Collaborators/funders:

Systems and Software Security / FM Research Group MANCHESTER
ARM Centre of Excellence 1324

PPGEE, PPGI — UFAM The University of Manchester
Centre for Digital Trust and Society

UKRI, EPSRC, EU Horizon and industrial partners

Security of Software Systems
with Applications on the
Internet of Things

s@ Lucas Cordeiro

fae\
5 -

ot Department of Computer Science
4 -

: lucas.cordeiro@manchester.ac.uk

https://ssvlab.qgithub.io/lucasccordeiro/

mailto:lucas.cordeiro@cs.ox.ac.uk
mailto:lucas.cordeiro@cs.ox.ac.uk

Security in loT Software

« Software security consists of building programs that
continue to function correctly under malicious attack

Requirements Definition
Availability services are
accessible if
requested by
authorized users
Integrity data

completeness and
accuracy are
preserved

Confidentiality

only authorized
users can get
access to the data

User
Application
Secure
Network
Interface

Real-Time Operating System (RTOS)

Hardware Abstraction Layer (HAL)

Physical Embedded System or loT Device,
Including Pins and Sensors

Basic software components in a secure embedded
system or loT device (Image source: Arm)

Memory Safety Vulnerabilities

Memory errors in low-level software written in
unsafe programming languages represent one
of the main problems in computer security

« The top 13 vulnerabilities in CWE include five types of
memory errors (out of bounds and use after free)

« Two out of the top three vulnerabilities found In
GitHub projects were memory safety issues

« Microsoft reports that around 70% of all security
updates in their products address memory issues

 Google reports a similar number for Chrome Browser

Gict?ub == Microsoft Go gle

The CWE Top 13

ID Name
1 | CWE-787 | Out-of-bounds Write
5 CWE-79 Improper' Neutralization of Input During Web Page Generation (‘Cross-site
—— | Scripting’)
Improper Neutralization of Special Elements used in an SQL Command (‘'SQL
3 CWE-89 ROV
Injection’)
4 CWE-20 | Improper Input Validation
5 | CWE-125 | Out-of-bounds Read
Improper Neutralization of Special Elements used in an OS Command ('OS
6 CWE-78 L
Command Injection’)
7 | CWE-416 | Use After Free
8 CWE-22 | Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
9 | CWE-352 | Cross-Site Request Forgery (CSRF)
10 | CWE-434 | Unrestricted Upload of File with Dangerous Type
11 | CWE-476 | NULL Pointer Dereference
12 | CWE-502 | Deserialization of Untrusted Data
13 | CWE-190 | Integer Overflow or Wraparound

https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/190.html

Objective of this talk

Discuss automated testing and formal
verification techniques that establish the
security of software systems

« Define standard notions of security and (software)
security vulnerabilities in embedded and loT
applications

« EXplain testing and verification techniques to reason
about the system and software security

* Present recent advancements towards a hybrid
approach to protecting against memory safety
vulnerabilities

Agenda

* Define standard notions of security and
(software) security vulnerabilities in real-
world applications

What does It mean for software to
be secure”?

* A software system is secure if it satisfies a specified
security objective

Example of Unmanned Aerial
Vehicles (UAVS)

Vulnerability analysis

Remote accessibility (device
authentication, access control)

>

Boeing Unmanned Little Bird H-6U

Patch management
Attacked by rogue camera

Attacks from physical world (GPS software and by a virus
spoofing) delivered through a

compromised USB stick

Klein et al., Formally verified software in the real world. Commun. ACM 61(10): 68-77 (2018)

Implementation Vulnerability

* We use the term implementation vulnerability (or
security bug) both for bugs that

— make it possible for an attacker to violate a security
objective

— for classes of bugs that enable specific attack techniques

Example of loT: Message Queuing Telemetry Transport

« In 2021, we detected a data race vulnerability in the
wolfMQTT library (messaging protocol)

— Detected in function MqgttClient_ WaitType, which could lead to
an information leak or data corruption

https://github.com/wolfSSL/wolfMQTT/issues/198
https://github.com/wolfSSL/wolfMQTT/pull/209

"'Swelgo.dd 1ualinduo) ul salljigeldaujnp aiemijos suipuid

404 sanbiluyaa] Suizzn4 pue HiAg Suluiquio) :°|e 13 lejeel|y

https://github.com/wolfSSL/wolfMQTT/issues/198
https://github.com/wolfSSL/wolfMQTT/pull/209

