
31st ACM/SIGAPP Symposium on Applied Computing

Phillipe Pereira, Higo Albuquerque, Hendrio Marques,
Isabela Silva, Vanessa Santos, Celso Barbosa, Ricardo

Ferreira, and Lucas Cordeiro

• Developed by NVIDIA to configure GPUs

CUDA: parallel computing platform and API model

• Developed by NVIDIA to configure GPUs

– initially used in graphical processing in

games applications

�specially those that require high

computational power

CUDA: parallel computing platform and API model

• Developed by NVIDIA to configure GPUs

– initially used in graphical processing in

games applications

�specially those that require high

computational power

– Currently used in:

�biomedicine

�air traffic control

�weather simulation

CUDA: parallel computing platform and API model

• Developed by NVIDIA to configure GPUs

– initially used in graphical processing in

games applications

�specially those that require high

computational power

– Currently used in:

�biomedicine

�air traffic control

�weather simulation

• We need to ensure code correctness

in safety-critical GPU applications

CUDA: parallel computing platform and API model

• CUDA-based C/C++ programs are subject to

– Arithmetic under- and overflow, buffer overflow, pointer

safety, and division by zero

Typical Programming Errors in CUDA

• CUDA-based C/C++ programs are subject to

– Arithmetic under- and overflow, buffer overflow, pointer

safety, and division by zero

– Data race conditions, shared memory, and barrier

divergence

Typical Programming Errors in CUDA

• CUDA-based C/C++ programs are subject to

– Arithmetic under- and overflow, buffer overflow, pointer

safety, and division by zero

– Data race conditions, shared memory, and barrier

divergence

� lead to incorrect results during the program execution

� they are hard to detect due to the parallel operations

Typical Programming Errors in CUDA

• CUDA-based C/C++ programs are subject to

– Arithmetic under- and overflow, buffer overflow, pointer

safety, and division by zero

– Data race conditions, shared memory, and barrier

divergence

� lead to incorrect results during the program execution

� they are hard to detect due to the parallel operations

Typical Programming Errors in CUDA

int a[2];

...

kernel(int *a){

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

}

Array out-of-bounds due to

incorrect access in unallocated

memory region

Objectives of this work

Exploit SMT-based context-BMC to verify

CUDA-based programs

Objectives of this work

• Develop an operational model for the CUDA platform
(named COM)

– Integrate COM into the Efficient SMT-Based Context-

Bounded Model Checker (ESBMC) (TSE’12)

Exploit SMT-based context-BMC to verify

CUDA-based programs

• Develop an operational model for the CUDA platform

(named COM)

– Integrate COM into the Efficient SMT-Based Context-

Bounded Model Checker (ESBMC) (TSE’12)

• Apply context-bounded model checking based on the

Satisfiability Modulo Theories (SMT)

– Monotonic Partial Order Reduction (MPOR) (CAV’09)

Objectives of this work

Exploit SMT-based context-BMC to verify

CUDA-based programs

• Develop an operational model for the CUDA platform
(named COM)

– Integrate COM into the Efficient SMT-Based Context-

Bounded Model Checker (ESBMC) (TSE’12)

• Apply context-bounded model checking based on the
Satisfiability Modulo Theories (SMT)

– Monotonic Partial Order Reduction (MPOR) (CAV’09)

• Compare ESBMC-GPU experimental results with other
state-of-art software verifiers for CUDA

Objectives of this work

Exploit SMT-based context-BMC to verify

CUDA-based programs

• COM aims to

− Abstractly represent the associated CUDA libraries

� checks pre- and post-conditions

� simulates behavior

− Reduce verification effort

� by only checking relevant behavior

CUDA Operational Model (COM)

• COM aims to

− Abstractly represent the associated CUDA libraries

� checks pre- and post-conditions

� simulates behavior

− Reduce verification effort

� by only checking relevant behavior

• COM allows ESBMC to check specific properties
related to CUDA libraries

CUDA Operational Model (COM)

• COM aims to

− Abstractly represent the associated CUDA libraries

� checks pre- and post-conditions

� simulates behavior

− Reduce verification effort

� by only checking relevant behavior

• COM allows ESBMC to check specific properties
related to CUDA libraries

− Other extensions to ESBMC based on operational models

� ESBMC++ (ECBS’13) and ESBMCQtOM (SPIN’16)

CUDA Operational Model (COM)

• COM aims to

− Abstractly represent the associated CUDA libraries

� checks pre- and post-conditions

� simulates behavior

− Reduce verification effort

� by only checking relevant behavior

• COM allows ESBMC to check specific properties
related to CUDA libraries

− Other extensions to ESBMC based on operational models

� ESBMC++ (ECBS’13) and ESBMCQtOM (SPIN’16)

• CUDA is a proprietary platform

− CUDA Programming Guide and IDE Nsight

CUDA Operational Model (COM)

. . .

