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in safety-critical GPU applications
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Typical Programming Errors in CUDA

int a[2];

...

kernel(int *a){

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

}

Array out-of-bounds due to 

incorrect access in unallocated 

memory region
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(named COM)

– Integrate COM into the Efficient SMT-Based Context-

Bounded Model Checker (ESBMC) (TSE’12)

• Apply context-bounded model checking based on the
Satisfiability Modulo Theories (SMT)

– Monotonic Partial Order Reduction (MPOR) (CAV’09)

• Compare ESBMC-GPU experimental results with other
state-of-art software verifiers for CUDA

Objectives of this work

Exploit SMT-based context-BMC to verify 

CUDA-based programs



• COM aims to

− Abstractly represent the associated CUDA libraries

� checks pre- and post-conditions

� simulates behavior

− Reduce verification effort

� by only checking relevant behavior

 

 

CUDA Operational Model (COM)



• COM aims to

− Abstractly represent the associated CUDA libraries

� checks pre- and post-conditions

� simulates behavior

− Reduce verification effort

� by only checking relevant behavior

• COM allows ESBMC to check specific properties
related to CUDA libraries

 

 

CUDA Operational Model (COM)



• COM aims to

− Abstractly represent the associated CUDA libraries

� checks pre- and post-conditions

� simulates behavior

− Reduce verification effort

� by only checking relevant behavior

• COM allows ESBMC to check specific properties
related to CUDA libraries

− Other extensions to ESBMC based on operational models

� ESBMC++ (ECBS’13) and ESBMCQtOM (SPIN’16)

CUDA Operational Model (COM)



• COM aims to

− Abstractly represent the associated CUDA libraries

� checks pre- and post-conditions

� simulates behavior

− Reduce verification effort

� by only checking relevant behavior

• COM allows ESBMC to check specific properties
related to CUDA libraries

− Other extensions to ESBMC based on operational models

� ESBMC++ (ECBS’13) and ESBMCQtOM (SPIN’16)

• CUDA is a proprietary platform

− CUDA Programming Guide and IDE Nsight

CUDA Operational Model (COM)
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#include <cuda.h>

#include <stdio.h>

#define N 2

__global__ void definitions(int* A){

atomicAdd(A,10);

}

int main (){

int a = 5;

int *dev_a;

cudaMalloc ((void**) &dev_a, sizeof(int));

cudaMemcpy(dev_a, &a, 

sizeof(int),cudaMemcpyHostToDevice);

ESBMC_verify_kernel(definitions,1,N,dev_a);

cudaMemcpy(&a,dev_a,sizeof(int),cudaMemcpyD

eviceToHost);

assert(a==25);

cudaFree(dev_a);

return 0;

}
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# cudaMalloc

cudaError_t cudaMalloc(void ** devPtr, size_t size) {

cudaError_t tmp;

__ESBMC_assert(size > 0, "Size to be allocated must be greater than zero");

*devPtr = malloc(size);

if (*devPtr == NULL) {

tmp = CUDA_ERROR_OUT_OF_MEMORY;

exit(1);

} else {

tmp = CUDA_SUCCESS;

}

__ESBMC_assert(tmp == CUDA_SUCCESS, "Memory was not allocated");

lastError = tmp;

return lastError;

}

COM Implementation: cudaMalloc
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• MPOR classifies thread transitions in a multi-

threaded program
– Each transition may be dependent or independent
�Identify interleaving pairs which result in the same state

• First application of the technique to verify CUDA-

based programs
– Reduction in time and verification effort

– Elimination of threads interleavings that access different

array positions

Monotonic Partial Order Reduction (MPOR)
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• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)


�: active thread

��: context switch


�: current state

�� → ��

 ��:  a[0] = 0

a[1] = 1

Dependent

π = {ν0,…,vk}



MPOR Applied to CUDA-based Programs

kernel1(int *a){

a[threadIdx.x] = threadIdx.x ;

}
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�1: �1, 1, � 0 = 0 , � 1 = 0
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�4: �1, 2, � 0 = 0 , � 1 =1
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threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)
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��: context switch
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 ��:  a[0] = 0

a[1] = 1

Dependent

�� → ��

 ��:  a[0] = 0

a[1] = 1

π = {ν0,…,vk}
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kernel1(int *a){

a[threadIdx.x] = threadIdx.x ;

}

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

�4: �1, 2, � 0 = 0 , � 1 =1

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)


�: active thread
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�� → ��
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kernel1(int *a){

a[threadIdx.x] = threadIdx.x ;

}

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

�3: �2, 1, � 0 = 0 , � 1 =1

�4: �1, 2, � 0 = 0 , � 1 =1

�� → �� or �� → �� result in the same state, 

this is an independent transition

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)


�: active thread

��: context switch


�: current state

�� → ��

 ��:  a[0] = 0

a[1] = 1

Dependent

�� → ��

 ��:  a[0] = 0

a[1] = 1

π = {ν0,…,vk}
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�0: �0, 0, � 0 = 0 , � 1 = 0
kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)