Critical Software Vulnerabilities

* Null pointer dereference

int main() { A NULL pointer dereference
double ;l? = NULL occurs when the application
mn=s . dereferences a pointer that it
for(inti=0;i<n; ++i) : .
*(p+) = i*2: expects to be valid, but is
return O; NULL
}
Scope Impact
Availability Crash, exit and restart
Integrity Execute Unauthorized Code
Confidentiality or Commands
Availability

Critical Software Vulnerabilities

* Null pointer dereference
* Double free

int main(){
char® ptr = (char *)malloc(sizeof(char));
if(ptr==NULL) return -1;

The product calls free()
twice on the same
memory address,

%k N Py
ptr="'a’; : - :
free(ptr); leading to modification
free(ptr); of unexpected memory
return O; locations
}
Scope Impact

Integrity Execute Unauthorized Code

Confidentiality or Commands

Availability

Critical Software Vulnerabilities

Null pointer dereference
Double free

Unchecked Return Value to NULL Pointer
Dereference

Division by zero

Missing free

Use after free

APIs rule based checking

Research Questions

Given a program and a security
specification, can we automatically verify
that the program performs as specified?

Can we leverage program
analysis/synthesis to discover more
software vulnerabilities than existing

state-of-the-art approaches?

Agenda

« Explain testing and verification techniques to
reason about the system and software
security

SAT solving as enabling technology

SAT/SMT Solver Research Story
A 1000x Improvement

> 2

* Solverdated programeing inguages § §
* Compier opumizations using solhvers = =

* Solverdated debuggers .-:..8

* Solventaied fype systems 3 -
:wwfmwm‘ 5 Y
1,000,000 Constraints . - % U)
O =
3 §

S35

58

=

100,000 Constraints m O
® O

33
2 @

ERNIONNG. | . _ m S
e unit propagation, £3

10,000 Constraints : 8 S
conflict clauses and 3 2

non-chronological 33

- Q

backtracking 25

|,000 Constraints
1998 2001 2004 2007 2010

CPU Time (s)

800

600

400

200

SAT Competition

|

¢

SEARS AR

AEN

SATzilla2012 APP
SATzilla2012 ALL
Industrial SAT Solver
lingeling (SC11 Bronze)
interactSAT

glucose

SINN

ZENN

Lingeling

linge_dyphase

simpsat

glueminisat (SC11 Silver)
glucose (SC11 Gold)
CryptoMiniSat (REF.)
minisat (REF.)

100

200 300 400 500

number of solved instances

http://www.satcompetition.orqg/

http://www.satcompetition.org/

Bounded Model Checking (BMC)

MC: check if a property holds for all states

BMC: check if a property holds for a subset of
states

Bounded Model Checking (BMC)

“never” happens
In practice

BIMC: rvesees s %(/

k+1 still tractable completeness
: ! | threshold reachedé , ok
M’ S > S ;HNERE - k+1 intractable >bound
| ERROR — fal
IN k ;

STEPS?

Software BMC

« program modelled as transition system
— state: pc and program variables
— derived from control-flow graph

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

¥

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);

| 1-intaf2], i, x; |

v

| 2. if 1(x==0) then goto 7 }—l
¥
a

i»= | | T-assert2+i»>=0 |
v v
| 4 asserti <2 | ‘ 8 2+i<2 ‘
¥ ¥
| 52 afi] = 0; | | 9 afi+2] = 1; |
v v
| 6: goto 10 |_9| 10, ert1+i1>=0 |
¥
‘ 1. assert1+1<2 |
v
‘ 12: assert a[i+1] == 1 |
¥
| 13: return nondet(int)
| en

Software BMC

« program modelled as transition system
— state: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

¥

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);

¥

| 1-inta[2], i, x |
¥

2:if 1(x==0) then gtT I—l
a

| 4 assert1<2 |

Software BMC

« program modelled as transition system
— state: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

» program unfolded up to given bounds

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

¥

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);
b

| 1:intaf2], 1, x; |
¥
2 if I(x==0) then goto 7 I—l
¥
= T assert

v
| 4 assert1<2 | | 8 assert2 +1<2

int getPassword() {

Software BMC char buf(2];

gets(buf);
return strcmp(buf, "ML");
¥

void main(){

« program modelled as transition system

— state: pc and program variables int x=getPassword();
. if(x){
— derived from control-flow graph printf("Access Denied\n");
exit(0);