__global__ void kernel(uint4 *out) {

uint4 vector = {1,1,1,1};

out[threadIdx.x] = vector;

}

int main(){

uint4 *a;

. . .

ESBMC-GPU: Verification Flow

ESBMC

Source

Code

Operational

Model

Error?

Counterexample

Verification Successful

struct __device_builtin__ __builtin_align__(16) _uint4{

unsigned int x, y, z, w;

};

typedef __device_builtin__ struct _uint4 uint4;

. . .

__global__ void kernel(uint4 *out) {

uint4 vector = {1,1,1,1};

out[threadIdx.x] = vector;

}

int main(){

uint4 *a;

. . .

ESBMC-GPU: Verification Flow

ESBMC

Source

Code

Operational

Model

Error?

Counterexample

Verification Successful

struct __device_builtin__ __builtin_align__(16) _uint4{

unsigned int x, y, z, w;

};

typedef __device_builtin__ struct _uint4 uint4;

. . .

__global__ void kernel(uint4 *out) {

uint4 vector = {1,1,1,1};

out[threadIdx.x] = vector;

}

int main(){

uint4 *a;

. . .

ESBMC-GPU: Verification Flow

ESBMC

Source

Code

Operational

Model

Error?

Yes

State 319 thread 0

<main invocation>

--

c::main::$tmp::tmp$2=FALSE

State 320 file main.cu line 31 thread 0

<main invocation>

--

Violated property:

file main.cu line 31

assertion

FALSE

VERIFICATION FAILED

Counterexample

Verification Successful

struct __device_builtin__ __builtin_align__(16) _uint4{

unsigned int x, y, z, w;

};

typedef __device_builtin__ struct _uint4 uint4;

. . .

__global__ void kernel(uint4 *out) {

uint4 vector = {1,1,1,1};

out[threadIdx.x] = vector;

}

int main(){

uint4 *a;

. . .

ESBMC-GPU: Verification Flow

ESBMC

Source

Code

Operational

Model

Error?

Yes

No

Symex completed in: 0.029s

size of program expression: 732 assignments

Slicing time: 0.003s

Generated 237 VCC(s), 167 remaining after simplification

No solver specified; defaulting to z3

Encoding remaining VCC(s) using bit-vector arithmetic

Encoding to solver time: 0.008s

Solving with solver Z3 v4.0

Runtime decision procedure: 0.007s

VERIFICATION SUCCESSFUL

BMC program time: 0.051s

State 319 thread 0

<main invocation>

--

c::main::$tmp::tmp$2=FALSE

State 320 file main.cu line 31 thread 0

<main invocation>

--

Violated property:

file main.cu line 31

assertion

FALSE

VERIFICATION FAILED

Counterexample

Verification Successful

#include <cuda.h>

#include <stdio.h>

#define N 2

__global__ void definitions(int* A){

atomicAdd(A,10);

}

int main (){

int a = 5;

int *dev_a;

cudaMalloc ((void**) &dev_a, sizeof(int));

cudaMemcpy(dev_a, &a,

sizeof(int),cudaMemcpyHostToDevice);

ESBMC_verify_kernel(definitions,1,N,dev_a);

cudaMemcpy(&a,dev_a,sizeof(int),cudaMemcpyD

eviceToHost);

assert(a==25);

cudaFree(dev_a);

return 0;

}

COM Implementation: cudaMalloc

#include <cuda.h>

#include <stdio.h>

#define N 2

__global__ void definitions(int* A){

atomicAdd(A,10);

}

int main (){

int a = 5;

int *dev_a;

cudaMalloc ((void**) &dev_a, sizeof(int));

cudaMemcpy(dev_a, &a,

sizeof(int),cudaMemcpyHostToDevice);

ESBMC_verify_kernel(definitions,1,N,dev_a);

cudaMemcpy(&a,dev_a,sizeof(int),cudaMemcpyD

eviceToHost);

assert(a==25);

cudaFree(dev_a);

return 0;

}

COM Implementation: cudaMalloc

cudaMalloc

cudaError_t cudaMalloc(void ** devPtr, size_t size) {

cudaError_t tmp;

__ESBMC_assert(size > 0, "Size to be allocated must be greater than zero");

*devPtr = malloc(size);

if (*devPtr == NULL) {

tmp = CUDA_ERROR_OUT_OF_MEMORY;

exit(1);

} else {

tmp = CUDA_SUCCESS;

}

__ESBMC_assert(tmp == CUDA_SUCCESS, "Memory was not allocated");

lastError = tmp;

return lastError;

}

COM Implementation: cudaMalloc

pre-condition

cudaMalloc

cudaError_t cudaMalloc(void ** devPtr, size_t size) {

cudaError_t tmp;

