
Exploiting the SAT Revolution for
Automated Software Verification

and Synthesis

Lucas Cordeiro

Department of Computer Science

lucas.cordeiro@manchester.ac.uk

mailto:lucas.cordeiro@cs.ox.ac.uk

Before Joining Manchester

BSc/MSc in Electrical/

Computer Engineering

MSc in Embedded

Systems

Configuration and

Build Manager

Feature Leader

Set-top Box

Software Engineer

PhD in Computer

Science

Postdoctoral

Researcher

Research Engineer

1 2 3 4

5 6 8 8

7

Research Group on

Systems and Software Verification

Collaborators

Research Objectives

leverage program analysis/synthesis to

improve coverage and reduce verification

time for finding vulnerabilities in software

leverage program analysis/synthesis to

achieve correct-by-construction software

systems considering safety and security

So
ft

w
ar

e

C
P

S

N
eu

ra
l n

et
s

Outline

Boolean Satisfiability and

Satisfiability Modulo Theories

Abstract Interpretation, Symbolic

Verification, Fuzzing, and CEGIS

Case Studies (Properties, Model,

and Code)

Approaches to

formally build

verified

trustworthy

software

systems to

ensure

confidentiality,

integrity and

availability

70 percent of all security

bugs are memory safety

issues
“The majority of vulnerabilities are caused by developers

inadvertently inserting memory corruption bugs into their C and

C++ code. As Microsoft increases its code base and uses

more Open Source Software in its code, this problem isn’t

getting better, it’s getting worse (2019).”

https://www.zdnet.com/article/microsoft-70-percent-of-all-

security-bugs-are-memory-safety-issues/

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/

Security Vulnerabilities

int getPassword() {
char buf[4];
gets(buf);
return strcmp(buf, ”SMT”);

}

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

• What happens if the user enters “SMT”?

• On a Linux x64 platform running GCC 4.8.2, an input consisting of 24

arbitrary characters followed by], <ctrl-f>, and @, will bypass the

“Access Denied” message

• A longer input will run over into other parts of the computer memory

Exciting research projects

concerning software security

and automated reasoning:

• The SAT problem asks whether a given Boolean

formula is satisfiable

 Example:

o Φ = ((x1 x2)  ((x1  x3)  x4)) x2

o Assignment: <x1 = 0, x2 = 0, x3 = 1, x4 = 1>

o Φ = ((0 0)  ((0  1)  1)) 0

o Φ = (1  (1  1)) 1

o Φ = (1  0) 1

SAT = {<Φ> : Φ is a satisfiable Boolean formula}

Boolean Satisfiability (SAT)

unit propagation,

conflict clauses and

non-chronological

backtracking

Given a Boolean formula φ in clausal form (an AND of ORs)

{{a, b}, {¬a, b}, {a,¬b}, {¬a,¬b}}

determine whether a satisfying assignment of variables to

truth values exists.

Solvers based on Davis-Putnam-Logemann-Loveland algorithm:

1. If φ = ∅ then SAT

2. if ⃞ ∈ φ then UNSAT

3. If φ = φ’ ∪ {x} then DPLL(φ’[x ↦ true])

If φ = φ’ ∪ {¬x} then DPLL(φ’[x ↦ false])

4. Pick arbitrary x and return

DPLL(φ[x ↦ false]) ∨ DPLL(φ[x ↦ true])

+ NP-complete but many heuristics and optimizations

⇒ can handle problems with 1,000,000’s of variables

DPLL satisfiability solving

b ↦ false

{{a, b}, {¬a, b}, {a,¬b}}

{{b}, {¬b}} {{b}}

∅

a ↦ false a ↦ true

b ↦ trueb ↦ true

{} {}

SAT solving as enabling technology

SAT Competition

Satisfiability Modulo Theories

SMT decides the satisfiability of first-order logic formulae

using the combination of different background theories

Theory Example

Equality x1=x2   (x1=x3)  (x1=x3)

