
Security of Software Systems
with Applications on the

Internet of Things

Lucas Cordeiro

Department of Computer Science

lucas.cordeiro@manchester.ac.uk

https://ssvlab.github.io/lucasccordeiro/

Collaborators/funders:

Systems and Software Security / FM Research Group

ARM Centre of Excellence

PPGEE, PPGI – UFAM

Centre for Digital Trust and Society

UKRI, EPSRC, EU Horizon and industrial partners

mailto:lucas.cordeiro@cs.ox.ac.uk
mailto:lucas.cordeiro@cs.ox.ac.uk

Security in IoT Software

Requirements Definition

Availability services are

accessible if

requested by

authorized users

Integrity data

completeness and

accuracy are

preserved

Confidentiality only authorized

users can get

access to the data

• Software security consists of building programs that

continue to function correctly under malicious attack

Basic software components in a secure embedded
system or IoT device (Image source: Arm)

Memory errors in low-level software written in

unsafe programming languages represent one

of the main problems in computer security

Memory Safety Vulnerabilities

• The top 13 vulnerabilities in CWE include five types of

memory errors (out of bounds and use after free)

• Two out of the top three vulnerabilities found in

GitHub projects were memory safety issues

• Microsoft reports that around 70% of all security

updates in their products address memory issues

• Google reports a similar number for Chrome Browser

The CWE Top 13

4

ID Name

1 CWE-787 Out-of-bounds Write

2 CWE-79
Improper Neutralization of Input During Web Page Generation ('Cross-site

Scripting')

3 CWE-89
Improper Neutralization of Special Elements used in an SQL Command ('SQL

Injection')

4 CWE-20 Improper Input Validation

5 CWE-125 Out-of-bounds Read

6 CWE-78
Improper Neutralization of Special Elements used in an OS Command ('OS

Command Injection')

7 CWE-416 Use After Free

8 CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

9 CWE-352 Cross-Site Request Forgery (CSRF)

10 CWE-434 Unrestricted Upload of File with Dangerous Type

11 CWE-476 NULL Pointer Dereference

12 CWE-502 Deserialization of Untrusted Data

13 CWE-190 Integer Overflow or Wraparound

https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/190.html

Objective of this talk

• Define standard notions of security and (software)

security vulnerabilities in embedded and IoT

applications

• Explain testing and verification techniques to reason

about the system and software security

• Present recent advancements towards a hybrid

approach to protecting against memory safety

vulnerabilities

Discuss automated testing and formal

verification techniques that establish the

security of software systems

Agenda

• Define standard notions of security and

(software) security vulnerabilities in real-

world applications

• Explain testing and verification techniques to

reason about the system and software security

• Present recent advancements towards a hybrid

approach to protect against memory safety

vulnerabilities

Example of Unmanned Aerial

Vehicles (UAVs)

Vulnerability analysis

Remote accessibility (device

authentication, access control)

Patch management

Attacks from physical world (GPS

spoofing)

• A software system is secure if it satisfies a specified

security objective

What does it mean for software to
be secure?

Klein et al., Formally verified software in the real world. Commun. ACM 61(10): 68-77 (2018)

Boeing Unmanned Little Bird H-6U

Attacked by rogue camera

software and by a virus

delivered through a

compromised USB stick

Implementation Vulnerability

• We use the term implementation vulnerability (or

security bug) both for bugs that

– make it possible for an attacker to violate a security

objective

– for classes of bugs that enable specific attack techniques

Example of IoT: Message Queuing Telemetry Transport

• In 2021, we detected a data race vulnerability in the

wolfMQTT library (messaging protocol)

– Detected in function MqttClient_WaitType, which could lead to

an information leak or data corruption

https://github.com/wolfSSL/wolfMQTT/issues/198
https://github.com/wolfSSL/wolfMQTT/pull/209

A
ljaafari et al.: C

o
m

b
in

in
g B

M
C

 an
d

 Fu
zzin

g Tech
n

iq
u

es fo
r

Fin
d

in
g So

ftw
are V

u
ln

erab
ilities in

 C
o

n
cu

rren
t P

ro
gram

s.

https://github.com/wolfSSL/wolfMQTT/issues/198
https://github.com/wolfSSL/wolfMQTT/pull/209

• Null pointer dereference

Critical Software Vulnerabilities

int main() {
double *p = NULL;

int n = 8;

for(int i = 0; i < n; ++i)
*(p+i) = i*2;

return 0;
}

Scope Impact

Availability Crash, exit and restart

Integrity
Confidentiality
Availability

Execute Unauthorized Code
or Commands

A NULL pointer dereference

occurs when the application

dereferences a pointer that it

expects to be valid, but is

NULL

• Null pointer dereference

• Double free

Critical Software Vulnerabilities

int main(){
char* ptr = (char *)malloc(sizeof(char));
if(ptr==NULL) return -1;

*ptr = 'a’;
free(ptr);
free(ptr);

return 0;
}

The product calls free()

twice on the same

memory address,

leading to modification

of unexpected memory

locations

Scope Impact

Integrity
Confidentiality
Availability

Execute Unauthorized Code
or Commands

• Null pointer dereference

• Double free

• Unchecked Return Value to NULL Pointer

Dereference

• Division by zero

• Missing free

• Use after free

• APIs rule based checking

Critical Software Vulnerabilities

Can we leverage program

analysis/synthesis to discover more

software vulnerabilities than existing
state-of-the-art approaches?