__ESBMC_assert(size > 0, "Size to be allocated must be greater than zero");

*devPtr = malloc(size);

if (*devPtr == NULL) {

tmp = CUDA_ERROR_OUT_OF_MEMORY;

exit(1);

} else {

tmp = CUDA_SUCCESS;

}

__ESBMC_assert(tmp == CUDA_SUCCESS, "Memory was not allocated");

lastError = tmp;

return lastError;

}

COM Implementation: cudaMalloc

simulate behavior

cudaMalloc

cudaError_t cudaMalloc(void ** devPtr, size_t size) {

cudaError_t tmp;

__ESBMC_assert(size > 0, "Size to be allocated must be greater than zero");

*devPtr = malloc(size);

if (*devPtr == NULL) {

tmp = CUDA_ERROR_OUT_OF_MEMORY;

exit(1);

} else {

tmp = CUDA_SUCCESS;

}

__ESBMC_assert(tmp == CUDA_SUCCESS, "Memory was not allocated");

lastError = tmp;

return lastError;

}

COM Implementation: cudaMalloc

post-condition

Modeling Kernels with Pthreads in COM

• Verification model adopts the CPU parallel processing
– Using the Pthread/POSIX library

Modeling Kernels with Pthreads in COM

CUDA program

global void kernel(){

A[tidx.x]=tidx.x;

}

int main(){

int *a; int *dev_a;

cudaMalloc(&dev_a,a,size);

...

cudaMemcpy(dev_a,a,htd);

...

ESBMC _verify_kernel(

kernel,M,N,dev_a);

...

cudaMemcpy(a,dev_a,dth);

...

cudaFree(dev_a);

free(a);

}

• Verification model adopts the CPU parallel processing
– Using the Pthread/POSIX library

Modeling Kernels with Pthreads in COM

COM

Function conversion

cudaMalloc(&dev_a,size)

assert(size>0);

*dev_a=malloc(size);

if(*dev_a==NULL)

exit(1);

CUDA program

global void kernel(){

A[tidx.x]=tidx.x;

}

int main(){

int *a; int *dev_a;

cudaMalloc(&dev_a,a,size);

...

cudaMemcpy(dev_a,a,htd);

...

ESBMC _verify_kernel(

kernel,M,N,dev_a);

...

cudaMemcpy(a,dev_a,dth);

...

cudaFree(dev_a);

free(a);

}

• Verification model adopts the CPU parallel processing
– Using the Pthread/POSIX library

Modeling Kernels with Pthreads in COM

COM

Function conversion

cudaMalloc(&dev_a,size)

assert(size>0);

*dev_a=malloc(size);

if(*dev_a==NULL)

exit(1);

ESBMC_verify_kernel

(kernel,M,N,dev_a)

kernel<<<M,N>>>

gridDim = dim3(M);

blockDim = dim3(N);

dim3 conversion

struct dim3;

gridDim.x=M; blockDim.x=N;

gridDim.y=1; blockDim.y=1;

gridDim.z=1; blockDim.z=1;

CUDA program

global void kernel(){

A[tidx.x]=tidx.x;

}

int main(){

int *a; int *dev_a;

cudaMalloc(&dev_a,a,size);

...

cudaMemcpy(dev_a,a,htd);

...

ESBMC _verify_kernel(

kernel,M,N,dev_a);

...

cudaMemcpy(a,dev_a,dth);

...

cudaFree(dev_a);

free(a);

}

• Verification model adopts the CPU parallel processing
– Using the Pthread/POSIX library

Modeling Kernels with Pthreads in COM

COM

Function conversion

cudaMalloc(&dev_a,size)

assert(size>0);

*dev_a=malloc(size);

if(*dev_a==NULL)

exit(1);

ESBMC_verify_kernel

(kernel,M,N,dev_a)

kernel<<<M,N>>>

gridDim = dim3(M);

blockDim = dim3(N);

dim3 conversion

struct dim3;

gridDim.x=M; blockDim.x=N;

gridDim.y=1; blockDim.y=1;

gridDim.z=1; blockDim.z=1;

Calls the auxiliary function

ESBMC_verify_kernel_wta(

gridDim.x*gridDim.y*gridDim.z,

blockDim.x*blockDim.y,blockDim.z,

arg1,arg2,arg3)

CUDA program

global void kernel(){

A[tidx.x]=tidx.x;

}

int main(){

int *a; int *dev_a;

cudaMalloc(&dev_a,a,size);

...

cudaMemcpy(dev_a,a,htd);

...

