
Supporting Software Formal Verification with Large

Language Models
The Semantic Gap: From Natural Language to Formal Verification

Weiqi Wang, Marie Farrell, Lucas C. Cordeiro, Liping Zhao
University of Manchester, Manchester, UK

August 28, 2025

1 / 13

The Core Challenge: Bridging Requirements and Formal Verification

Current Status

Formal verification requires specialized expertise that most domain experts lack

Current Reality:

Requirements Engineer
Cooperation Needed←−−−−−−−−−−−→ Verification Expert

Natural Language Requirements → Formal Verification Properties

Key Barriers:
• Requires expertise across multiple specialized tools
• Manual variable mapping between requirements and implementation
• Limited expressiveness for complex temporal dependencies

Our Goal: Enable direct automation of formal verification for domain experts
2 / 13

SpecVerify Solution

Verification Process

System and
Requirement
Specification SuT

System
Implementation

C Code

C Transform
(Embedded Coder)

(Existing)

Phase 1:
Formalized Req
& Test Design

Phase 2 :Property
Verification

Structured Guidance for Information
Selection

Structured Guidance
for ESBMC Assertion

Basic Rules

System Process

Property Generation

Verification Property
(C Code)

ESBMC

Verification Result

Result Validiation

Verification Rate

Logic Equivalence

False Positives

False Negatives

Automation Level

Figure: Two-Phase LLM-Assisted Verification Pipeline

Automated transformation from natural language requirements to C verification code 3 / 13

Why LLMs for Formal Verification? - Capability 1

Research Question: Can LLMs automatically bridge the semantic gap from natural
language to formal properties?
Example 1 - Boundary Reasoning:

Input Requirement

”Output shall be bounded by Top and Bottom limits”

LLM Generated Multiple Verification Conditions:

• Boundary violation detection: output > top limit

• Lower bound checking: output < bottom limit

• Edge case handling: top limit == bottom limit

• Error state transitions

Insight: Single requirement → Multiple formal properties automatically

4 / 13

Why LLMs for Formal Verification? - Capability 2

Example 2 - Mathematical Reasoning:

Input Requirement

”Maintain target on port-side of vehicle”

LLM Semantic Understanding:
• ”port-side” → left side in navigation
• Spatial relationship → geometric constraint
• Mathematical formulation: cross product test

Generated Formal Specification

Precondition: valid position(vehicle, target)

Property: cross product z > 0

Implementation: (target x - vehicle x) * vehicle vy - (target y -

vehicle y) * vehicle vx > 0

Key Insight: Domain knowledge → Mathematical constraints automatically
5 / 13

Challenge 1: Domain-Specific Semantic Interpretation

Case Study: TSM ”Miscompare” Terminology

What Happened

Requirements: ”Errors will appear as differences... called a miscompare”
LLM understood: Simple arithmetic difference between signals
Reality: Triple-redundancy voting disagreement (majority wins)

Root Issue: Domain-specific terms have specialized meanings

RE Implications:

• Automated tools need explicit domain context

• Requirements should define key terminology

• 3.4% of our cases had similar semantic gaps

6 / 13

Challenge 2: Revealing Hidden Assumptions in Requirements

Case Study: SWIM Airspeed Monitoring System
• Requirement: ”Monitor airspeed... when vehicle air data impact pressure is less
than warning trigger”
• SpecVerify: Generated properties from specification based this requirement
• ESBMC counterexample: Found violations with negative pressure values

Critical Discovery

CoCoSim team retroactively added physical constraint (pressure > 0) - the only manual
assumption across all cases

Implications for RE Practice:
• Requirements omit ”obvious” physical constraints
• Manual verification unconsciously adds assumptions
• Automated tools expose these hidden gaps systematically

Value: Reveals requirements incompleteness that humans overlook could be hidden 7 / 13

Logical Equivalence Analysis: Hoare Logic Comparison

Challenge: How to verify LLM-generated properties match manual verification?

CoCoSim (Lustre):

• Precondition: limits & not

standby & not apfail &

supported

• Function: State machine logic

• Postcondition: pullup

Claude Generated:

• Precondition: rtU.limits == true,

rtU.standby == false...

• Function: fsm 12B global step()

• Postcondition: rtY.pullup == true

Manual Equivalence Analysis:
• Compare precondition-function-postcondition structure
• Map abstract Lustre variables to C implementation variables
• Verify same logical conditions and outcomes

No automated tool exists - manual analysis required here

Result: 79.31% logical equivalence across 58 requirements
8 / 13

Benchmark Performance

Performance Summary:

• 46.5% verification rate (matches
CoCoSim)

• 28% better than SLDV

• Zero false positives vs CoCoSim’s 2

• Fewer false negatives (2 vs 6)

Key Advantages:

• Full automation (no manual mapping)

• Beyond LTL expressiveness

• Found 2 new floating-point errors

Remaining challenge: Neural networks &
complex matrices

9 / 13

Technical Discovery: Floating-Point Precision Error

SpecVerify Found Critical Error That CoCoSim Missed

Case: TSM Median Selection Algorithm
• Three inputs: a = 1.813× 1024, b = 2.328× 10–10, c = 1.999
• Expected median: c = 1.999 (middle value by comparison)
• Implementation bug: uses mean-based selection instead of direct comparison
• IEEE 754 precision loss: µ = a+b+c

3 ≈ a
3 , selects b as closest

• Both verification approaches tested comparison-based properties but missed
implementation precision

Verification Results:
• CoCoSim & SLDV: Missed - used rational arithmetic
• SpecVerify + ESBMC: Found - IEEE 754 floating-point semantics
• Confirmation: Generated test case reproduces the bug

Key insight: Implementation-level verification reveals errors hidden by mathematical
abstractions

10 / 13

Manual Verification Step and Abstraction Introduces Errors

Case 1: REG-003 Simulink Wiring Error

i f (i n pu t > 50 . 0)
then 0 // shou ld be +1 (coun t e r i n c r ement)
e l s e 0 ; // a lways con s t an t 0

Visual connection mistake: counter connected to wrong output

Case 2: Trigonometric Lookup Table Inconsistencies
• Manual cosine/sine lookup tables used inconsistent π constants
• Example: cos(617663/131072) = 1/2 vs –1/2 for same input (expected
cos(3/2π) = 0)
• All 6 trigonometric errors caused by this approximation inconsistency

Two Lessons:
• Manual steps introduce human errors (wiring mistakes)

• Direct automated translation minimizes abstraction risks

11 / 13

Research Achievements

Technical Contributions:

• End-to-end automation: requirements → C verification code

• Found floating-point precision errors missed by model-level tools

• Reduced manual modeling errors (wiring, approximations)

Key RE Insights:

• Domain terminology needs explicit clarification

• Formal verification reveals hidden assumptions

• 79.31% logical equivalence shows LLM potential

Impact: LLMs can bridge requirements-verification gap for domain experts

12 / 13

Future Directions & Conclusion

My Research Roadmap:
• Interactive refinement: Counter-example guided specification improvement
• Scalable verification: Program slicing for complex systems and introduction to verify
with loop invariants
• Requirements quality feedback: Automated completeness checking

Thoughts for RE Community:
• Formal verification is now accessible - LLMs lower the expertise barrier
• High-quality requirements become critical enabler for automation
• Requirements maintenance gains new importance in verification workflows

Vision: Requirements engineering drives practical formal verification adoption

Thank You - Questions & Discussion

Contact: Weiqi.Wang-2@postgrad.manchester.ac.uk
13 / 13

	Problem Motivation
	SpecVerify Approach
	Experimental Results

