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What is confidential computing?

Secure Cloud Computing

• Challenges
• Sensitive data sent to third party
• Timesharing of computational resources
• Severe security risks
• e.g. Facebook user data leak on AWS (2019)

• Vision
• Secure Execution Environment
• Confidentiality & integrity of data & code
• CPU-level isolation

• But how?
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What is confidential computing?

Main Idea

• Classic architecture
• Timesharing of computational resources
• Supervisor/scheduler does the time sharing
• It can access data & code

• Secure Architecture
• Split management rights...
• ...from access rights
• Supervisor/scheduler cannot see data & code

ARM solution

• ARM Confidential Computing Architecture (CCA)

• Beyond "just" virtual machines

• Concept of "realm" as secure environment
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Realm Management Monitor (RMM)
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ARM Confidential 
Computing Architecture
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Three crucial components

• Realm Services Interface (RSI)
• Secure monitor interface called by Realm
• Measurement and attestation
• Handshakes involved in some

memory management flows

• Realm Management Monitor (RMM)
• Contains no policy
• Performs no dynamic memory allocation
• Provides services to Host and Realm

Hardware

ARM Confidential 
Computing Architecture

• Realm Management Interface (RMI)
• Secure monitor interface called by Host
• Create / destroy Realms
• Manage Realm memory, manipulating

stage 2 translation tables
• Context switch between Realm VCPUs
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Realm Management Interface (RMI)

Realm lifecycle

RMI_REALM_CREATE

RMI_REALM_DESTROY
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Realm Services Interface (RSI)

Measurement

RSI_MEASUREMENT_EXTEND

RSI_MEASUREMENT_READ

Attestation

RSI_ATTESTATION_TOKEN_INIT

RSI_ATTESTATION_TOKEN_CONTINUE

IPA state management

RSI_IPA_STATE_GET

RSI_IPA_STATE_SET

Discovery

RSI_VERSION

RSI_REALM_CONFIG
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RSI_HOST_CALL
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Machine-readable specification

Abstract model
• Attributes of Realm, Granule, REC, RTT

Commands
• Pre-requisites for successful execution
• Effect on system state

Non-command behavior
• Exception model
• Aborts and routing
• Interrupts and timers
• Measurement and attestation
• Debug and performance monitoring

• MRS
• (Mostly) formal pre / post-conditions
• Failure partial ordering
• Footprint
• Data types (layout and encoding)

• Rules-based writing
• Diagrams and tables

• Rules-based writing
• MRS

Presentation formatContent
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Verifying the ARM Confidential Computing Architecture

Previous work

• Harnesses
• Pick a RMM function
• And its safety specification
• Produce C code with assume/assert
• And non-deterministic inputs

• Verification engine
• CBMC for model checking
• Coq for interactive proving

Reference

• Li, at al., Design and Verification of the ARM 
CCA, USENIX 2022.

This work

• Can we trust the existing guarantees?
• Reproducibility effort
• When can we say it is safe enough?

• Compare against a different verifier
• ESBMC for model checking
• Manual loop bound annotations
• Multi-property checks
• 23 new violations found
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ESBMC vs CBMC
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ESBMC: A Logic-based Verification Platform

Logic-based automated verification

for checking safety and liveness 

properties in AI and software systems

Combines BMC, k-induction, abstract interpretation, CP/SMT solving 

towards correctness proof and bug hunting

www.esbmc.org

GOTO

Program

Verification 

Conditions

Abstract Syntax

Tree (AST)
Scan

SMT

Solver

Symbolic

Execution

Engine

Property holds

Property violated

C/C++/CHERI

/CUDA

Control-flow 

Graph 

Generator 

clang
Memory 

Model

External 

Libraries
Correctness 

Witness

Violation 

Witness

ScanJava/Kotlin/ 

Android
Soot

Scan
Solidity Solidity

Scan
Python ast2json

Abs.Int. / 

CSP Solver

Code 

Instrumentation
Produce C 

code

HTML 

report

Program Debugging

Models

Parallelization

Software

onnx2c / 

keras2c

Tiny ML

Caching / 

Slicing

Simplify 

Loops

Test-case 

generation

Program Repair



13 © 2023 Arm

Differences with CBMC

Feature CBMC ESBMC

Concurrency 

Support

Symbolic encoding in one SAT

formula.

Encode each interleaving into 

SMT formula with context-

bounded verification.

Parser
Modified C parser & C++ parser 

based on OpenC++.
Clang front-end.

Additional 

Supported 

Languages

Java via JBMC.
Solidity grammar, Python and 

Kotlin programs.

K-induction
Requires three calls. No forward 

condition for state reachability.
Handles in a single call.
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Competition on Software Verification (SV-COMP)

ESBMC (k-ind)CBMC
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ESBMC K-induction
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RMM verification with ESBMC
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Bounded verification

Incremental BMC

• Automatic loop unrolling up to k

• Uniform bound across the whole program

• If bound too small -> lots of time wasted

Manual annotations

• ARM engineers provide annotations

• Custom bound for each loop

• Clear advantage over automated approach
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Multi-property checks

Challenge

• Real-world programs have multiple asserts

• What's the best encoding strategy?

Option 1 (single)

• Encode them in a single SMT formula

• Larger formula, no repetitions

Option 2 (multiple)

• Encode them in a separate SMT formulas

• The other assertions are ignored

• Repeated work, separate counterexamples
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Safety violations in RMM
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Safety violations in RMM

RMI Realm Destroy

• Confirmed bug

• Pointer-to-integer conversion

• Already patched!

RMI Realm Activate & RMM Data Destroy

• Not confirmed yet, ARM engineers are working on it

Take away message

• DO not trust any single verification tool!
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Time breakdown
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Syntax errors

CBMC Parser

• Based on OpenC++

• Does not spot the issue

ESBMC Parser

• Based on Clang

• Spots the missing brackets
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Questions?
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