ESBMC _verify_kernel(

kernel,M,N,dev_a);

...

cudaMemcpy(a,dev_a,dth);

...

cudaFree(dev_a);

free(a);

}

• Verification model adopts the CPU parallel processing
– Using the Pthread/POSIX library

Modeling Kernels with Pthreads in COM

COM

Function conversion

cudaMalloc(&dev_a,size)

assert(size>0);

*dev_a=malloc(size);

if(*dev_a==NULL)

exit(1);

ESBMC_verify_kernel

(kernel,M,N,dev_a)

kernel<<<M,N>>>

gridDim = dim3(M);

blockDim = dim3(N);

dim3 conversion

struct dim3;

gridDim.x=M; blockDim.x=N;

gridDim.y=1; blockDim.y=1;

gridDim.z=1; blockDim.z=1;

Calls the auxiliary function

ESBMC_verify_kernel_wta(

gridDim.x*gridDim.y*gridDim.z,

blockDim.x*blockDim.y,blockDim.z,

arg1,arg2,arg3)

ESBMC_verify_kernel_wta

while(i<GPU_threads){

pthread_create(&threads_id,

NULL, kernel, NULL);

i++; }

CUDA program

global void kernel(){

A[tidx.x]=tidx.x;

}

int main(){

int *a; int *dev_a;

cudaMalloc(&dev_a,a,size);

...

cudaMemcpy(dev_a,a,htd);

...

ESBMC _verify_kernel(

kernel,M,N,dev_a);

...

cudaMemcpy(a,dev_a,dth);

...

cudaFree(dev_a);

free(a);

}

• Verification model adopts the CPU parallel processing
– Using the Pthread/POSIX library

Modeling Kernels with Pthreads in COM

COM

Function conversion

cudaMalloc(&dev_a,size)

assert(size>0);

*dev_a=malloc(size);

if(*dev_a==NULL)

exit(1);

ESBMC_verify_kernel

(kernel,M,N,dev_a)

kernel<<<M,N>>>

gridDim = dim3(M);

blockDim = dim3(N);

dim3 conversion

struct dim3;

gridDim.x=M; blockDim.x=N;

gridDim.y=1; blockDim.y=1;

gridDim.z=1; blockDim.z=1;

Calls the auxiliary function

ESBMC_verify_kernel_wta(

gridDim.x*gridDim.y*gridDim.z,

blockDim.x*blockDim.y,blockDim.z,

arg1,arg2,arg3)

ESBMC_verify_kernel_wta

while(i<GPU_threads){

pthread_create(&threads_id,

NULL, kernel, NULL);

i++; }

ESBMC

CUDA program

global void kernel(){

A[tidx.x]=tidx.x;

}

int main(){

int *a; int *dev_a;

cudaMalloc(&dev_a,a,size);

...

cudaMemcpy(dev_a,a,htd);

...

ESBMC _verify_kernel(

kernel,M,N,dev_a);

...

cudaMemcpy(a,dev_a,dth);

...

cudaFree(dev_a);

free(a);

}

• Verification model adopts the CPU parallel processing
– Using the Pthread/POSIX library

Monotonic Partial Order Reduction (MPOR)

• MPOR classifies thread transitions in a multi-

threaded program
– Each transition may be dependent or independent
�Identify interleaving pairs which result in the same state

• MPOR classifies thread transitions in a multi-

threaded program
– Each transition may be dependent or independent
�Identify interleaving pairs which result in the same state

• First application of the technique to verify CUDA-

based programs
– Reduction in time and verification effort

– Elimination of threads interleavings that access different

array positions

Monotonic Partial Order Reduction (MPOR)

MPOR Applied to CUDA-based Programs

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

MPOR Applied to CUDA-based Programs

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

kernel1(int *a){

a[threadIdx.x] = threadIdx.x ;

}

�0: �0, 0, � 0 = 0 , � 1 = 0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

kernel1(int *a){

a[threadIdx.x] = threadIdx.x ;

}

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

kernel1(int *a){

a[threadIdx.x] = threadIdx.x ;

}

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

threadIdx.x=0

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

kernel1(int *a){

a[threadIdx.x] = threadIdx.x ;

}

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

threadIdx.x=0

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

kernel1(int *a){

a[threadIdx.x] = threadIdx.x ;

}

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

threadIdx.x=0

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state

�� → ��

 ��: a[0] = 0

a[1] = 1

π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

kernel1(int *a){

a[threadIdx.x] = threadIdx.x ;

}

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

threadIdx.x=0

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state

�� → ��

 ��: a[0] = 0

a[1] = 1

Dependent

π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

kernel1(int *a){

a[threadIdx.x] = threadIdx.x ;

}

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state

�� → ��

 ��: a[0] = 0

a[1] = 1

Dependent

π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

kernel1(int *a){

a[threadIdx.x] = threadIdx.x ;

}

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

�4: �1, 2, � 0 = 0 , � 1 =1

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state

�� → ��

 ��: a[0] = 0

a[1] = 1

Dependent

π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

kernel1(int *a){

a[threadIdx.x] = threadIdx.x ;

}

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

�4: �1, 2, � 0 = 0 , � 1 =1

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state

�� → ��

 ��: a[0] = 0

a[1] = 1

Dependent

�� → ��

 ��: a[0] = 0

a[1] = 1

π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

kernel1(int *a){

a[threadIdx.x] = threadIdx.x ;

