

//@ ASSERTTIMER(TIMER1<=alpha)

int main(int argc, char *argv[])
...
// RESETTIMER TIMER1
TIMER1 = 0;

// RESETTIMER TIMER2
TIMER2 = 0;

f1();
F2();

// ASSERTTIMER(TIMER1<=alpha)
assert (TIMER1 <= alpha);

We verify timing constraints by using user-defined assertions
on explicit-defined timer variables.

On-going work

Fine-grained timing resolution on the block level.

Example: Bridge Crossing Problem

It is a mathematical puzzle with real-time aspects.
The main aim is to verify the best-case timing properties.

20 255 10

20 255 10

Four persons, P1 to P4, have to cross a narrow bridge. It is dark, so they can cross
only if they carry a light. Only one light is available and at most two persons can cross at
the same time. When a pair crosses the bridge, they move at the speed of the slowest
person in the pair.

What is the timing best-case for the whole group to be on the other side?

20 255 10

20 255 10

Four persons, P1 to P4, have to cross a narrow bridge. It is dark, so they can cross
only if they carry a light. Only one light is available and at most two persons can cross at
the same time. When a pair crosses the bridge, they move at the speed of the slowest
person in the pair.

What is the timing best-case for the whole group to be on the other side?

Two observations:

1) we may have an infinite timing in the worst-
case scenario, since the system can livelock

(i.e. the same persons can continuously cross
back and forth); and

2) the main aim of this experiment is to verify
the best-case timing scenario.

Two observations:

1) we may have an infinite timing in the worst-
case scenario, since the system can livelock

(i.e. the same persons can continuously cross
back and forth); and

2) the main aim of this experiment is to verify
the best-case timing scenario.

Example: Bridge Crossing Problem

1) The elapsed time cannot be less than 60.

● Modelled as:

assume(timer<60);

assert(FALSE);

● ESBMC result was sucessful, since it failed to
reach assert(FALSE) => no execution path
where the condition (timer<60)is true.

● Proof by contradiction!

Example: Bridge Crossing Problem

2)The elapsed time is greater than or equal to 60 t.u.

● Modelled as:

assert(timer >= 60)

● ESBMC succeeded => asserted condition is
always true.

Conclusion: The best-case is 60 t.u.Conclusion: The best-case is 60 t.u.

Experimental Evaluation
Pulse Oximeter

The pulse oximeter is responsible for measuring the oxygen saturation (SpO2)
and heart rate (HR) in the blood system using a non-invasive method.

Experimental Evaluation
Pulse Oximeter

Packet Description

We should receive 3 packets in each second

Experimental Evaluation
Pulse Oximeter

Experimental Evaluation
Pulse Oximeter

The implementation is relatively complex.
It has approximately 3500 lines of ANSI-C code and 80 functions.

Experimental Evaluation
Pulse Oximeter

ID
% Checksum

Error
Time(s) Result

1 0% 28.9 successful

2 10% 20.3 successful

3 20% 20.2 successful

4 30% 19.9 successful

5 40% 19.9 failed

6 50% 21.1 failed

7 100% 30.2 failed

We experimented several scenarios

Conclusions

● This work described how to use an untimed software model
checker to verify timing constraints in C code.

● No other method model checks timing constraints directly in the
actual C code without explicitly generating a high-level model.

● We specified the timing behavior using an explicit-time code
annotation technique.

● We provide a method able to use languages and tools not
specially designed for real-time model checking.

● We show experimental evaluation on a medical device case study.

● We show that using our proposed method it is possible to
investigate several scenarios.

Future Work

● To consider multi-threaded code;
● To extend the code annotation method to

consider fine-grained timing constraints
● To express context-dependent execution time

bounds, e.g. loops, arrays, etc.

http://esbmc.org

rbarreto@icomp.ufam.edu.br

http://esbmc.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

