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Embedded Systems are everywhere
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Embedded Systems are everywhere

Digital Pets: AIBO (Artificial Intelligence roBOt)



  

Embedded Systems are everywhere

Home Appliances: Microwave Oven



  

Embedded Systems are everywhere

Wearable Computers: Improving information and communication.



  

ES are everywhere

Unmanned Aeriel Vehicle: Defense, Environmental, ...
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The main aim of this work is to propose
a method to check timing properties
directly in the actual C code using a

(conventional) software model checker.
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FAILED

SUCCESSFUL

//@ DEFINE UP TIMER timer
//@ DEFINE CSOVERHEAD 1
void *philosopher(void *arg)
{
  int THR_ID = *((int*)arg);
  int l, r;
  //@ BLOCK START
  //@ WCET 3
  l=id;  r=(id+1)%N;
  //@ BLOCK END
  //@ BLOCK START
  //@ WCET 9
  pthread_mutex_lock(&frk[r]);
  pthread_mutex_lock(&frk[l]);
  pthread_mutex_unlock(&frk[l]);
  pthread_mutex_unlock(&frk[r]);
  ++count;
  //@ BLOCK END
  //@ ASSERT TIMER (timer<=DLINE)
}

Annotated Code

#define CS_OVHD 1
void *philosopher(void *arg)
{
  int left, right;
  __ESBMC_atomic_begin();
  if (_actThr != THR_ID)
    timer+=(timer_sign*CS_OVHD); 
  _actThr=THR_ID;
  timer += (timer_sign*3);
  left=id;  right=(id+1)%N;
  if (_actThr != THR_ID)
    timer+=(timer_sign*CS_OVHD); 
  _actThr=THR_ID;
  __ESBMC_atomic_end();
  __ESBMC_atomic_begin();
  timer += (timer_sign*9);
  __ESBMC_atomic_end();
  __ESBMC_atomic_begin();
  pthread_mutex_lock(&frk[right]);
  pthread_mutex_lock(&frk[left]);
  pthread_mutex_unlock(&frk[left]);
  pthread_mutex_unlock(&frk[right]);
  ++count;
  __ESBMC_atomic_end();
  assert (timer<=DEADLINE);
}

Translated Code

Translator

Model-checker (ESBMC)

Original Code (multi-threaded)



  

Where to use?

● There are at least two scenarios: 
● (1) for legacy code that does not have a 

model, or where there are no automated 
tools to extract a faithful model from the 
code; and 

● (2) when there is no guarantee that the final 
code is in strict accordance with the model.
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Real Time Model Checking is Really Simple
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L. Lamport, “Real-time model checking is really simple,” in Correct Hardware 
Design and Verification Methods (CHARME’05). LNCS 3725, 2005, pp. 162–175.
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He just represents time 

as an ordinary variable 

and expresses timing 

requirements with 

special tim
er variables.



  

ESBMC
(Efficient SMT-Based Context-Bounded Model Checker)

● ESBMC is a context-bounded model checker for 
embedded C software based on Satisfiability Modulo 
Theories (SMT) solver. 

● It allows: 

(i) to verify single- and multi-threaded software (with shared 
variables and locks); 

(ii) to reason about arithmetic under- and overflow, pointer 
safety, memory leaks, array bounds, atomicity and order 
violations, deadlock and data race; 

(iii) to verify programs that make use of bit-level, pointers, 
structs, unions and fixed-point arithmetic.

(iv) to state additional properties using assert-statements.



  

ESBMC
Overview

C code
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user-assertions, etc
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symbolic execution

QF formula 
generation

check satisfiability 
using an SMT solver

stop the generate-and-test 
loop if there is an error

scheduler

multi-threaded 
goto 
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properties
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tree
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execution 
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Timing Annotations & Translation

// DEFINETIMER TIMER1

// DEFINETIMER TIMER2

...

// WCETFUNCTION [d1]
void f1(void) {
...

}

// WCETFUNCTION [d2]
void f2(void) {
...