}

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

�4: �1, 2, � 0 = 0 , � 1 =1

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state

�� → ��

 ��: a[0] = 0

a[1] = 1

Dependent

�� → ��

 ��: a[0] = 0

a[1] = 1

π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

kernel1(int *a){

a[threadIdx.x] = threadIdx.x ;

}

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

�3: �2, 1, � 0 = 0 , � 1 =1

�4: �1, 2, � 0 = 0 , � 1 =1

�� → �� or �� → �� result in the same state,

this is an independent transition

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state

�� → ��

 ��: a[0] = 0

a[1] = 1

Dependent

�� → ��

 ��: a[0] = 0

a[1] = 1

π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

�0: �0, 0, � 0 = 0 , � 1 = 0
kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

�0: �0, 0, � 0 = 0 , � 1 = 0
kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��: a[0] = 0

a[1] = 1

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��: a[0] = 0

a[1] = 1

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��: a[0] = 0

a[1] = 1

Dependent

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��: a[0] = 0

a[1] = 1

Dependent

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��: a[0] = 0

a[1] = 1

Dependent

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��: a[0] = 0

a[1] = 1

Dependent

MPOR Applied to CUDA-based Programs

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

�4: �1, 2, � 2 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��: a[0] = 0

a[1] = 1

Dependent

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

�4: �1, 2, � 2 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��: a[0] = 0

a[1] = 1

Dependent

�� → ��

��: a[2] = 0

a[1] = 1

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

�4: �1, 2, � 2 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��: a[0] = 0

a[1] = 1

Dependent

�� → ��

��: a[2] = 0

a[1] = 1

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

MPOR Applied to CUDA-based Programs

�0: �0, 0, � 0 = 0 , � 1 = 0

�1: �1, 1, � 0 = 0 , � 1 = 0

�2: �2, 2, � 0 = 0 , � 1 =1

�3: �2, 1, � 0 = 0 , � 1 =1

�4: �1, 2, � 2 = 0 , � 1 =1

kernel (int *a)

if(a[1]==1)

a[threadIdx.x+2] = threadIdx.x ;

else

a[threadIdx.x] = threadIdx.x;

�� → �� computes a different state of �� → ��,

resulting in dependent transitions

threadIdx.x=0

threadIdx.x=1

threadIdx.x=1

threadIdx.x=0

• MPOR algorithm in the ESBMC-GPU
1. function MPOR (ν, π)

2. Check whether �� exists in π; otherwise, go to step 4

3. Check whether �� produces a new state in π; otherwise, go to step 5

4. Analyze whether γ(����, ��) is independent on π; otherwise, go to step 6

5. Return “independent” on π and terminates

6. Return “dependent” on π and terminates

7. end function

�� → ��

 ��: a[0] = 0

a[1] = 1

Dependent

�� → ��

��: a[2] = 0

a[1] = 1

ν = (��,	� , ��)

�: active thread

��: context switch

�: current state
π = {ν0,…,vk}

Two-threads Analysis

• Reduction for two-threads during the program

verification

Two-threads Analysis

• Reduction for two-threads during the program

verification

– If an error is found between 2 threads in a block, it

will also be found for more threads

�This proposition holds due to the GPU architecture

Two-threads Analysis

• Reduction for two-threads during the program

verification

– If an error is found between 2 threads in a block, it

will also be found for more threads

�This proposition holds due to the GPU architecture

– This technique is also used by other GPU kernel

verification tools (e.g., GPUVerify and PUG)

Two-threads Analysis in Fermi

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Register File

Scheduler Scheduler

Dispatch Dispatch

Instruction Cache

Fermi - Stream Multiprocessor

Two-threads Analysis in Fermi

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Register File

Scheduler Scheduler

Dispatch Dispatch

Instruction Cache

Fermi - Stream Multiprocessor

Warp

(32 threads)

Two-threads Analysis in Fermi

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Register File

Scheduler Scheduler

Dispatch Dispatch

Instruction Cache

Fermi - Stream Multiprocessor

Block of threads

(64 threads)

Warp

(32 threads)

Two-threads Analysis in Fermi

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Register File

Scheduler Scheduler

Dispatch Dispatch

Instruction Cache

Fermi - Stream Multiprocessor

Block of threads

(64 threads)

half warp

16 threads
One thread group is

processed by a half

warp in the SM

Warp

(32 threads)

Two-threads Analysis in Fermi

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Register File

Scheduler Scheduler

Dispatch Dispatch

Instruction Cache

Fermi - Stream Multiprocessor

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Block of threads

(64 threads)

half warp

16 threads

Warp

(32 threads)

Two-threads Analysis in Fermi

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Register File

Scheduler Scheduler

Dispatch Dispatch

Instruction Cache

Fermi - Stream Multiprocessor

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Memory

Warp

(32 threads)