— added safety properties as extra nodes)
- program unfolded up to given bounds |, Pt CAccess Grantedin®;

« unfolded program optimized to reduce blow-up
— constant propagation) ﬂ
— forward substitutions . crycial ST
— unreachable code oo }——

3rassert1>=0

L'
8 assert2 +1<2
v
| 9[2]1 |

4 assert1<2

| 5 ali] = 0:
12

| 6: goto 10 HWO sert 1 +

M:assert 1 +1<2 ‘
v
‘ 12: assert a[i+1] == 1 |
| 13: return nondet(int) |
¥

| 14: end function |

int getPassword() {

char buf[2];
Software BMC Gets(buf);
return strcmp(buf, "ML");
° 1f1 }
program modelled as trans.ltlon system ———— o
— state: pc and program variables ?at)x{=getPassword();
— derived from control-flow graph | p)l(’intf(“Access Denied\n");

— added safety properties as extra nodes }e"‘t(o);

- program unfolded up to given bounds |, Pt CAccess Grantedin®;

— constant propagation)
— forward substitutions . crycial

« unfolded program optimized to reduce blow-up ﬂ

g = X4 ==
— unreachable code ai = acl, WITH [iy:=0]
+ front-end converts unrolled and S 2 WITH [24i:=1]
optimized program into SSA 8, =0, ?a; :a;

Software BMC

program modelled as transition system
— state: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

» program unfolded up to given bounds

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

¥

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);

¥

« unfolded program optimized to reduce blow-up ﬂ

— constant propagation)
— forward substitutions . crycial
— unreachable code

* front-end converts unrolled and
optimized program into SSA

[9,=(x =0)

Aa, = store(ay, i,,0)
C=|ra, =4,

Aa, = store(a,,2 +iy,1)
| na, =ite(g;, 8y, 8,)

i, >0, <2

« extraction of constraints C and properties P p_|#2+02012+i <2

Al+i, 20A1+i, <2

| Aselect(a,, i, +1)=1

Software BMC

program modelled as transition system
— state: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

» program unfolded up to given bounds

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

¥

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);

¥

« unfolded program optimized to reduce blow-up ﬂ

— constant propagation)
— forward substitutions . crycial
— unreachable code

* front-end converts unrolled and
optimized program into SSA

[9,:=(x=0)

Aa, = store(ay, i,,0)
C=|ra, =4,

Aa, = store(a,,2 +iy,1)
| na, =ite(g;, 8y, 8,)

i, >0, <2

« extraction of constraints C and properties P p_|#2+02012+i <2

Al+i, 20A1+i, <2

— specific to selected SMT solver, uses theories [rselect(a, i, +1)-1

int getPassword() {

char buf[2];
Software BMC Gete(buf)
return strcmp(buf, "ML");

¥

program modelled as transition system

void main(){

— state: pc and program variables int x=getPassword();
. if(x){
— derived from control-flow graph printf("Access Denied\n");
exit(0);

— added safety properties as extra nodes)
- program unfolded up to given bounds |, Pt CAccess Grantedin®;

« unfolded program optimized to reduce blow-up
— constant propagation ﬂ
— forward substitutions . crucial "9,=(x =0)

— unreachable code N

 front-end converts unrolled and i~ ﬁszg(fge(ag)io’l)
optimized program into SSA L '
lp =201, <2
« extraction of constraints C and properties P p_|#2+02012+i <2

Al+i, 20A1+i, <2

— specific to selected SMT solver, uses theories [rselect(a, i, +1)-1

o Sat|sf|ab|||ty check of C A =P Cordeiro et al.: SMT-Based Bounded Model Checking
for Embedded ANSI-C Software. IEEE TSE, 2012

Embedded Software Verification

Powerstone: automotive- 5, ...« 900s 15GB
control and fax ESBMC achieved the 2" place
applications N

Real-Time SNU: matrix 70

handling and signal 60
processing, cyclic-
redundancy check,
Fourier transform, and
JPEG encoding 2

WCET: a set of programs

for executing worst-case & s

: : & S @\“b e&“\\ 0@9 ?"5* @"3’ w\“%@‘
time analysis S e

Alhawi et al.: Verification and refutation of C programs
based on k-induction and invariant inference. STTT, 2021