Bit-vectors (b >> i) & 1 = 1

Linear arithmetic (4y1 + 3y2  4)  (y2 – 3y3  3)

Arrays (j = k  a[k]=2)  a[j]=2

Combined theories (j  k  a[j]=2)  a[i] < 3

Satisfiability Modulo Theories

SMT decides the satisfiability of first-order logic formulae

using the combination of different background theories

Theory Example

Equality x1=x2   (x1=x3)  (x1=x3)

Bit-vectors (b >> i) & 1 = 1

Linear arithmetic (4y1 + 3y2  4)  (y2 – 3y3  3)

Arrays (j = k  a[k]=2)  a[j]=2

Combined theories (j  k  a[j]=2)  a[i] < 3

(a > 0) ∧ (b > 0) ⇒ (a + b > 0)

Satisfiability Modulo Theories

SMT decides the satisfiability of first-order logic formulae

using the combination of different background theories

Theory Example

Equality x1=x2   (x1=x3)  (x1=x3)

Bit-vectors (b >> i) & 1 = 1

Linear arithmetic (4y1 + 3y2  4)  (y2 – 3y3  3)

Arrays (j = k  a[k]=2)  a[j]=2

Combined theories (j  k  a[j]=2)  a[i] < 3

Satisfiability Modulo Theories

SMT decides the satisfiability of first-order logic formulae

using the combination of different background theories

Theory Example

Equality x1=x2   (x1=x3)  (x1=x3)

Bit-vectors (b >> i) & 1 = 1

Linear arithmetic (4y1 + 3y2  4)  (y2 – 3y3  3)

Arrays (j = k  a[k]=2)  a[j]=2

Combined theories (j  k  a[j]=2)  a[i] < 3

i = j ⇒ select(store (a, i, v), j) = v

i  j ⇒ select(store (a, i, v), j) = select(a, j)

Satisfiability Modulo Theories

SMT decides the satisfiability of first-order logic formulae

using the combination of different background theories

Theory Example

Equality x1=x2   (x1=x3)  (x1=x3)

Bit-vectors (b >> i) & 1 = 1

Linear arithmetic (4y1 + 3y2  4)  (y2 – 3y3  3)

Arrays (j = k  a[k]=2)  a[j]=2

Combined

theories

(j  k  a[j]=2)  a[j] < 3

• Given

 a decidable -theory T

 a quantifier-free formula 

 is T-satisfiable iff T  {} is satisfiable, i.e., there exists a

structure that satisfies both formula and sentences of T

• Given

 a set   {} of first-order formulae over T

 is a T-consequence of  ( ⊧T ) iff every model of T  

is also a model of 

• Checking  ⊧T  can be reduced in the usual way to

checking the T-satisfiability of   {¬}

SMT-based Verification

Bounded Model Checking (BMC)

Basic idea: check negation of given property up to given depth

• Transition system M unrolled k times

– for programs: loops, recursion, …

• Translated into verification condition  such that

 satisfiable iff  has counterexample of max. depth k

. . .

M0 M1 M2 Mk-1 Mk

¬0 ¬1 ¬2 ¬k-1 ¬k   

transition

system

property

boundcounterexample trace

BMC has been applied successfully to

verify HW and SW

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation

– forward substitutions

– unreachable code

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation

– forward substitutions

– unreachable code

• front-end converts unrolled and

optimized program into SSA

g1 = x1 == 0
a1 = a0 WITH [i0:=0]
a2 = a0

a3 = a2 WITH [2+i0:=1]
a4 = g1 ? a1 : a3

t1 = a4 [1+i0] == 1

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation

– forward substitutions

– unreachable code

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

 

 

 


































),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

 




























11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation

– forward substitutions

– unreachable code

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

– specific to selected SMT solver, uses theories

 

 

 


































),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

 




























11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

crucial

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation

– forward substitutions

– unreachable code

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

– specific to selected SMT solver, uses theories

• satisfiability check of C ∧ ¬P

 

