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The FormAl Dataset

Motivation: To create a dataset where each sample code is correctly
labeled as vulnerable or not, using formal verification methods, to
minimize the occurrence of false positives and negatives.

FormAl Dataset

FormAl is a novel Al-generated dataset compris-

ing 112,000 compilable and independent C programs.

All the programs in the dataset were generated by

O GPT-3.5-turbo using dynamic zero-shot prompt-

fO rm A I ing technique and comprises programs with varying

levels of complexity. Each program is labelled based

on vulnerabilities present in the code using a formal

verification method based on the Efficient SMT-
based Bounded Model Checker (ESBMC).

PDATASET
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FormAl dataset - Availability

The dataset can be accessed on both GitHub and IEEE Dataport.
o GitHub: https://github.com/FormAI-Dataset/
o IEEE dataport: https://dx.doi.org/10.21227/vp9n-wv96

0

GitHub |EEEDataPort
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FormAl dataset - Structure

formAl

DATASET

The dataset comprises three distinct files:

o FormAl_dataset_C_samples-V1.zip - This file contains all the
112,000 C files.

o FormAl_dataset _classification-V1.zip - This file contains a CSV file
with the original code and vulnerability classification.

o FormAl_dataset_human_readable-V1.csv - Human readable version
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hodology for Dataset creation

Dataset Generation and Vulnerability Labeling Framework
Non- =
X Comzirllable m

type —L
Prompt @ Generated > GCC
template C code v Module
style —I

LLM
Module N

 Compilable | |</>

Verification Failed
Property violation

Verification \
Succesful

[

BMC FormAl
Module Dataset

</>

@ LLM module — GPT-3.5-turbo
@ BMC module —+ ESBMC 7.3

FormAl dataset 6/17



Ensure Diversity

Table game
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Write a unique C sorting example program in a multi-threaded
style. Instructions: a. Minimum 50 lines. b. Be creative! c. Do not
say | am sorry. Always come up with some code. d. Make sure the|
program compiles and runs without any errors. Please generate a
code snippet that starts with ***c and ends with **".

@ Proper prompt engineering is crucial for achieving a diverse dataset.

@ Each API call randomly chooses a type from 200 options in the Type category, including
topics like Wi-Fi Signal Strength Analyzer, QR Code Reader, and others. Similarly, a
coding style is selected from 100 options in the Style category during each query.
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Enhancing code compilability

To minimize the error within the generated code, we have established five
instructions in each specific prompt:

o

Minimum 5@ lines: This encourages the LLM to avoid the
generation of overly simplistic code with only a few lines (which
occasionally still happens);

Be creative!: The purpose of this instruction is to generate a more
diverse dataset;

Do not say I am sorry: The objective of this instruction is to
circumvent objections and responses such as “As an Al model, |
cannot generate code”, and similar statements.

Make sure the program compiles: This instruction encourages the
model to include header files and create a complete and compilable
program.

Generate a code snippet that starts with ¢‘‘c: Enable easy
extraction of the C code from the response.
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C Keyword frequency in FormAl, SARD, and BigVul

FormAl (Per Million LOC) SARD (Per Million LOC) ~Bigul (Per Million LOC)
int 31966 29693

i B
e sue 12025
—— oo

or o002 an 7007
wia- 107 26716 20855
e 10052 20aa 2013
- amm so07 16550
break - 15804 9528 14885 -
ase- 1 0 s %
sizeof - 10488 10298 8912 8
o= sais 1052 e o
float - 5733 n 753 g

unsigned - a8 6852 9864 F
5 e a0 379 o 2
3 switch- 2088 m 272 3
& aeaur- 20 765 1999 P

const - 1902 1358 20807 &
boi- 1610 o s 3
continue - 1562 0 2031 3
g~ 1 e w2 3

w- 0w e a2 E
short- s 224 515 2
enum- 2 0 450 3
static - 187 14078 10478 S
oo s w9
union - 18 111 182 2
votte- : 155
s - 2 o a
regiter - : o w08
exen- . s n
o o 0

0 20000 40000 60000 80000 100000

rmAl dataset




Bounded Model Checking (BMC)

Bounded Model Checking

We define a state transition system M = (S, R, s1) with states S,
transitions R C S x S, and initial states s;. A state s includes a program
counter pc and variable values, with s, starting at the CFG’s initial
location. Transitions T = (s;, sj+1) are logical formulas reflecting program
constraints.

For BMC, ¢(s) encodes safety/security, and 1)(s) encodes termination
states, with ¢(s) A\ 1(s) being unsatisfiable. The BMC formula is:

k—1 k
BMC(k) = I(s1) A N\ T(si,siv1) A\ —é(si)- (1)
i=1 i=1

It represents M's executions of length k, where BMC(k) is satisfiable if ¢
is violated within k steps, yielding a counterexample.

