
© 2023 Arm

[1] The University of Manchester, UK

Verifying Components of ARM 
Confidential Computing Architecture 
with ESBMC (NEAT paper)

Tong Wu [1], Shaole Xiong [2], Edoardo Manino [1], 
Gareth Stockwell [2], Lucas C. Cordeiro [1,3]

[2] ARM

[3] Federal University of Amazonas, Brasil



2 © 2023 Arm

What is confidential computing?

Secure Cloud Computing

• Challenges
• Sensitive data sent to third party
• Timesharing of computational resources
• Severe security risks
• e.g. Facebook user data leak on AWS (2019)

• Vision
• Secure Execution Environment
• Confidentiality & integrity of data & code
• CPU-level isolation

• But how?



3 © 2023 Arm

What is confidential computing?

Main Idea

• Classic architecture
• Timesharing of computational resources
• Supervisor/scheduler does the time sharing
• It can access data & code

• Secure Architecture
• Split management rights...
• ...from access rights
• Supervisor/scheduler cannot see data & code

ARM solution

• ARM Confidential Computing Architecture (CCA)

• Beyond "just" virtual machines

• Concept of "realm" as secure environment



© 2023 Arm

Realm Management Monitor (RMM)



5 © 2023 Arm

ARM Confidential 
Computing Architecture

Non-secure state

SPM

TOS

T
A

Secure state

Secure 
Service

Realm state

HypervisorRMM

Realm

Kernel

App App

Monitor

T
A

RMI

RSI

EL3

EL1

EL0

EL2

VM VM

Root state

Software Stack

• User-space level

• Low-level firmware

Hardware

Memory Partition

• Secure

• Non-Secure

• Realm

EL3 Monitor (root)

• CPU context switches 
between security states

• Memory assignments to 
physical address space

• Relies on granule 
protection table



6 © 2023 Arm

Non-secure state

SPM

TOS

T
A

Secure state

Secure 
Service

Realm state

HypervisorRMM

Realm

Kernel

App App

Monitor

T
A

RMI

RSI

EL3

EL1

EL0

EL2

VM VM

Root state

Three crucial components

• Realm Services Interface (RSI)
• Secure monitor interface called by Realm
• Measurement and attestation
• Handshakes involved in some

memory management flows

• Realm Management Monitor (RMM)
• Contains no policy
• Performs no dynamic memory allocation
• Provides services to Host and Realm

Hardware

ARM Confidential 
Computing Architecture

• Realm Management Interface (RMI)
• Secure monitor interface called by Host
• Create / destroy Realms
• Manage Realm memory, manipulating

stage 2 translation tables
• Context switch between Realm VCPUs



7 © 2023 Arm

Realm Management Interface (RMI)

Realm lifecycle

RMI_REALM_CREATE

RMI_REALM_DESTROY

RMI_REALM_ACTIVATE

Stage 2 table management

RMI_RTT_CREATE

RMI_RTT_DESTROY

RMI_RTT_FOLD

RMI_RTT_INIT_RIPAS

RMI_RTT_SET_RIPAS

RMI_RTT_READ_ENTRY

RMI_RTT_MAP_UNPROTECTED

RMI_RTT_UNMAP_UNPROTECTED

Memory delegation

RMI_GRANULE_DELEGATE

RMI_GRANULE_UNDELEGATE

Discovery

RMI_VERSION

RMI_FEATURES

Realm memory management

RMI_DATA_CREATE

RMI_DATA_CREATE_UNKNOWN

RMI_DATA_DESTROY
Realm VCPU scheduling

RMI_REC_ENTER

Realm VCPU lifecycle

RMI_REC_CREATE

RMI_REC_DESTROY

RMI_REC_AUX_COUNT

RMI_PSCI_COMPLETE

Non-secure stateRealm state

HypervisorRMM

Realm

Kernel

App App

Monitor

RMI

RSI

VM VM



8 © 2023 Arm

Realm Services Interface (RSI)

Measurement

RSI_MEASUREMENT_EXTEND

RSI_MEASUREMENT_READ

Attestation

RSI_ATTESTATION_TOKEN_INIT

RSI_ATTESTATION_TOKEN_CONTINUE

IPA state management

RSI_IPA_STATE_GET

RSI_IPA_STATE_SET

Discovery

RSI_VERSION

RSI_REALM_CONFIG

Communication

RSI_HOST_CALL

Non-secure stateRealm state

HypervisorRMM

Realm

Kernel

App App

Monitor

RMI

RSI

VM VM



9 © 2023 Arm

Machine-readable specification

Abstract model
• Attributes of Realm, Granule, REC, RTT

Commands
• Pre-requisites for successful execution
• Effect on system state

Non-command behavior
• Exception model
• Aborts and routing
• Interrupts and timers
• Measurement and attestation
• Debug and performance monitoring