�: active thread

��: context switch


�: current state
π = {ν0,…,vk}
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�0: �0, 0, � 0 = 0 , � 1 = 0
kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)


�: active thread

��: context switch


�: current state
π = {ν0,…,vk}
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�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)


�: active thread

��: context switch


�: current state
π = {ν0,…,vk}
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�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)


�: active thread

��: context switch


�: current state
π = {ν0,…,vk}
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�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)


�: active thread

��: context switch


�: current state
π = {ν0,…,vk}
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�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��:  a[0] = 0

a[1] = 1

ν = (��,	� , ��)


�: active thread

��: context switch


�: current state
π = {ν0,…,vk}
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�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function
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a[1] = 1

ν = (��,	� , ��)


�: active thread

��: context switch


�: current state
π = {ν0,…,vk}



MPOR Applied to CUDA-based Programs

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��:  a[0] = 0

a[1] = 1

Dependent

ν = (��,	� , ��)


�: active thread

��: context switch
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�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��:  a[0] = 0

a[1] = 1

Dependent

ν = (��,	� , ��)


�: active thread

��: context switch


�: current state
π = {ν0,…,vk}
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�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��:  a[0] = 0

a[1] = 1

Dependent

ν = (��,	� , ��)


�: active thread

��: context switch
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�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��:  a[0] = 0

a[1] = 1

Dependent
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ν = (��,	� , ��)


�: active thread

��: context switch


�: current state
π = {ν0,…,vk}
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�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

�4: �1, 2, � 2 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��:  a[0] = 0

a[1] = 1

Dependent

ν = (��,	� , ��)


�: active thread

��: context switch


�: current state
π = {ν0,…,vk}
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�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

�4: �1, 2, � 2 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��
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a[1] = 1

Dependent

�� → ��
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a[1] = 1

ν = (��,	� , ��)


�: active thread

��: context switch


�: current state
π = {ν0,…,vk}
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�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

�4: �1, 2, � 2 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��:  a[0] = 0

a[1] = 1

Dependent

�� → ��

��:  a[2] = 0

a[1] = 1

ν = (��,	� , ��)


�: active thread

��: context switch


�: current state
π = {ν0,…,vk}
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�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

�4: �1, 2, � 2 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

�� → �� computes a different state of �� → ��,

resulting in dependent transitions

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise,  go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��:  a[0] = 0

a[1] = 1

Dependent

�� → ��

��:  a[2] = 0

a[1] = 1

ν = (��,	� , ��)


�: active thread

��: context switch


�: current state
π = {ν0,…,vk}
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Two-threads Analysis

• Reduction for two-threads during the program 

verification

– If an error is found between 2 threads in a block, it 

will also be found for more threads

�This proposition holds due to the GPU architecture

– This technique is also used by other GPU kernel 

verification tools (e.g., GPUVerify and PUG)
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– Ensure that verification results are correct according to the

CUDA specification

• Research Questions (RQ)

– RQ1 (sanity check) which results does ESBMC-GPU obtain 

upon verifying benchmarks that compose the specified suite?

– RQ2 (comparison with other tools) what is ESBMC-GPU 

performance if compared to GKLEE, GPUVerify, PUG, and 

CIVL?

• Standard PC desktop, time-out 900 seconds

Experimental Evaluation
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– Arithmetic operations

– Device functions call

– Specific functions of:

• C/C++ (e.g., memset, assert)

• CUDA (e.g., atomicAdd, cudaMemcpy, cudaMalloc,  cudaFree, 

syncthreads)

– CUDA libraries (e.g., curand.h)

– Data types int, float, char, and its modifiers (long and unsigned)

– Pointers to variables and functions

– Typedefs

– CUDA intrinsic variables (e.g., uint4)

CUDA Benchmarks
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State-of-the-Art GPU Verifiers

• GPUVerify checks data race and barrier divergence

‒ There is no support for the main function

• PUG checks data races, barrier synchronization, and 

conflicts with shared memory

• GKLEE is based on concrete and symbolic execution

– Supports the verification of barriers synchronization and 

race condition

• CIVL is a framework for static analysis and concurrent 

program verification

– supports MPI, POSIX, OpenMP, CUDA, and C11

– symbolic execution, POR, and GPU threads with Pthread
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GPU
GKLEE GPUVERIFY PUG CIVL

True Correct 60 53 58 39 23

False Correct 67 56 30 15 24

True Incorrect 1 14 9 7 0

False Incorrect 3 7 8 11 3

Not supported 23 24 49 82 104

Time(s) 811 128 147 12 158

Experimental Results

PUG is the fastest verifier, but

it does not present the highest

covegare
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– First software verifier that uses:

• SMT-based Context-BMC for verifying CUDA-based programs

• MPOR, responsible for reducing 80% of the verification time

• ESBMC-GPU produces 82.5% of successful verification 

rate compared to 70.8% of GKLEE, 57.1% of GPUVerify, 

35.1% of PUG,  and 30.5% of CIVL

• Future work

– Barrier divergence detection

– Support to new memory types (e.g., pinned and unified)

– Techniques to reduce interleavings (lazy sequentialization)

Conclusions