}

// DEFINETIMER TIMER1
unsigned int TIMER1;

// DEFINETIMER TIMER2
unsigned int TIMER2;

...

// WCETFUNCTION [d1]
void f1(void) {
TIMER1 += d1; TIMER2 += d1;
...
}

// WCETFUNCTION [d2]
void f2(void) {
TIMER1 += d2; TIMER2 += d2;
...
}

Coarse-grained timing resolution, since 
we specify timing attributes for C functions.



  

Timing Annotation & Translation

int main(int argc, char *argv[])
...
//@ RESETTIMER TIMER1

//@ RESETTIMER TIMER2

f1(); 
f2();

//@ ASSERTTIMER(TIMER1<=alpha)

int main(int argc, char *argv[])
...
// RESETTIMER TIMER1
TIMER1 = 0;

// RESETTIMER TIMER2
TIMER2 = 0;

f1(); 
F2();

// ASSERTTIMER(TIMER1<=alpha)
assert (TIMER1 <= alpha);

We verify timing constraints by using user-defined assertions
on explicit-defined timer variables.



  

On-going work

Fine-grained timing resolution on the block level.



  

Example: Bridge Crossing Problem

It is a mathematical puzzle with real-time aspects. 
The main aim is to verify the best-case timing properties.



  

20 255 10

20 255 10

Four persons, P1 to P4, have to cross a narrow bridge. It is dark, so they can cross 
only if they carry a light. Only one light is available and at most two persons can cross at 
the same time. When a pair crosses the bridge, they move at the speed of the slowest
person in the pair. 

What is the timing best-case for the whole group to be on the other side?
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Two observations:

1) we may have an infinite timing in the worst-
case scenario, since the system can livelock 

(i.e. the same persons can continuously cross 
back and forth); and 

2) the main aim of this experiment is to verify 
the best-case timing scenario.
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Example: Bridge Crossing Problem

1) The elapsed time cannot be less than 60. 

● Modelled as:

assume(timer<60);  

assert(FALSE); 

● ESBMC result was sucessful, since it failed to 
reach assert(FALSE) => no execution path 
where the condition (timer<60)is true.

● Proof by contradiction!



  

Example: Bridge Crossing Problem

2)The elapsed time is greater than or equal to 60 t.u. 

● Modelled as:

assert(timer >= 60)

● ESBMC succeeded => asserted condition is 
always true.

Conclusion: The best-case is 60 t.u.Conclusion: The best-case is 60 t.u.



  

Experimental Evaluation
Pulse Oximeter

The pulse oximeter is responsible for measuring the oxygen saturation (SpO2) 
and heart rate (HR) in the blood system using a non-invasive method.



  

Experimental Evaluation
Pulse Oximeter

Packet Description

We should receive 3 packets in each second



  

Experimental Evaluation
Pulse Oximeter



  

Experimental Evaluation
Pulse Oximeter

The implementation is relatively complex. 
It has approximately 3500 lines of ANSI-C code and 80 functions.



  

Experimental Evaluation
Pulse Oximeter

ID
% Checksum 

Error
Time(s) Result

1 0% 28.9 successful

2 10% 20.3 successful

3 20% 20.2 successful

4 30% 19.9 successful

5 40% 19.9 failed

6 50% 21.1 failed

7 100% 30.2 failed

We experimented several scenarios



  

Conclusions

● This work described how to use an untimed software model 
checker to verify timing constraints in C code. 

● No other method model checks timing constraints directly in the 
actual C code without explicitly generating a high-level model.

● We specified the timing behavior using an explicit-time code 
annotation technique.

● We provide a method able to use languages and tools not 
specially designed for real-time model checking.

● We show experimental evaluation on a medical device case study.

● We show that using our proposed method it is possible to 
investigate several scenarios.



  

Future Work

● To consider multi-threaded code;
● To extend the code annotation method to 

consider fine-grained timing constraints
● To express context-dependent execution time 

bounds, e.g. loops, arrays, etc.



  

http://esbmc.org

rbarreto@icomp.ufam.edu.br

http://esbmc.org/
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