FormAl dataset 10/17



Vulnerability Classification using ESBMC 7.3

Define X as the set of all C samples, ¥ = {c1, o, ..., c112,000}-

4 Main Categories

@ VS C X: the set of samples for which verification was successful
(no vulnerabilities have been detected within the bound k);

e VF C X: the set of samples for which the verification status failed
(known counterexamples);

@ 7O C ¥: the set of samples for which the verification process was
not completed within the provided time frame (as a result, the
status of these files remains uncertain);

o &R C X: the set of samples for which the verification status
resulted in an error.
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9 subcategories for V.F

9 Subcategories

ARO C VF : Arithmetic overflow

BOJF C VF : Buffer overflow on scanf()/fscanf ()
ABY C VF : Array bounds violated

DFN C VF : Dereference failure : NULL pointer

DFF CVF : Dereference failure : forgotten memory
DFI C VF : Dereference failure : invalid pointer

DFA CVF : Dereference failure : array bounds violated
@ DBZ CV.F : Division by zero

e OTV CVF : Other vulnerabilities
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Which parameters are most effective?

Table: Classification results for different parameters

(W) | VULN | keind | RUMing |y | yr | 70 | er
time (m:s)
(2,1000) 2438 X 758:09 371 547 34 48
(3,1000) | 2373 | X | 1388:30 | 366 | 527 | 57 | 50
(2.100) | 2330 | X 17538 | 367 | 520 | 61 | 43
(2.100) | 2256 | < | 400:54 | 340 | 603 | 20 | 37
(1,100) | 2201 | X 5620 | 416 | 531 | 17 | 36
(130) | 2158 | 7 14613 | 349 | 581 | 34 | 36
(3.100) | 2120 | X 28422 | 354 | 483 | 120 | 43
(1,30) | 2116 | X | 30:57 | 416 | 519 | 30 | 35
(1,10) | 2060 | v 6158 | 360 | 553 | 52 | 35
(1,10) | 2038 | X 1932 | 413 | 503 | 51 | 33
(330) | 1962 | X 12510 | 342 | 444 | 172 | 42
@) | 1557 | 7 1050 | 355 | 406 | 208 | 31
(11) | 15% | X 622 | 395 | 374 | 201 | 30

v: Enabled, X: Disabled, (u, t) = unwind and timeout parameters
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Vulnerabilities identified by ESBMC

#Vulns | Vuln. Associated CWE-numbers

88,049 BOF CWE-20, CWE-120, CWE-121, CWE-125, CWE-129, CWE-
131, CWE-628, CWE-676, CWE-680, CWE-754, CWE-787
31,829 DFN | CWE-391, CWE-476, CWE-690

24,702 DFA | CWE-119, CWE-125, CWE-129, CWE-131, CWE-755, CWE-

787

23,312 ARO | CWE-190, CWE-191, CWE-754, CWE-680, CWE-681, CWE-
682

11,088 ABV CWE-119, CWE-125, CWE-129, CWE-131, CWE-193, CWE-
787, CWE-788

9823 DFL CWE-416, CWE-476, CWE-690, CWE-822, CWE-824, CWE-
825

5810 DFF | CWE-401, CWE-404, CWE-459

1620 oTV CWE-119, CWE-125, CWE-158, CWE-362, CWE-389, CWE-
401, CWE-415, CWE-459, CWE-416, CWE-469, CWE-590,
CWE-617, CWE-664, CWE-662, CWE-685, CWE-704, CWE-
761, CWE-787, CWE-823, CWE-825, CWE-843

1567 DBZ CWE-369
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Research Questions Answered

Research Questions

@ RQ1: How likely is purely LLM-generated code to contain vulnerabilities on
the first output when using simple zero-shot text-based prompts?
Answer: At least 51.24% of the samples from the 112,000 C programs
contain vulnerabilities. This indicates that GPT-3.5 often produces
vulnerable code. Therefore, one should exercise caution when considering its
output for real-world projects.

@ RQ2: What are the most typical vulnerabilities LLMs introduce when
generating code?
Answer: For GPT-3.5: Arithmetic Overflow, Array Bounds Violation, Buffer
Overflow, and various Dereference Failure issues were among the most
common vulnerabilities. These vulnerabilities are pertinent to MITRE’s Top
25 list of CWEs.
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Future Research - Fine tuned BERT / Fuzzing

Output Software
Vulnerability

Probabiliies

Score : Linear(in_features=768, out_features=2,
bias=False)

LayerNorm((768.,), eps=1e-05,
elementwise_affine=True)

Dense : Linear layer(in_features=3072,
out_features=768, bias=False)

Multilayer Perceptron

out_features=3072,

Dense : Linear layer(in_features=768,
bias=False)
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Attention Dropout Layer \

12 x Decoder Layer

out_features=768, bias=False)

Dense : Linear Layer (in_features=768, ]

Q_K_V: Linear layer (in_features=768,
out_features=896, bias=False)

RotaryEmbedding()

Input : LayerNorm((768.), eps=1e-05,
elementwise_affine=True) /

“ /" Self Attention with Rotary Embedding ™\
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Embedding Layer (65024, 768)
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Thank you for your attention!

% norbert.tihanyiOtii.ae
¥  OTihanyiNorbert
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