Block of threads

(64 threads)

half warp

16 threads

Two-threads Analysis in Fermi

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Register File

Scheduler Scheduler

Dispatch Dispatch

Instruction Cache

Fermi - Stream Multiprocessor

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Memory

there is no data race to

access different

memory positions

Block of threads

(64 threads)

half warp

16 threads

Warp

(32 threads)

Two-threads Analysis in Fermi

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Register File

Scheduler Scheduler

Dispatch Dispatch

Instruction Cache

Fermi - Stream Multiprocessor

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Memory

access to the same

memory position leads

to data race

Block of threads

(64 threads)

half warp

16 threads

Warp

(32 threads)

Two-threads Analysis in Fermi

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Register File

Scheduler Scheduler

Dispatch Dispatch

Instruction Cache

Fermi - Stream Multiprocessor

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Memory

If the error is detected

in a half warp threads, it

also shows up for two-

threads

Block of threads

(64 threads)

half warp

16 threads

Warp

(32 threads)

• Objective: check whether ESBMC-GPU is able to

correctly verify CUDA-based programs

Experimental Evaluation

• Objective: check whether ESBMC-GPU is able to

correctly verify CUDA-based programs

– Ensure that verification results are correct according to the

CUDA specification

Experimental Evaluation

• Objective: check whether ESBMC-GPU is able to

correctly verify CUDA-based programs

– Ensure that verification results are correct according to the

CUDA specification

• Research Questions (RQ)

– RQ1 (sanity check) which results does ESBMC-GPU obtain

upon verifying benchmarks that compose the specified suite?

Experimental Evaluation

• Objective: check whether ESBMC-GPU is able to

correctly verify CUDA-based programs

– Ensure that verification results are correct according to the

CUDA specification

• Research Questions (RQ)

– RQ1 (sanity check) which results does ESBMC-GPU obtain

upon verifying benchmarks that compose the specified suite?

– RQ2 (comparison with other tools) what is ESBMC-GPU

performance if compared to GKLEE, GPUVerify, PUG, and

CIVL?

Experimental Evaluation

• Objective: check whether ESBMC-GPU is able to

correctly verify CUDA-based programs

– Ensure that verification results are correct according to the

CUDA specification

• Research Questions (RQ)

– RQ1 (sanity check) which results does ESBMC-GPU obtain

upon verifying benchmarks that compose the specified suite?

– RQ2 (comparison with other tools) what is ESBMC-GPU

performance if compared to GKLEE, GPUVerify, PUG, and

CIVL?

• Standard PC desktop, time-out 900 seconds

Experimental Evaluation

• Extracted 154 benchmarks from the literature

– Arithmetic operations

CUDA Benchmarks

• Extracted 154 benchmarks from the literature

– Arithmetic operations

– Device functions call

CUDA Benchmarks

• Extracted 154 benchmarks from the literature

– Arithmetic operations

– Device functions call

– Specific functions of:

• C/C++ (e.g., memset, assert)

• CUDA (e.g., atomicAdd, cudaMemcpy, cudaMalloc, cudaFree,

syncthreads)

CUDA Benchmarks

• Extracted 154 benchmarks from the literature

– Arithmetic operations

– Device functions call

– Specific functions of:

• C/C++ (e.g., memset, assert)

• CUDA (e.g., atomicAdd, cudaMemcpy, cudaMalloc, cudaFree,

syncthreads)

– CUDA libraries (e.g., curand.h)

CUDA Benchmarks

• Extracted 154 benchmarks from the literature

– Arithmetic operations

– Device functions call

– Specific functions of:

• C/C++ (e.g., memset, assert)

• CUDA (e.g., atomicAdd, cudaMemcpy, cudaMalloc, cudaFree,

syncthreads)

– CUDA libraries (e.g., curand.h)

– Data types int, float, char, and its modifiers (long and unsigned)

CUDA Benchmarks

• Extracted 154 benchmarks from the literature

– Arithmetic operations

– Device functions call

– Specific functions of:

• C/C++ (e.g., memset, assert)

• CUDA (e.g., atomicAdd, cudaMemcpy, cudaMalloc, cudaFree,

syncthreads)

– CUDA libraries (e.g., curand.h)

– Data types int, float, char, and its modifiers (long and unsigned)

– Pointers to variables and functions

CUDA Benchmarks

• Extracted 154 benchmarks from the literature

– Arithmetic operations

– Device functions call

– Specific functions of:

• C/C++ (e.g., memset, assert)

• CUDA (e.g., atomicAdd, cudaMemcpy, cudaMalloc, cudaFree,

syncthreads)

– CUDA libraries (e.g., curand.h)

– Data types int, float, char, and its modifiers (long and unsigned)

