MANCHESTER
1824

The University of Manchester

Technology
TI I Innovation
Institute

10101101001010101011101011010010101010111010110100

The FormAl Dataset: Generative Al in Software
Security through the Lens of Formal Verification

Norbert Tihanyi, Tamas Bisztray, Ridhi Jain, Mohamed Amine
Ferrag, Lucas C. Cordeiro, Vasileios Mavroeidis

FormAl dataset 1/17

Challenges in automatic code repair (ACR)

Large &
Diverse dataset

Deep Arithmetic
Understanding

Equivalence
Checking

CHALLENGES

Vulnerability
Detection

Hallucination

Avoid False
Negatives/ Positives

FormAl dataset

The FormAl Dataset

Motivation: To create a dataset where each sample code is correctly
labeled as vulnerable or not, using formal verification methods, to
minimize the occurrence of false positives and negatives.

FormAl Dataset

FormAl is a novel Al-generated dataset compris-

ing 112,000 compilable and independent C programs.

All the programs in the dataset were generated by

O GPT-3.5-turbo using dynamic zero-shot prompt-

fO rm A I ing technique and comprises programs with varying

levels of complexity. Each program is labelled based

on vulnerabilities present in the code using a formal

verification method based on the Efficient SMT-
based Bounded Model Checker (ESBMC).

PDATASET

FormAl dataset 3/17

FormAl dataset - Availability

The dataset can be accessed on both GitHub and IEEE Dataport.
o GitHub: https://github.com/FormAI-Dataset/
o IEEE dataport: https://dx.doi.org/10.21227/vp9n-wv96

0

GitHub |EEEDataPort

FormAl dataset 4/17

https://github.com/FormAI-Dataset/
https://dx.doi.org/10.21227/vp9n-wv96

FormAl dataset - Structure

formAl

DATASET

The dataset comprises three distinct files:

o FormAl_dataset_C_samples-V1.zip - This file contains all the
112,000 C files.

o FormAl_dataset _classification-V1.zip - This file contains a CSV file
with the original code and vulnerability classification.

o FormAl_dataset_human_readable-V1.csv - Human readable version

FormAl dataset 5/17

hodology for Dataset creation

Dataset Generation and Vulnerability Labeling Framework
Non- =
X Comzirllable m

type —L
Prompt @ Generated > GCC
template C code v Module
style —I

LLM
Module N

 Compilable | |</>

Verification Failed
Property violation

Verification \
Succesful

[

BMC FormAl
Module Dataset

</>

@ LLM module — GPT-3.5-turbo
@ BMC module —+ ESBMC 7.3

FormAl dataset 6/17

Ensure Diversity

Table game
n
G‘a"“\a(\o“ q »
ef e
(@9 e ’775/7:@&%’ orea
Sind epy, & scientific
jipu'? o &0‘\0* o
e [Type] [Style]
o] Sorting . authentic
management . Sys,em 5 realistic .
’"isfratio s multi-
- threaded

Write a unique C sorting example program in a multi-threaded
style. Instructions: a. Minimum 50 lines. b. Be creative! c. Do not
say | am sorry. Always come up with some code. d. Make sure the|
program compiles and runs without any errors. Please generate a
code snippet that starts with ***c and ends with **".

@ Proper prompt engineering is crucial for achieving a diverse dataset.

@ Each API call randomly chooses a type from 200 options in the Type category, including
topics like Wi-Fi Signal Strength Analyzer, QR Code Reader, and others. Similarly, a
coding style is selected from 100 options in the Style category during each query.

FormAl dataset 7/17

Enhancing code compilability

To minimize the error within the generated code, we have established five
instructions in each specific prompt:

o

Minimum 5@ lines: This encourages the LLM to avoid the
generation of overly simplistic code with only a few lines (which
occasionally still happens);

Be creative!: The purpose of this instruction is to generate a more
diverse dataset;

Do not say I am sorry: The objective of this instruction is to
circumvent objections and responses such as “As an Al model, |
cannot generate code”, and similar statements.

Make sure the program compiles: This instruction encourages the
model to include header files and create a complete and compilable
program.

Generate a code snippet that starts with ¢‘‘c: Enable easy
extraction of the C code from the response.

FormAl dataset 8/17

C Keyword frequency in FormAl, SARD, and BigVul

FormAl (Per Million LOC) SARD (Per Million LOC) ~Bigul (Per Million LOC)
int 31966 29693

i B
e sue 12025
—— oo

or o002 an 7007
wia- 107 26716 20855
e 10052 20aa 2013
- amm so07 16550
break - 15804 9528 14885 -
ase- 1 0 s %
sizeof - 10488 10298 8912 8
o= sais 1052 e o
float - 5733 n 753 g

unsigned - a8 6852 9864 F
5 e a0 379 o 2
3 switch- 2088 m 272 3
& aeaur- 20 765 1999 P

const - 1902 1358 20807 &
boi- 1610 o s 3
continue - 1562 0 2031 3
g~ 1 e w2 3

w- 0w e a2 E
short- s 224 515 2
enum- 2 0 450 3
static - 187 14078 10478 S
oo s w9
union - 18 111 182 2
votte- : 155
s - 2 o a
regiter - : o w08
exen- . s n
o o 0

0 20000 40000 60000 80000 100000

rmAl dataset

Bounded Model Checking (BMC)

Bounded Model Checking

We define a state transition system M = (S, R, s1) with states S,
transitions R C S x S, and initial states s;. A state s includes a program
counter pc and variable values, with s, starting at the CFG’s initial
location. Transitions T = (s;, sj+1) are logical formulas reflecting program
constraints.