 

 


































),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

 




























11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Difficulties in proving the correctness of

programs with loops in BMC

• BMC techniques can falsify properties up to a given depth k

– prove correctness if an upper bound of k is known (unwinding

assertion)

» BMC tools typically fail to verify programs that contain bounded

and unbounded loops

the loop will be unfolded 2n-1 times

(in the worst case, 232-1 times on 32
bits integer)

sn=sn+a

i++

sn==n*a

4,294,967,295

loop unwindings

Induction-Based Verification for Software

k-induction checks loop-free programs...

• base case (basek): find a counter-example with up to k loop

unwindings (plain BMC)

• forward condition (fwdk): check that P holds in all states

reachable within k unwindings

• inductive step (stepk): check that whenever P holds for k

unwindings, it also holds after next unwinding

– havoc state

– run k iterations

– assume invariant

– run final iteration

⇒ iterative deepening if inconclusive

Induction-Based Verification for Software

unsigned int x=*;
while(x>0) x--;
assume(x<=0);
assert(x==0);

k=1

while k<=max_iterations do

if baseP,,k then

return trace s[0..k]

else

k=k+1

if fwdP,,k then

return true

else if stepP’,,k then

return true

end if

end

return unknown

unsigned int x=*;
while(x>0) x--;
assert(x<=0);
assert(x==0);

unsigned int x=*;
assume(x>0);
while(x>0) x--;
assume(x<=0);
assert(x==0);

Automatic Invariant Generation

• infer invariants using intervals, octagons, and convex

polyhedral constraints for the inductive step

– e.g., a ≤ x ≤ b; x ≤ a, x-y ≤ b; and ax + by ≤ c

• use existing libraries to discover linear/polynomial relations

among integer/real variables to infer loop invariants

– compute pre- and post-conditions

intervals octagons convex polyhedral

Verifying Multi-threaded Programs

Idea: iteratively generate all possible interleavings and call

the BMC procedure on each interleaving

• symbolic model checking: on each individual interleaving

• explicit state model checking: explore all interleavings

void *threadA(void *arg) {
lock(&mutex);
x++;
if (x == 1) lock(&lock);
unlock(&mutex);
lock(&mutex);
x--;
if (x == 0) unlock(&lock);
unlock(&mutex);

}

void *threadB(void *arg) {
lock(&mutex);
y++;
if (y == 1) lock(&lock);
unlock(&mutex);
lock(&mutex);
y--;
if (y == 0) unlock(&lock);
unlock(&mutex);

}

(CS1)

(CS2)

(CS3)

Deadlock

0 : tmain,0,

val1=0, val2=0,

m1=0, m2=0,…

initial state
global and local variables

active thread, context bound

Lazy Exploration of the Reachability Tree

0 : tmain,0,

val1=0, val2=0,

m1=0, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

CS2

Lazy Exploration of the Reachability Tree

execution paths

0 : tmain,0,

val1=0, val2=0,

m1=0, m2=0,…

1: ttwoStage,1,

val1=0, val2=0,

m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

syntax-directed

expansion rules

CS2

Lazy Exploration of the Reachability Tree

execution paths

0 : tmain,0,

val1=0, val2=0,

m1=0, m2=0,…

1: ttwoStage,1,

val1=0, val2=0,

m1=1, m2=0,…

2: ttwoStage,2,

val1=1, val2=0,

m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

syntax-directed

expansion rules

CS2

interleaving completed, so

call single-threaded BMC

Lazy Exploration of the Reachability Tree

execution paths

blocked execution paths (eliminated)

0 : tmain,0,

val1=0, val2=0,

m1=0, m2=0,…

1: ttwoStage,1,

val1=0, val2=0,

m1=1, m2=0,…

2: ttwoStage,2,

val1=1, val2=0,

m1=1, m2=0,…

3: treader,2,

val1=0, val2=0,

m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

CS2

backtrack to last unexpanded node

and continue

Lazy Exploration of the Reachability Tree

execution paths

blocked execution paths (eliminated)