– Pointers to variables and functions

– Typedefs

CUDA Benchmarks

• Extracted 154 benchmarks from the literature

– Arithmetic operations

– Device functions call

– Specific functions of:

• C/C++ (e.g., memset, assert)

• CUDA (e.g., atomicAdd, cudaMemcpy, cudaMalloc, cudaFree,

syncthreads)

– CUDA libraries (e.g., curand.h)

– Data types int, float, char, and its modifiers (long and unsigned)

– Pointers to variables and functions

– Typedefs

– CUDA intrinsic variables (e.g., uint4)

CUDA Benchmarks

State-of-the-Art GPU Verifiers

• GPUVerify checks data race and barrier divergence

‒ There is no support for the main function

State-of-the-Art GPU Verifiers

• GPUVerify checks data race and barrier divergence

‒ There is no support for the main function

• PUG checks data races, barrier synchronization, and

conflicts with shared memory

State-of-the-Art GPU Verifiers

• GPUVerify checks data race and barrier divergence

‒ There is no support for the main function

• PUG checks data races, barrier synchronization, and

conflicts with shared memory

• GKLEE is based on concrete and symbolic execution

– Supports the verification of barriers synchronization and

race condition

State-of-the-Art GPU Verifiers

• GPUVerify checks data race and barrier divergence

‒ There is no support for the main function

• PUG checks data races, barrier synchronization, and

conflicts with shared memory

• GKLEE is based on concrete and symbolic execution

– Supports the verification of barriers synchronization and

race condition

• CIVL is a framework for static analysis and concurrent

program verification

State-of-the-Art GPU Verifiers

• GPUVerify checks data race and barrier divergence

‒ There is no support for the main function

• PUG checks data races, barrier synchronization, and

conflicts with shared memory

• GKLEE is based on concrete and symbolic execution

– Supports the verification of barriers synchronization and

race condition

• CIVL is a framework for static analysis and concurrent

program verification

– supports MPI, POSIX, OpenMP, CUDA, and C11

State-of-the-Art GPU Verifiers

• GPUVerify checks data race and barrier divergence

‒ There is no support for the main function

• PUG checks data races, barrier synchronization, and

conflicts with shared memory

• GKLEE is based on concrete and symbolic execution

– Supports the verification of barriers synchronization and

race condition

• CIVL is a framework for static analysis and concurrent

program verification

– supports MPI, POSIX, OpenMP, CUDA, and C11

– symbolic execution, POR, and GPU threads with Pthread

Result\Tool
ESBMC-

GPU
GKLEE GPUVERIFY PUG CIVL

True Correct 60 53 58 39 23

False Correct 67 56 30 15 24

True Incorrect 1 14 9 7 0

False Incorrect 3 7 8 11 3

Not supported 23 24 49 82 104

Time(s) 811 128 147 12 158

Experimental Results

Result\Tool
ESBMC-

GPU
GKLEE GPUVERIFY PUG CIVL

True Correct 60 53 58 39 23

False Correct 67 56 30 15 24

True Incorrect 1 14 9 7 0

False Incorrect 3 7 8 11 3

Not supported 23 24 49 82 104

Time(s) 811 128 147 12 158

Experimental Results

Total number of benchmarks in

which the program does not

contain errors

Result\Tool
ESBMC-

GPU
GKLEE GPUVERIFY PUG CIVL

True Correct 60 53 58 39 23

False Correct 67 56 30 15 24

True Incorrect 1 14 9 7 0

False Incorrect 3 7 8 11 3

Not supported 23 24 49 82 104

Time(s) 811 128 147 12 158

Experimental Results

ESBMC-GPU achieves the

highest “True Correct” results

Result\Tool
ESBMC-

GPU
GKLEE GPUVERIFY PUG CIVL

True Correct 60 53 58 39 23

False Correct 67 56 30 15 24

True Incorrect 1 14 9 7 0

False Incorrect 3 7 8 11 3

Not supported 23 24 49 82 104

Time(s) 811 128 147 12 158

Experimental Results

Total number of benchmarks in

which the error in the program

was found and an error path

was reported

Result\Tool
ESBMC-

GPU
GKLEE GPUVERIFY PUG CIVL

True Correct 60 53 58 39 23

False Correct 67 56 30 15 24

True Incorrect 1 14 9 7 0

False Incorrect 3 7 8 11 3

Not supported 23 24 49 82 104

Time(s) 811 128 147 12 158

Experimental Results

ESBMC-GPU detects data race,

array out of bounds, null

pointer, and user-specified

assertion

Result\Tool
ESBMC-

GPU
GKLEE GPUVERIFY PUG CIVL

True Correct 60 53 58 39 23

False Correct 67 56 30 15 24

True Incorrect 1 14 9 7 0