Research Questions

Given a program and a security

specification, can we automatically verify
that the program performs as specified?

Agenda

• Define standard notions of security and

(software) security vulnerabilities in real-world

applications

• Explain testing and verification techniques to

reason about the system and software

security

• Present recent advancements towards a hybrid

approach to protect against memory safety

vulnerabilities

SAT solving as enabling technology

unit propagation,

conflict clauses and

non-chronological

backtracking

K
ro

e
n
in

g
, D

., S
tric

h
m

a
n

, O
., D

e
c
is

io
n
 P

ro
c
e
d
u
re

s
 -

A
n

A
lg

o
rith

m
ic

 P
o
in

t o
f V

ie
w

, S
e
c
o
n
d
 E

d
itio

n
, S

p
rin

g
e
r.

SAT Competition

http://www.satcompetition.org/

http://www.satcompetition.org/

Bounded Model Checking (BMC)

MC: check if a property holds for all states

BMC: check if a property holds for a subset of

states

Init error. . .

k

Bounded Model Checking (BMC)

IS THERE

ANY

ERROR?

IS THERE

ANY

ERROR

IN k

STEPS?

no

yes

completeness

threshold reached

k+1 still tractable

k+1 intractable

no

yes

M, S

M, S

ok

ok

fail

fail

bound

MC:

BMC:

“never” happens

in practice

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation

– forward substitutions

– unreachable code

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation

– forward substitutions

– unreachable code

• front-end converts unrolled and

optimized program into SSA

g1 = x1 == 0
a1 = a0 WITH [i0:=0]
a2 = a0

a3 = a2 WITH [2+i0:=1]
a4 = g1 ? a1 : a3

t1 = a4 [1+i0] == 1

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation

– forward substitutions

– unreachable code

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

()

()

()






















=

+=

=

=

==

=

),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

()


















=+

++

++



=

11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation

– forward substitutions

– unreachable code

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

– specific to selected SMT solver, uses theories

()

()

()






















=

+=

=

=

==

=

),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

()


















=+

++

++



=

11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

crucial

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation

– forward substitutions

– unreachable code

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

– specific to selected SMT solver, uses theories

• satisfiability check of C ∧ ¬P

()

()

()






















=

+=

=

=

==

=

),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

()


















=+

++

++



=

11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Cordeiro et al.: SMT-Based Bounded Model Checking

for Embedded ANSI-C Software. IEEE TSE, 2012

Embedded Software Verification

• Powerstone: automotive-

control and fax

applications

• Real-Time SNU: matrix

handling and signal

processing, cyclic-

redundancy check,

Fourier transform, and

JPEG encoding

• WCET: a set of programs

for executing worst-case

time analysis

34 tasks; 900s, 15GB

ESBMC achieved the 2nd place

Alhawi et al.: Verification and refutation of C programs

based on k-induction and invariant inference. STTT, 2021

• SV-COMP 2022, 5400 verification tasks, max. score: 8631

• ESBMC achieved the 6th place

Verification of the Reach-Safety Category

https://sv-comp.sosy-lab.org/2022/

https://sv-comp.sosy-lab.org/2022/

• SV-COMP 2022, 586 verification tasks, max. score: 828

• JBMC achieved the 2th place

Verification of the Java Category

https://sv-comp.sosy-lab.org/2022/
Cordeiro et al.: JBMC: A Bounded Model Checking Tool

for Verifying Java Bytecode. CAV (1) 2018: 183-190

https://sv-comp.sosy-lab.org/2022/

White-box Fuzzing:

Bug Finding and Code Coverage

• Translate the program to an intermediate representation (IR)

• Add properties to check errors or goals to check coverage

• Symbolically execute IR to produce an SSA program

• Translate the resulting SSA program into a logical formula

• Solve the formula iteratively to cover errors and goals

• Interpret the solution to figure out the input conditions

• Spit those input conditions out as a test case

C and
Java

IR Symex
SMT

Solver

Cover errors
or goals

Properties
and goals

SSA

Alshmrany et al.: FuSeBMC: A White-Box Fuzzer
for Finding Security Vulnerabilities in C
Programs. FASE, 2021

Competition on Software Testing 2022:
Results of the Cover-Error Category

FuSeBMC achieved 3 awards: 1st place in Cover-Error, 1st place in

Cover-Branches, and 1st place in Overall

https://test-comp.sosy-lab.org/2022/

https://test-comp.sosy-lab.org/2022/

• wolfMQTT library is a client implementation of the MQTT

protocol written in C for IoT devices

Int main(){

Pthread_t th1, th2;

static MQTTCtx mqttCtx;

pthread_create(&th1, subscribe_task, &mqttCtx))

pthread_create(&th2, waitMessage_task, &mqttCtx))}

static void *subscribe_task(void *client){

.....

