arm

"

Verifying Componey
Confidential Compgting Architectii
with ESBMC (NEATipaper) ¢ — /i

.",
.
.
"’.v*" A
if A,
. s ¢\

U

) ’W
g\‘l

ke
g

;
‘:‘i‘ - |
Tong Wu [1], Shaole Xiong [2], Edoardo '11]’
Gareth Stockwell [2], Lucas C. Cordeiro [1)3} %

[1] The University of Manchester, UK [2] ARM
[3] Federal University of Amazonas, Brasil

© 2023 Arm

What is confidential computing?

Secure Cloud Computing

e Challenges

* Sensitive data sent to third party

* Timesharing of computational resources

* Severe security risks

* e.g. Facebook user data leak on AWS (2019)
e \ision

* Secure Execution Environment

* Confidentiality & integrity of data & code

e CPU-level isolation
* But how?

2 ©2023 Arm a rm

What is confidential computing?

Main Idea

e C(Classic architecture Arm architecture development process, including
. . . an initiative providing CC-enabling technologies
* Timesharing of computational resources

* Supervisor/scheduler does the time sharing

* |t can access data & code Virtualisation Virtualisation

TrustZone ®

(EL2) (S-EL2)

e Secure Architecture

* Split management rights... CC on Arm happening
. across the ecosystem
e ...from access rights ¢

* Supervisor/scheduler cannot see data & code

ARM solution
e ARM Confidential Computing Architecture (CCA)

e Beyond "just" virtual machines

e Concept of "realm" as secure environment

© 2023 Arm

Arm CCA

arm

arm

Realm Management Monitor (RMM)

ARM Confidential Memory Partition
Computing Architecture " secure

e Non-Secure

e Realm \
Software Stack /

Realm state Non-secure state Secure state
e User-space level
e Low-level firmwa r\
ELO

Secure
Service

EL3 Monitor (root) EL1
* CPU context switches
between security states EL2 X Hypervisor

e Memory assignments to

physical address space
Root state
T Reles onerane
protection table
5 © 2023 Arm a rm

A R M CO n fi d e n t i a I Realm state Non-secure state Secure state
Computing Architecture | '

Three crucial components /

e Realm Services Interface (RSI)
e Secure monitor interface called by Realm
* Measurement and attestation
* Handshakes involved in some EL3 Monitor
Root state
memory management flows

Secure
Service

Hardware

e Realm Management Monitor (RMMV)

e Contains no policy
* Performs no dynamic memory allocation * Realm Management Interface (RMI)

 Provides services to Host and Realm Secure monitor interface called by Host
* Create / destroy Realms
* Manage Realm memory, manipulating
stage 2 translation tables
e Context switch between Realm VCPUs

6 © 2023 Arm a rm

Realm state Non-secure state

Realm Management Interface (RMI)

Discovery Stage 2 table management

RMI_VERSION RMI_RTT_CREATE
RMI_FEATURES RMI_RTT_DESTROY
RMI_RTT_FOLD

Realm memory management Rl

T RTT ST Ripas
RMI_DATA_CREATE RMI_RTT_SET_RIPAS
RMI_DATA_ CREATE_UNKNOWN

RMI_RTT_MAP_UNPROTECTED
RMI_DATA_ DESTROY

RMI_RTT_UNMAP_UNPROTECTED Realm VCPU scheduling

RMI_REC_ENTER

Realm lifecycle
Realm VCPU lifecycle

RMI_REC_CREATE Memory delegation

RMI_REC_DESTROY RMI_GRANULE_DELEGATE

RMI_REC_AUX_COUNT RMI_GRANULE_UNDELEGATE
RMI_PSCI_COMPLETE

© 2023 Arm a r m

RMI_REALM_CREATE
RMI_REALM_DESTROY
RMI_REALM_ACTIVATE

8

Realm Services Interface (RSI)