False Incorrect 3 7 8 11 3

Not supported 23 24 49 82 104

Time(s) 811 128 147 12 158

Experimental Results

Total number of benchmarks in

which the program had an error

but the verifier did not find it

Result\Tool
ESBMC-

GPU
GKLEE GPUVERIFY PUG CIVL

True Correct 60 53 58 39 23

False Correct 67 56 30 15 24

True Incorrect 1 14 9 7 0

False Incorrect 3 7 8 11 3

Not supported 23 24 49 82 104

Time(s) 811 128 147 12 158

Experimental Results

CIVL did not present any

“True Incorrect” result

Result\Tool
ESBMC-

GPU
GKLEE GPUVERIFY PUG CIVL

True Correct 60 53 58 39 23

False Correct 67 56 30 15 24

True Incorrect 1 14 9 7 0

False Incorrect 3 7 8 11 3

Not supported 23 24 49 82 104

Time(s) 811 128 147 12 158

Experimental Results

Total number of benchmarks

in which an error is reported

for a program that fulfills the

specification

Result\Tool
ESBMC-

GPU
GKLEE GPUVERIFY PUG CIVL

True Correct 60 53 58 39 23

False Correct 67 56 30 15 24

True Incorrect 1 14 9 7 0

False Incorrect 3 7 8 11 3

Not supported 23 24 49 82 104

Time(s) 811 128 147 12 158

Experimental Results

ESBMC-GPU and CIVL present

the lowest “False Incorrect”

results

Result\Tool
ESBMC-

GPU
GKLEE GPUVERIFY PUG CIVL

True Correct 60 53 58 39 23

False Correct 67 56 30 15 24

True Incorrect 1 14 9 7 0

False Incorrect 3 7 8 11 3

Not supported 23 24 49 82 104

Time(s) 811 128 147 12 158

Experimental Results

Total number of benchmarks

which are not supported by the

tool

Result\Tool
ESBMC-

GPU
GKLEE GPUVERIFY PUG CIVL

True Correct 60 53 58 39 23

False Correct 67 56 30 15 24

True Incorrect 1 14 9 7 0

False Incorrect 3 7 8 11 3

Not supported 23 24 49 82 104

Time(s) 811 128 147 12 158

Experimental Results

ESBMC-GPU supports the

largest number of benchmarks

Result\Tool
ESBMC-

GPU
GKLEE GPUVERIFY PUG CIVL

True Correct 60 53 58 39 23

False Correct 67 56 30 15 24

True Incorrect 1 14 9 7 0

False Incorrect 3 7 8 11 3

Not supported 23 24 49 82 104

Time(s) 811 128 147 12 158

Experimental Results

PUG is the fastest verifier, but

it does not present the highest

covegare

• Proposed a software verifier, which is able to check

CUDA-based programs

Conclusions

• Proposed a software verifier, which is able to check

CUDA-based programs

– First software verifier that uses:

• SMT-based Context-BMC for verifying CUDA-based programs

• MPOR, responsible for reducing 80% of the verification time

Conclusions

• Proposed a software verifier, which is able to check

CUDA-based programs

– First software verifier that uses:

• SMT-based Context-BMC for verifying CUDA-based programs

• MPOR, responsible for reducing 80% of the verification time

• ESBMC-GPU produces 82.5% of successful verification

rate compared to 70.8% of GKLEE, 57.1% of GPUVerify,

35.1% of PUG, and 30.5% of CIVL

Conclusions

• Proposed a software verifier, which is able to check

CUDA-based programs

– First software verifier that uses:

• SMT-based Context-BMC for verifying CUDA-based programs

• MPOR, responsible for reducing 80% of the verification time

• ESBMC-GPU produces 82.5% of successful verification

rate compared to 70.8% of GKLEE, 57.1% of GPUVerify,

35.1% of PUG, and 30.5% of CIVL

• Future work

– Barrier divergence detection

Conclusions

• Proposed a software verifier, which is able to check

CUDA-based programs

– First software verifier that uses:

• SMT-based Context-BMC for verifying CUDA-based programs

• MPOR, responsible for reducing 80% of the verification time

• ESBMC-GPU produces 82.5% of successful verification

rate compared to 70.8% of GKLEE, 57.1% of GPUVerify,

35.1% of PUG, and 30.5% of CIVL

• Future work

– Barrier divergence detection

– Support to new memory types (e.g., pinned and unified)

Conclusions

• Proposed a software verifier, which is able to check

CUDA-based programs

– First software verifier that uses:

• SMT-based Context-BMC for verifying CUDA-based programs

• MPOR, responsible for reducing 80% of the verification time

• ESBMC-GPU produces 82.5% of successful verification

rate compared to 70.8% of GKLEE, 57.1% of GPUVerify,

35.1% of PUG, and 30.5% of CIVL

• Future work

– Barrier divergence detection

– Support to new memory types (e.g., pinned and unified)

– Techniques to reduce interleavings (lazy sequentialization)

Conclusions