MqttClient_WaitType(client,msg,MQTT_PACKET_TYPE_ANY,

0,timeout_ms);

.....}

static void *waitMessage_task(void *client){

…

MqttClient_WaitType(client, msg, MQTT_PACKET_TYPE_ANY,

0,timeout_ms);

.....}

static int MqttClient_WaitType(MqttClient *client,

void *packet_obj,

byte wait_type, word16 wait_packet_id, int timeout_ms)

{

.....

rc = wm_SemLock(&client->lockClient);

if (rc == 0) {

if (MqttClient_RespList_Find(client,

(MqttPacketType)wait_type,

wait_packet_id, &pendResp)) {

if (pendResp->packetDone) {

rc = pendResp->packet_ret;
.....}

subscribe_task

and waitMessage_task are

called through different threads
accessing packet_ret,

causing a data race in
MqttClient_WaitType

Here is where the

data race might

happen! Unprotected

pointer

WolfMQTT Verification

WolfMQTT Verification

Buffer
ACK

ACK

1

2

3

4

Sharing buffer

between clients

Unprotected

pointer for the

status code

Data race might

happen if the broker

sends the status code

Buffer ACK

ACK

1

2

3

4
Buffer

To solve it they copied
the code status into
different buffers

After fixing the

concurrency

vulnerability

Bug Report

https://github.com/wolfSSL/wolfMQTT

https://github.com/wolfSSL/wolfMQTT

Agenda

• Define standard notions of security and

(software) security vulnerabilities in real-world

applications

• Explain testing and verification techniques to

reason about the system and software

security

• Present recent advancements towards a

hybrid approach to protect against memory

safety vulnerabilities

Capability Hardware Enhanced RISC
Instructions (CHERI)

CheriBSD2 - adaptation of FreeBSD to
support CHERI ISAs

CHERI Clang/LLVM and LLD1 - compiler
and linker for CHERI ISAs

pointer address (64 bits)

063

permissions (15 bits) reserved base and bounds (41 bits)

CHERI 128-bit capability

CHERI instruction-set extensions

1https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-llvm.html

2https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheribsd.html

ARM Morello3 - SoC development board
with a CHERI-extended ARMv8-A
processor
3https://www.arm.com/architecture/cpu/morello

#include <stdlib.h>
#include <string.h>
#include <cheri/cheric.h>

void main() {
int n = nondet_uint() % 1024; /* models arbitrary user input */
char a[n+1], *__capability b = cheri_ptr(a, n+1);
b[n] = 17; /* succeeds */
char *__capability c = cheri_setbounds(b-1, n); /* fails: not the same object */
/* ... */ /* more CHERI-C API checks */
memset_c(c, 42, n); /* setting memory through a capability */

}

CHERI-C program

CHERI-C API

New capability types

#include <stdlib.h>
#include <string.h>
#include <cheri/cheric.h>

void main() {
int n = nondet_uint() % 1024;
char a[n+1], *__capability b = cheri_ptr(a, n+1);
b[n] = 17;
char *__capability c = cheri_setbounds(b-1, n);
/* ... */
memset_c(c, 42, n);

}

#include <string.h>
#include <stdio.h>

void main(void) {
int n = nondet_uint() % 1024;
char a[n+1], *b = a;
b[n] = 17;
char *c = b-1;
memset(c, 42, n);

}

All pointers are automatically replaced with capabilities by the CHERI Clang/LLVM
compiler

Pure-capability CHERI-C model

The Efficient SMT-based Bounded
Model Checker (ESBMC)

GOTO

Program

SMT

formulaASTScan SMT

Solver

Symbolic

Execution

Engine

Property holds

Property is violated

C Program
Control-flow

Graph

Generator

clang

Memory

Model

External

Libraries

Correctness

Proof

Violation

Witness

ESBMC-CHERI

GOTO

Program

SMT

formula

ASTScan

SMT

Solver

Symbolic

Execution

Engine

Property holds

Property is violated

C Program
Control-flow

Graph

Generator

clang

CHERI-

Clang
Scan AST

Memory

Model

CHERI

Memory

Model

External

Libraries

CHERI-C

API

Correctness

Proof

Violation

Witness

Implement computational

model for CHERI-C API

functions inside ESBMC

(e.g., cheri_setbounds)

• New capability types

• Tagged memory

• Capability dereferencing

CHERI Clang/LLVM
compiler

Brauße et al.: ESBMC-CHERI: towards verification of C programs for CHERI
platforms with ESBMC. ISSTA 2022: 773-776

• Distinguished Paper Award at ACM ICSE’11

(acceptance rate 14%)

• 32 awards from the international competitions

on software verification (SV-COMP) and testing

(Test-Comp) 2012-2022 at TACAS/FASE

– Bug finding

– Cover error

• Intel deploys ESBMC in production as one of its

verification engines for verifying firmware in C

• Nokia has found security vulnerabilities in

telecommunication software written in C++

Achievements

🥇

🥇

Methods, algorithms, and

tools to write software

with respect to security

Research Mission

Automated testing, verification and

synthesis to ensure the security in

embedded and IoT software