0 : tmain,0,

val1=0, val2=0,

m1=0, m2=0,…

1: ttwoStage,1,

val1=0, val2=0,

m1=1, m2=0,…

2: ttwoStage,2,

val1=1, val2=0,

m1=1, m2=0,…

3: treader,2,

val1=0, val2=0,

m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

CS2

backtrack to last unexpanded node

and continue

symbolic execution can statically

determine that path is blocked
(encoded in instrumented mutex-op)

Lazy Exploration of the Reachability Tree

execution paths

blocked execution paths (eliminated)

0 : tmain,0,

val1=0, val2=0,

m1=0, m2=0,…

1: ttwoStage,1,

val1=0, val2=0,

m1=1, m2=0,…

4: treader,1,

val1=0, val2=0,

m1=1, m2=0,…

2: ttwoStage,2,

val1=1, val2=0,

m1=1, m2=0,…

3: treader,2,

val1=0, val2=0,

m1=1, m2=0,…

5: ttwoStage,2,

val1=0, val2=0,

m1=1, m2=0,…

6: treader,2,

val1=0, val2=0,

m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

CS2

Lazy Exploration of the Reachability Tree

Lazy exploration of interleavings

• Main steps of the algorithm:

1. Initialize the stack with the initial node 0 and the initial

path 0 = 0

2. If the stack is empty, terminate with “no error”.

3. Pop the current node  and current path  off the stack

and compute the set ’ of successors of  using rules R1-R8.

4. If ’ is empty, derive the VC for  and call the SMT

solver on it. If is satisfiable, terminate with “error”;
otherwise, goto step 2.

5. If ’ is not empty, then for each node   ’, add  to ,

and push node and extended path on the stack. goto step 3.

k
k

     
propertysconstraint

1100 ,, kkkk ssRssRsI   

  
 n ,1

computation path

bound

BMC / SE for Coverage Test Generation

• Translate the program to an intermediate representation (IR)

• Add goals indicating the coverage

– location, branch, decision, condition and path

• Symbolically execute IR to produce an SSA program

• Translate the resulting SSA program into a logical formula

• Solve the formula iteratively to cover different goals

• Interpret the solution to figure out the input conditions

• Spit those input conditions out as a test case

C and
Java

IR Symex
SMT

Solver

Cover goals

Goals SSA

Coverage Test Generation for Security

x = input();
if (x >= 10)
{

if (x < 100)
vulnerable_code();

else
func_a();

}
else

func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{

if (x < 100)
vulnerable_code();

else
func_a();

}
else

func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{

if (x < 100)
vulnerable_code();

else
func_a();

}
else

func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{

if (x < 100)
vulnerable_code();

else
func_a();

}
else

func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{

if (x < 100)
vulnerable_code();

else
func_a();

}
else

func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{

if (x < 100)
vulnerable_code();

else
func_a();

}
else

func_b();

• Distinguished Paper Award at ACM ICSE’11

(acceptance rate 14%)

• Best Paper Award at SBC SBESC’15

(acceptance rate 24%)

• 25 awards from the international competitions on

software verification (SV-COMP) 2012-2020 and

testing (Test-COMP) 2019-2020

– Overall

– Falsification Overall

– Cover-Error

Achievements

So
ft

w
ar

e

C
P

S

N
eu

ra
l n

et
s

Outline

Boolean Satisfiability and
Satisfiability Modulo Theories

Abstract Interpretation, Symbolic
Verification, and Fuzzing

Case Studies (Properties, Model,
and Code)

Approaches to

formally build

verified

trustworthy

software

systems to

ensure

confidentiality,

integrity and

availability

Specification

Embedded Software

Microprocessor
model

Generate test
vectors with
constraints

assert data

(x>0) [1..7]

