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The Core Challenge: Bridging Requirements and Formal Verification

Formal verification requires specialized expertise that most domain experts lack

Current Reality:

Cooperation Needed

Requirements Engineer > Verification Expert

Natural Language Requirements — Formal Verification Properties

Key Barriers:
® Requires expertise across multiple specialized tools
® Manual variable mapping between requirements and implementation
® Limited expressiveness for complex temporal dependencies

Our Goal: Enable direct automation of formal verification for domain experts
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Figure: Two-Phase LLM-Assisted Verification Pipeline

Automated transformation from natural language requirements to C verification code
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Why LLMs for Formal Verification? - Capability 1

Research Question: Can LLMs automatically bridge the semantic gap from natural
language to formal properties?
Example 1 - Boundary Reasoning:

Input Requirement
"Output shall be bounded by Top and Bottom limits”

—

LLM Generated Multiple Verification Conditions:
® Boundary violation detection: output > top_limit

® Lower bound checking: output < bottom_limit

Edge case handling: top_limit == bottom_limit
® FError state transitions

Insight: Single requirement — Multiple formal properties automatically
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Why LLMs for Formal Verification? - Capability 2

Example 2 - Mathematical Reasoning;:

Input Requirement
"Maintain target on port-side of vehicle”

LLM Semantic Understanding:
® "port-side” — left side in navigation
® Spatial relationship — geometric constraint
® Mathematical formulation: cross product test

Generated Formal Specification

Precondition: valid position(vehicle, target)

Property: cross_product z > 0

Implementation: (target_x - vehicle x) * vehiclevy - (target.y -
vehicle y) * vehicle vx > 0

Key Insight: Domain knowledge — Mathematical constraints automatically
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Challenge 1: Domain-Specific Semantic Interpretation

Case Study: TSM " Miscompare” Terminology

What Happened

Requirements: "Errors will appear as differences... called a miscompare”
LLM understood: Simple arithmetic difference between signals
Reality: Triple-redundancy voting disagreement (majority wins)

Root Issue: Domain-specific terms have specialized meanings

RE Implications:
® Automated tools need explicit domain context
® Requirements should define key terminology

® 3.4% of our cases had similar semantic gaps
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Challenge 2: Revealing Hidden Assumptions in Requirements

Case Study: SWIM Airspeed Monitoring System
® Requirement: "Monitor airspeed... when vehicle air data impact pressure is less
than warning trigger”
e SpecVerify: Generated properties from specification based this requirement
e ESBMC counterexample: Found violations with negative pressure values

Critical Discovery

CoCoSim team retroactively added physical constraint (pressure > 0) - the only manual
assumption across all cases

Implications for RE Practice:
® Requirements omit "obvious” physical constraints
® Manual verification unconsciously adds assumptions
® Automated tools expose these hidden gaps systematically

Value: Reveals requirements incompleteness that humans overlook could be hidden 7713



Logical Equivalence Analysis: Hoare Logic Comparison

Challenge: How to verify LLM-generated properties match manual verification?

CoCoSim (Lustre): Claude Generated:
® Precondition: 1limits & not ® Precondition: rtU.limits == true,
standby & not apfail & rtU.standby == false...
supported ® Function: fsm_12B_global_step()
® Function: State machine logic ® Postcondition: rtY.pullup == true

® Postcondition: pullup

Manual Equivalence Analysis:
e Compare precondition-function-postcondition structure
® Map abstract Lustre variables to C implementation variables
o Verify same logical conditions and outcomes

No automated tool exists - manual analysis required here

. o : : .
Result: 79.31% logical equivalence across 58 requirements 6/13



Benchmark Performance

Task Category CoCoSim SLDV Claude ChatGPT
+ESBMC +ESBMC
Signal Processing
TSM 3/4/4 4/4/4 3/4/4 2/4/4
TUIL 3/3/5 3/3/5 4/5/5 0/0/5
Finite State Control
FSM' 13/13/13  13/13/13  13/13/13 13/13/13
REG 5/10/10 0/10/10 5/10/10 0/0/10
Navigation
NLG 0/717 0/717 17717 0/0/7
NN 0/4/4 0/4/4 0/4/4 0/4/4
EB 0/3/5 0/3/5 0/5/5 0/5/5
System Integration
SWIM 2/2/2 1212 11212 0/1/2
EUL 1/8/8 0/8/8 0/8/8 0/8/8
Performance Metrics
Verified/Formed/Total 27/54/58  21/54/58  27/58/58 15/35/58
Verification Rate (%) 46.5 36.2 46.5 259
False Positives* 2 0 [1} 8
False Negatives* 6 0 2 2
Assertion Errors 0 0 0 23
sin/cos approx. error 6 0 0 0

Performance Summary:

® 46.5% verification rate (matches
CoCoSim)

® 28% better than SLDV
® Zero false positives vs CoCoSim’s 2

® Fewer false negatives (2 vs 6)

Key Advantages:
® Full automation (no manual mapping)
® Beyond LTL expressiveness

® Found 2 new floating-point errors

Remaining challenge: Neural networks &
complex matrices
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Technical Discovery: Floating-Point Precision Error

SpecVerify Found Ciritical Error That CoCoSim Missed

Case: TSM Median Selection Algorithm

e Three inputs: a = 1.813 x 10?4, b = 2.328 x 10710, ¢ = 1.999
Expected median: ¢ = 1.999 (middle value by comparison)
Implementation bug: uses mean-based selection instead of direct comparison
IEEE 754 precision loss: pu = % ~ %, selects b as closest
Both verification approaches tested comparison-based properties but missed
implementation precision

Verification Results:
® CoCoSim & SLDV: Missed - used rational arithmetic
e SpecVerify + ESBMC: - IEEE 754 floating-point semantics
e Confirmation: Generated test case reproduces the bug

Key insight: Implementation-level verification reveals errors hidden by mathematical

abstractions 1013



Manual Verification Step and Abstraction Introduces Errors

Case 1: REG-003 Simulink Wiring Error

if (input > 50.0)
then 0 // should be +1 (counter increment)
else 0; // always constant 0

Visual connection mistake: counter connected to wrong output

Case 2: Trigonometric Lookup Table Inconsistencies

® Manual cosine/sine lookup tables used inconsistent 7 constants

® Example: cos(617663/131072) = 1/2 vs —1/2 for same input (expected
cos(3/2m) = 0)
All 6 trigonometric errors caused by this approximation inconsistency

Manual steps introduce human errors (wiring mistakes)

Direct automated translation minimizes abstraction risks
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Research Achievements

Technical Contributions:
® End-to-end automation: requirements — C verification code
® Found floating-point precision errors missed by model-level tools

® Reduced manual modeling errors (wiring, approximations)

Key RE Insights:
e Domain terminology needs explicit clarification
® Formal verification reveals hidden assumptions

® 79.31% logical equivalence shows LLM potential

Impact: LLMs can bridge requirements-verification gap for domain experts
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Future Directions & Conclusion

My Research Roadmap:
® |nteractive refinement: Counter-example guided specification improvement
® Scalable verification: Program slicing for complex systems and introduction to verify
with loop invariants
® Requirements quality feedback: Automated completeness checking

Thoughts for RE Community:
® Formal verification is now accessible - LLMs lower the expertise barrier
® High-quality requirements become critical enabler for automation
® Requirements maintenance gains new importance in verification workflows

Vision: Requirements engineering drives practical formal verification adoption

Thank You - Questions & Discussion

Contact: Weiqi.Wang-2@postgrad.manchester.ac.uk
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