Discovery

RSI_VERSION
RSI_REALM_CONFIG

IPA state management

RSI_IPA STATE_GET
RSI_IPA STATE_SET

Communication
RSI HOST_ CALL

© 2023 Arm

Measurement

RSI_MEASUREMENT_EXTEND
RSI_MEASUREMENT_READ

Attestation

RSI_ATTESTATION_TOKEN_INIT
RSI_ATTESTATION_TOKEN_CONTINUE

Realm state Non-secure state

arm

9

Machine-readable specification

Content

Abstract model
e Attributes of Realm, Granule, REC, RTT

Commands

* Pre-requisites for successful execution
* Effect on system state

Non-command behavior
Exception model
Aborts and routing
Interrupts and timers
Measurement and attestation
Debug and performance monitoring

© 2023 Arm

Presentation format

Rules-based writing
MRS

MRS

(Mostly) formal pre / post-conditions
Failure partial ordering

Footprint

Data types (layout and encoding)

Rules-based writing
Diagrams and tables

Verifying the ARM Confidential Computing Architecture

Previous work

e Harnesses
* Pick a RMM function

* And its safety specification This work
* Produce C code with assume/assert e (Can we trust the existing guarantees?
* And non-deterministic inputs * Reproducibility effort
e Verification engine * When can we say it is safe enough?
* CBMC for model checking e Compare against a different verifier
* Coq for interactive proving * ESBMC for model checking

* Manual loop bound annotations
* Multi-property checks
e 23 new violations found

Reference

e Li, at al., Design and Verification of the ARM
CCA, USENIX 2022.

10 © 2023 Arm

arm

arm

ESBMC vs CBMC

ESBMC: A Logic-based Verification Platform

Logic-based automated verification
for checking safety and liveness

_ Software
Tiny ML YO Abstract Syntax
Tree (AST)
onnx2c/ | || C/C++/CHERI Scan clang
keras2c /CUDA Simplify External Memory Correctness
Loops Libraries Model Witness
i Parallelization
JaXr;a/dI?é)it(ljln/ Scan | Soot v i v f Property holds
Control-flow | GOTO L Symbolic |y q ification| SMT | Models
Graph Program Execution Conditions Solver
Scan Generator Engine _
Solidity » Solidity l \ Property violated
Violation Test-case
Scan Code Produce C Abs.Int. / Caching / Witness generation
Python » ast2json Instrumentation code CSP Solver Slicing l l
.
HTML Program Repair
report
Combines BMC, k-induction, abstract interpretation, CP/SMT solving
12 © 2023 Arm

towards correctness proof and bug hunting
www.esbmc.org

l

Program Debugging G r m

Differences with CBMC

Feature

Concurrency
Support

Parser

Additional
Supported
Languages

K-induction

13 © 2023 Arm

CBMC

Symbolic encoding in one SAT
formula.

Modified C parser & C++ parser
based on OpenC++.

Java via JBMC.

Requires three calls. No forward
condition for state reachability.

ESBMC

Encode each interleaving into
SMT formula with context-
bounded verification.

Clang front-end.

Solidity grammar, Python and
Kotlin programs.

Handles in a single call.

arm

Competition on Software Verification (SV-COMP)

1000

Min. time in s

14 © 2023 Arm

100

10

2LS
Bubaak ==&
CBMC s
CVT-AlgoSe| ===
i CVT-ParPort ==t
CPAchecker =i
Crux e

DIVINE e

= ESBMC-kind =S
Goblint

raves-Par
Infer

F Mopsa =—fT=—
PeSC0-CPA ==t

Pinaka

Symbiotic =

. Theta =)
L UAutomizer ===
i UKojak ===
- UTaipan ==
VeriAbs

-2000

2000

Cumulative score

CBMC

ESBMC (k-ind)

6000

arm

ESBMC K-induction

15 © 2023 Arm

Induction-Based Verification for Software

k-induction checks |loop-free programs...