• MRS
• (Mostly) formal pre / post-conditions
• Failure partial ordering
• Footprint
• Data types (layout and encoding)

• Rules-based writing
• Diagrams and tables

• Rules-based writing
• MRS

Presentation formatContent



10 © 2023 Arm

Verifying the ARM Confidential Computing Architecture

Previous work

• Harnesses
• Pick a RMM function
• And its safety specification
• Produce C code with assume/assert
• And non-deterministic inputs

• Verification engine
• CBMC for model checking
• Coq for interactive proving

Reference

• Li, at al., Design and Verification of the ARM 
CCA, USENIX 2022.

This work

• Can we trust the existing guarantees?
• Reproducibility effort
• When can we say it is safe enough?

• Compare against a different verifier
• ESBMC for model checking
• Manual loop bound annotations
• Multi-property checks
• 23 new violations found



© 2023 Arm

ESBMC vs CBMC



12 © 2023 Arm

ESBMC: A Logic-based Verification Platform

Logic-based automated verification

for checking safety and liveness 

properties in AI and software systems

Combines BMC, k-induction, abstract interpretation, CP/SMT solving 

towards correctness proof and bug hunting

www.esbmc.org

GOTO

Program

Verification 

Conditions

Abstract Syntax

Tree (AST)
Scan

SMT

Solver

Symbolic

Execution

Engine

Property holds

Property violated

C/C++/CHERI

/CUDA

Control-flow 

Graph 

Generator 

clang
Memory 

Model

External 

Libraries
Correctness 

Witness

Violation 

Witness

ScanJava/Kotlin/ 

Android
Soot

Scan
Solidity Solidity

Scan
Python ast2json

Abs.Int. / 

CSP Solver

Code 

Instrumentation
Produce C 

code

HTML 

report

Program Debugging

Models

Parallelization

Software

onnx2c / 

keras2c

Tiny ML

Caching / 

Slicing

Simplify 

Loops

Test-case 

generation

Program Repair



13 © 2023 Arm

Differences with CBMC

Feature CBMC ESBMC

Concurrency 

Support

Symbolic encoding in one SAT

formula.

Encode each interleaving into 

SMT formula with context-

bounded verification.

Parser
Modified C parser & C++ parser 

based on OpenC++.
Clang front-end.

Additional 

Supported 

Languages

Java via JBMC.
Solidity grammar, Python and 

Kotlin programs.

K-induction
Requires three calls. No forward 

condition for state reachability.
Handles in a single call.



14 © 2023 Arm

Competition on Software Verification (SV-COMP)

ESBMC (k-ind)CBMC



15 © 2023 Arm

ESBMC K-induction



© 2023 Arm

RMM verification with ESBMC



17 © 2023 Arm

Bounded verification

Incremental BMC

• Automatic loop unrolling up to k

• Uniform bound across the whole program

• If bound too small -> lots of time wasted

Manual annotations

• ARM engineers provide annotations

• Custom bound for each loop

• Clear advantage over automated approach



18 © 2023 Arm

Multi-property checks

Challenge

• Real-world programs have multiple asserts

• What's the best encoding strategy?

Option 1 (single)

• Encode them in a single SMT formula

• Larger formula, no repetitions

Option 2 (multiple)

• Encode them in a separate SMT formulas

• The other assertions are ignored

• Repeated work, separate counterexamples



19 © 2023 Arm



20 © 2023 Arm

Safety violations in RMM



21 © 2023 Arm

Safety violations in RMM

RMI Realm Destroy

• Confirmed bug

• Pointer-to-integer conversion

• Already patched!

RMI Realm Activate & RMM Data Destroy

• Not confirmed yet, ARM engineers are working on it

Take away message

• DO not trust any single verification tool!



22 © 2023 Arm

Time breakdown

12.5 12.5 12.5 12.5 12.5 12.5 12.5

17
3.6 3.5

12.5

27

12.2

38.34.4

2.8 2.8

3.7

4.4

3.6

5.4

23.7

24.3

5.1

22.1

30

35.4

3.3

ESBMC

PARSE SYMEX ENCODE SOLVING

2 2 2 2 2 2 21.4 1.1 1.1 1.2 1.7 1.2 2.12 0.1 0.1 0.9 3.3 0.5 0.02

13

0.25 0.22
5.4

52.5

2.7 0.4

CBMC

PARSE SYMEX ENCODE SOLVING



23 © 2023 Arm

Syntax errors

CBMC Parser

• Based on OpenC++

• Does not spot the issue

ESBMC Parser

• Based on Clang

• Spots the missing brackets



© 2023 Arm

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