For BMC, ¢(s) encodes safety/security, and 1)(s) encodes termination
states, with ¢(s) A\ 1(s) being unsatisfiable. The BMC formula is:

k—1 k
BMC(k) = I(s1) A N\ T(si,siv1) A\ —é(si)- (1)
i=1 i=1

It represents M's executions of length k, where BMC(k) is satisfiable if ¢
is violated within k steps, yielding a counterexample.

FormAl dataset 10/17

Vulnerability Classification using ESBMC 7.3

Define X as the set of all C samples, ¥ = {c1, o, ..., c112,000}-

4 Main Categories

@ VS C X: the set of samples for which verification was successful
(no vulnerabilities have been detected within the bound k);

e VF C X: the set of samples for which the verification status failed
(known counterexamples);

@ 7O C ¥: the set of samples for which the verification process was
not completed within the provided time frame (as a result, the
status of these files remains uncertain);

o &R C X: the set of samples for which the verification status
resulted in an error.

FormAl dataset 11/17

9 subcategories for V.F

9 Subcategories

ARO C VF : Arithmetic overflow

BOJF C VF : Buffer overflow on scanf()/fscanf ()
ABY C VF : Array bounds violated

DFN C VF : Dereference failure : NULL pointer

DFF CVF : Dereference failure : forgotten memory
DFI C VF : Dereference failure : invalid pointer

DFA CVF : Dereference failure : array bounds violated
@ DBZ CV.F : Division by zero

e OTV CVF : Other vulnerabilities

FormAl dataset 12/17

Which parameters are most effective?

Table: Classification results for different parameters

(W) | VULN | keind | RUMing |y | yr | 70 | er
time (m:s)
(2,1000) 2438 X 758:09 371 547 34 48
(3,1000) | 2373 | X | 1388:30 | 366 | 527 | 57 | 50
(2.100) | 2330 | X 17538 | 367 | 520 | 61 | 43
(2.100) | 2256 | < | 400:54 | 340 | 603 | 20 | 37
(1,100) | 2201 | X 5620 | 416 | 531 | 17 | 36
(130) | 2158 | 7 14613 | 349 | 581 | 34 | 36
(3.100) | 2120 | X 28422 | 354 | 483 | 120 | 43
(1,30) | 2116 | X | 30:57 | 416 | 519 | 30 | 35
(1,10) | 2060 | v 6158 | 360 | 553 | 52 | 35
(1,10) | 2038 | X 1932 | 413 | 503 | 51 | 33
(330) | 1962 | X 12510 | 342 | 444 | 172 | 42
@) | 1557 | 7 1050 | 355 | 406 | 208 | 31
(11) | 15% | X 622 | 395 | 374 | 201 | 30

v: Enabled, X: Disabled, (u, t) = unwind and timeout parameters

FormAl dataset 13 /17

Vulnerabilities identified by ESBMC

#Vulns | Vuln. Associated CWE-numbers

88,049 BOF CWE-20, CWE-120, CWE-121, CWE-125, CWE-129, CWE-
131, CWE-628, CWE-676, CWE-680, CWE-754, CWE-787
31,829 DFN | CWE-391, CWE-476, CWE-690

24,702 DFA | CWE-119, CWE-125, CWE-129, CWE-131, CWE-755, CWE-

787

23,312 ARO | CWE-190, CWE-191, CWE-754, CWE-680, CWE-681, CWE-
682

11,088 ABV CWE-119, CWE-125, CWE-129, CWE-131, CWE-193, CWE-
787, CWE-788

9823 DFL CWE-416, CWE-476, CWE-690, CWE-822, CWE-824, CWE-
825

5810 DFF | CWE-401, CWE-404, CWE-459

1620 oTV CWE-119, CWE-125, CWE-158, CWE-362, CWE-389, CWE-
401, CWE-415, CWE-459, CWE-416, CWE-469, CWE-590,
CWE-617, CWE-664, CWE-662, CWE-685, CWE-704, CWE-
761, CWE-787, CWE-823, CWE-825, CWE-843

1567 DBZ CWE-369

FormAl dataset 14 /17

Research Questions Answered

Research Questions

@ RQ1: How likely is purely LLM-generated code to contain vulnerabilities on
the first output when using simple zero-shot text-based prompts?
Answer: At least 51.24% of the samples from the 112,000 C programs
contain vulnerabilities. This indicates that GPT-3.5 often produces
vulnerable code. Therefore, one should exercise caution when considering its
output for real-world projects.

@ RQ2: What are the most typical vulnerabilities LLMs introduce when
generating code?
Answer: For GPT-3.5: Arithmetic Overflow, Array Bounds Violation, Buffer
Overflow, and various Dereference Failure issues were among the most
common vulnerabilities. These vulnerabilities are pertinent to MITRE’s Top
25 list of CWEs.

FormAl dataset 15 /17

Future Research - Fine tuned BERT / Fuzzing

Output Software
Vulnerability

Probabiliies

Score : Linear(in_features=768, out_features=2,
bias=False)

LayerNorm((768.,), eps=1e-05,
elementwise_affine=True)

Dense : Linear layer(in_features=3072,
out_features=768, bias=False)

Multilayer Perceptron

out_features=3072,

Dense : Linear layer(in_features=768,
bias=False)

it |

\
J

Attention Dropout Layer \

12 x Decoder Layer

out_features=768, bias=False)

Dense : Linear Layer (in_features=768,]

Q_K_V: Linear layer (in_features=768,
out_features=896, bias=False)

RotaryEmbedding()

Input : LayerNorm((768.), eps=1e-05,
elementwise_affine=True) /

“ /" Self Attention with Rotary Embedding ™\

/

x
|

Embedding Layer (65024, 768)

ormAl dataset 16 /17

Thank you for your attention!

% norbert.tihanyiOtii.ae
¥ OTihanyiNorbert

FormAl dataset 17 /17