* base case (base,): find a counter-example with up to k loop
unwindings (plain BMC)

* forward condition (fwd,): check that P holds in all states
reachable within k unwindings

* inductive step (step,): check that whenever P holds for k
unwindings, it also holds after next unwinding
— havoc variables
— assume loop condition
— run loop body (k times)
— assume loop termination

= [terative deepening if inconclusive

Gadelha et al.: Handling loops in hounded

model checking of C programs via k-induction.

STTT 19(1): 97-114 (2017)

arm

arm
RMM verification with ESBMC

Bounded verification

Incremental BMC

e Automatic loop unrolling up to k

e Uniform bound across the whole program
e |f bound too small -> lots of time wasted

Manual annotations

e ARM engineers provide annotations

e Custom bound for each loop

e C(Clear advantage over automated approach

17 © 2023 Arm

Time (s)

900
800
700
600
500
400
300
200
100

—=F— —incremental-bme
0 —unwindset

k-step

arm

Multi-property checks

Challenge

#include <assert.h>
e Real-world programs have multiple asserts | extern int nondet_int () ;

e What's the best encoding strategy? im? main () o .
int a = nondet_int () ;
Option 1 (single) switch (a) {

case 0: assert(a > 0); break;
case 1: assert(a > 1); break;
e Larger formula, no repetitions default: return O;

¥

e Encode them in a single SMT formula

Option 2 (multiple) ¥
e Encode them in a separate SMT formulas

e The other assertions are ignored

e Repeated work, separate counterexamples

18 © 2023 Arm

arm

I8 ESBMC-single 18 CBMC-multi l BESBMC-multi

1,000

=

=
—

(s) o,

=
—

arm

19 © 2023 Arm

Safety violations in RMM

Assert Fail

VCCs/Solver Calls

Command ESBMC CBMC ESBMC CBMC
RMI_REC_DESTROY 20 20 113/113 142/19
RMI_GRANULE_DELEGATE safe safe 54 /54 132/2
RMI_GRANULE_UNDELEGATE 1 1 45/45 132/1
RMI_REALM_ACTIVATE 3 safe 53/53 140/1
RMI_REALM_DESTROY 17 1 114/114 148/2
RMI_REC_AUX_COUNT 1 1 48 /48 139/2
RMI_FEATURES safe safe 21/21 125/1
RMI_DATA_DESTROY >=26 22 82/82 151/18

20 © 2023 Arm

arm

Safety violations in RMM

Assert Fail

VCCs/Solver Calls

RMI Realm Destroy
e Confirmed bug
e Pointer-to-integer conversion

e Already patched!

Command ESBMC CBMC ESBMC CBMC
RMI_REC_DESTROY 20 20 113/113 142/19
RMI_GRANULE_DELEGATE safe safe 54 /54 132/2
RMI_GRANULE_UNDELEGATE 1 1 45/45 132/1
RMI_REALM_ACTIVATE 3 safe 53/53 140/1
RMI_REALM_DESTROY 17 1 114/114 148/2
RMI_REC_AUX_COUNT 1 1 48/48 139/2
RMI_FEATURES safe safe 21/21 125/1
RMI_DATA_DESTROY >—26 22 82/82 151/18

RMI Realm Activate & RMM Data Destroy

e Not confirmed yet, ARM engineers are working on it

Take away message

e DO not trust any single verification tool!

21 © 2023 Arm

arm

Time breakdown

ESBMC CBMC

BPARSE BSYMEX ®ENCODE #®SOLVING EPARSE BSYMEX ®ENCODE #®SOLVING

9
<
& v’\o{%
9 p
&
\4
& qu
@ /
Q.

22 © 2023 Arm a r m

Syntax errors

case SMC_RMM_RTT_READ_ENTRY:
struct smc_result rst;
smc_rtt_read_entry (xX1, *X2, *X3, &rst);
result = rst.x[0]; *X1 = rst.x[1]; *X2 = rst.x[2];
*X3 = rst.x[3]; *X4 = rst.x[4];

break;
CBMC Parser ESBMC Parser
e Based on OpenC++ e Based on Clang
e Does not spot the issue e Spots the missing brackets

23 © 2023 Arm 0 r m

arm

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

