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The Core Challenge: Bridging Requirements and Formal Verification

Current Status

Formal verification requires specialized expertise that most domain experts lack

Current Reality:

Requirements Engineer
Cooperation Needed←−−−−−−−−−−−→ Verification Expert

Natural Language Requirements → Formal Verification Properties

Key Barriers:
• Requires expertise across multiple specialized tools
• Manual variable mapping between requirements and implementation
• Limited expressiveness for complex temporal dependencies

Our Goal: Enable direct automation of formal verification for domain experts
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SpecVerify Solution
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Figure: Two-Phase LLM-Assisted Verification Pipeline
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Why LLMs for Formal Verification? - Capability 1

Research Question: Can LLMs automatically bridge the semantic gap from natural
language to formal properties?
Example 1 - Boundary Reasoning:

Input Requirement

”Output shall be bounded by Top and Bottom limits”

LLM Generated Multiple Verification Conditions:

• Boundary violation detection: output > top limit

• Lower bound checking: output < bottom limit

• Edge case handling: top limit == bottom limit

• Error state transitions

Insight: Single requirement → Multiple formal properties automatically
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Why LLMs for Formal Verification? - Capability 2

Example 2 - Mathematical Reasoning:

Input Requirement

”Maintain target on port-side of vehicle”

LLM Semantic Understanding:
• ”port-side” → left side in navigation
• Spatial relationship → geometric constraint
• Mathematical formulation: cross product test

Generated Formal Specification

Precondition: valid position(vehicle, target)

Property: cross product z > 0

Implementation: (target x - vehicle x) * vehicle vy - (target y -

vehicle y) * vehicle vx > 0

Key Insight: Domain knowledge → Mathematical constraints automatically
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Challenge 1: Domain-Specific Semantic Interpretation

Case Study: TSM ”Miscompare” Terminology

What Happened

Requirements: ”Errors will appear as differences... called a miscompare”
LLM understood: Simple arithmetic difference between signals
Reality: Triple-redundancy voting disagreement (majority wins)

Root Issue: Domain-specific terms have specialized meanings

RE Implications:

• Automated tools need explicit domain context

• Requirements should define key terminology

• 3.4% of our cases had similar semantic gaps
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Challenge 2: Revealing Hidden Assumptions in Requirements

Case Study: SWIM Airspeed Monitoring System
• Requirement: ”Monitor airspeed... when vehicle air data impact pressure is less
than warning trigger”
• SpecVerify: Generated properties from specification based this requirement
• ESBMC counterexample: Found violations with negative pressure values

Critical Discovery

CoCoSim team retroactively added physical constraint (pressure > 0) - the only manual
assumption across all cases

Implications for RE Practice:
• Requirements omit ”obvious” physical constraints
• Manual verification unconsciously adds assumptions
• Automated tools expose these hidden gaps systematically

Value: Reveals requirements incompleteness that humans overlook could be hidden 7 / 13



Logical Equivalence Analysis: Hoare Logic Comparison

Challenge: How to verify LLM-generated properties match manual verification?

CoCoSim (Lustre):

• Precondition: limits & not

standby & not apfail &

supported

• Function: State machine logic

• Postcondition: pullup

Claude Generated:

• Precondition: rtU.limits == true,

rtU.standby == false...

• Function: fsm 12B global step()

• Postcondition: rtY.pullup == true

Manual Equivalence Analysis:
• Compare precondition-function-postcondition structure
• Map abstract Lustre variables to C implementation variables
• Verify same logical conditions and outcomes

No automated tool exists - manual analysis required here

Result: 79.31% logical equivalence across 58 requirements
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Benchmark Performance

Performance Summary:

• 46.5% verification rate (matches
CoCoSim)

• 28% better than SLDV

• Zero false positives vs CoCoSim’s 2

• Fewer false negatives (2 vs 6)

Key Advantages:

• Full automation (no manual mapping)

• Beyond LTL expressiveness

• Found 2 new floating-point errors

Remaining challenge: Neural networks &
complex matrices
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Technical Discovery: Floating-Point Precision Error

SpecVerify Found Critical Error That CoCoSim Missed

Case: TSM Median Selection Algorithm
• Three inputs: a = 1.813× 1024, b = 2.328× 10–10, c = 1.999
• Expected median: c = 1.999 (middle value by comparison)
• Implementation bug: uses mean-based selection instead of direct comparison
• IEEE 754 precision loss: µ = a+b+c

3 ≈ a
3 , selects b as closest

• Both verification approaches tested comparison-based properties but missed
implementation precision

Verification Results:
• CoCoSim & SLDV: Missed - used rational arithmetic
• SpecVerify + ESBMC: Found - IEEE 754 floating-point semantics
• Confirmation: Generated test case reproduces the bug

Key insight: Implementation-level verification reveals errors hidden by mathematical
abstractions
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Manual Verification Step and Abstraction Introduces Errors

Case 1: REG-003 Simulink Wiring Error

i f ( i n pu t > 50 . 0 )
then 0 // shou ld be +1 ( coun t e r i n c r ement )
e l s e 0 ; // a lways con s t an t 0

Visual connection mistake: counter connected to wrong output

Case 2: Trigonometric Lookup Table Inconsistencies
• Manual cosine/sine lookup tables used inconsistent π constants
• Example: cos(617663/131072) = 1/2 vs –1/2 for same input (expected
cos(3/2π) = 0)
• All 6 trigonometric errors caused by this approximation inconsistency

Two Lessons:
• Manual steps introduce human errors (wiring mistakes)

• Direct automated translation minimizes abstraction risks
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Research Achievements

Technical Contributions:

• End-to-end automation: requirements → C verification code

• Found floating-point precision errors missed by model-level tools

• Reduced manual modeling errors (wiring, approximations)

Key RE Insights:

• Domain terminology needs explicit clarification

• Formal verification reveals hidden assumptions

• 79.31% logical equivalence shows LLM potential

Impact: LLMs can bridge requirements-verification gap for domain experts
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Future Directions & Conclusion

My Research Roadmap:
• Interactive refinement: Counter-example guided specification improvement
• Scalable verification: Program slicing for complex systems and introduction to verify
with loop invariants
• Requirements quality feedback: Automated completeness checking

Thoughts for RE Community:
• Formal verification is now accessible - LLMs lower the expertise barrier
• High-quality requirements become critical enabler for automation
• Requirements maintenance gains new importance in verification workflows

Vision: Requirements engineering drives practical formal verification adoption

Thank You - Questions & Discussion

Contact: Weiqi.Wang-2@postgrad.manchester.ac.uk
13 / 13


	Problem Motivation
	SpecVerify Approach
	Experimental Results