Synthesize Verify

initial example
of a candidate
solution

candidate
solution

counter-
example

verification
successful

synthesis failed

INPUTS

counter-
example

machine learning for achieving a

correct-by-construction

implementation

GA and SAT

Counter-Example Guided Inductive

Synthesis (CEGIS)

Typical Closed-Loop Control System

• Digital controller and plant representation

 state-space: matrices A, B, C, and D

 transfer-function: coefficients b0, b1,...,bm and a0, a1,...,am

• Stability of closed-loop systems

 presents a bounded response for any bounded excitation

• Safety of closed-loop systems

 defines a requirement on the model states

• Numerical errors (truncation and rounding)

CEGIS with multi-staged verification for

digital controller synthesis

We synthesise the digital controller K for physical
plants represented as time-invariant models

Synthesizing Control Software

Input
specification

Synthesize Verify

initial example
of a candidate
solution

candidate
solution

counter-
example

verification
successful

INPUTS

• Counterexample guided induction synthesis automates
the controller design that is correct-by-construction

stability, safety,

performance

specifications

• Step responses for a closed-loop control system with FWL

effects and for each synthesize iteration

iteration 1

A digital system is

stable iff all of its

poles are inside the

z-plane unitary circle

Synthesizing Control Software

• Step responses for a closed-loop control system with FWL

effects and for each synthesize iteration

iteration 1

iteration 2

A digital system is

stable iff all of its

poles are inside the

z-plane unitary circle

Synthesizing Control Software

• Step responses for a closed-loop control system with FWL

effects and for each synthesize iteration

iteration 1

iteration 2

iteration 3

A digital system is

stable iff all of its

poles are inside the

z-plane unitary circle

Synthesizing Control Software

DSVerifier Toolbox: BMC tool to check

design errors in digital systems with

MATLAB

CBMC

ESBMC

DSVerifier Toolbox: Illustrative Example

• The different numerical representations for a given

digital system can yield different verification results

http://dsverifier.org/

successful verification: stable

system using <2,13>

failed verification: unstable

system using <13,2>

http://dsverifier.org/
http://dsverifier.org/

Synthesis times for fixed- and

floating-point controllers

ISSTA 2017, HSCC 2017 and 2018, CAV 2018, ASE 2018, Acta 2020

Future Work

Our synthesis engine might benefit from

using techniques ranging from machine

learning to more robust formulations for

generating candidates in the synthesis

scheme

Extend our verification and synthesis

methodology to support multiple-input

multiple-output (MIMO) systems

Outline

So
ft

w
ar

e

C
P

S

N
eu

ra
l n

et
s

Boolean Satisfiability and
Satisfiability Modulo Theories

Abstract Interpretation, Symbolic
Verification, and Fuzzing

Case Studies (Properties, Model,
and Code)

Approaches to

formally build

verified

trustworthy

software

systems to

ensure

confidentiality,

integrity and

availability

Neural Networks (NN)

• NNs are computing systems capable of learning tasks

from examples

• NNs are known to be vulnerable to adversarial attacks

Recognize traffic signs and objects Identify regions to be inspected

Validation of Covering Methods

Generate executions of an ANN

implementation that lead to neuron activation

numerical errors and

disagreements between

DNN implementations

and their quantized

versions

Verification of Adversarial Case

Obtain an adversarial input that can lead the

ANN to failures, e.g., misclassifying an image

Generating Adversarial Inputs Using
A Black-box Differential Technique

DAEGEN queries the NNs with given input and makes

perturbations on the input based on observations

obtained from the previous queries

Future Work

Investigate fault localization and repair

techniques to explain errors and make the

ANN implementation robust against small

noises present in the ANN inputs

Revisit the adversarial case generation using

abstract interpretation techniques to speed

up the verification process

Methods, algorithms, and tools to write

safe and secure software systems

Research Mission

Automated verification and synthesis to ensure

the safety and security in neural-based

architectures