Score (Max: 68)
wW Fy (%]

C)

o

Verification of the Reach-Safety Category

« SV-COMP 2022, 5400 verification tasks, max. score: 8631
« ESBMC achieved the 6™ place

1000

2LS
CEMT s
CNT-AlIGoSel e
CWT-ParPort
CPRAchaoker-3-1 e———
Cruse s
DIVIMNE s
ESBMC-MNG =—f—
100 GODInt e————
L Graves-CRA
Infer
LART
FaSlo f—
Finaka ==
Symbictic
Thets ——
UAutomizer
1ok UKojak =i
[UTai e

I
G000

https://sv-comp.sosy-lab.org/2022/

https://sv-comp.sosy-lab.org/2022/

Verification of the Java Category

« SV-COMP 2022, 586 verification tasks, max. score: 828
« JBMC achieved the 2t place

1000

COASTAL
GDart e—f—

3 Java-Ranger =——le— b
[JayHOM e—f— 1
- JEMC —ig— 1
I JDart —— |
SPF
100 | —
. L 4
E L _
o
= L 4
£

E‘r =
l':'_- ///

: ;i’///’

I]] 1 1
-400 -200 4] 200 400 500 200

Cumulative score

Cordeiro et al.: JIBMC: A Bounded Model Checking Tool
for Verifying Java Bytecode. CAV (1) 2018: 183-190 https://sv-comp.sosy-lab.org/2022/

https://sv-comp.sosy-lab.org/2022/

White-box Fuzzing:
Bug Finding and Code Coverage

« Translate the program to an intermediate representation (IR)

« Add properties to check errors or goals to check coverage
« Symbolically execute IR to produce an SSA program

« Translate the resulting SSA program into a logical formula
« Solve the formula iteratively to cover errors and goals

 Interpret the solution to figure out the input conditions

« Spit those input conditions out as a test case

SSA
C and | | | SMT

Properties
and goals

Cover errors
or goals

Alshmrany et al.: FuSeBMC: A White-Box Fuzzer
for Finding Security Vulnerabilities in C
Programs. FASE, 2021

4000

3500

Competition on Software Testing 2022:
Results of the Cover-Error Category

3000 ~

k4
n
T 2500
7

2 2000
=}

CMA-ES-Fuzz
CoVeriTest i
FUSEBMC mffmm
HybridTiger ===

KLEE m—ffee
Legion
LibKluzzer
PRTest
Symbiotic
TracerX

VeriFuzz

500 1000 1500 2000 2500 3000

Cumulative score

FuSeBMC achieved 3 awards: 1st place in Cover-Error, 1st place in

Cover-Branches, and 1st place in Overall
https://test-comp.sosy-lab.org/2022/

https://test-comp.sosy-lab.org/2022/

WolftMQTT Verification

 wolfMQTT library is a client implementation of the MQTT
protocol written in C for IoT devices

subscribe task
and waitMessage task are

called through different threads

accessing packet ret,

causing a data race in
MgttClient WaitType

MgttClient WaitType

MgttClient WaitType

Here is where the
data race might

Int main () {

th?%qdif thl, th2;

static MQTTCtx mgttCtx;

pthread create(&thl, subscribe task, &mgttCtx))
pthread create(&th2, waitMessage task, smgttCtx))}

static void *subscribe task/(*client) {

(client,msg,MQTT PACKET TYPE ANY,
0, timeout ms);
static void *waitMessage_ task *client) {

(client, msg, MQTT PACKET TYPE ANY,
0, timeout ms);

static int MgttClient WaitType *client,
*packet obj,
wait:type wait packet id timeout ms
{
rc = SemLock (&client->1lockClient
(rc == 0) {

(MgttClient RespList Find(client,

(MgttPacketType)wait type,

happen! Unprotected ’ |pencRcsp-specketnone) |

pointer

rc = pendResp- packet_ret;

WolftMQTT Verification

Sharing buffer

ol between clients
)
4,
4’6‘0
»
Unprotected MQTT Client < ACK 3
pointer for the Buffer ack a
status code & ° v
2 2
m o
N \Y MQTT Broker

Data race might
happen if the broker
sends the status code

MQTT Client

To solve it they copied
the code status into
different buffers

_BU" ACK 3

er |Jle——

[Buffer J—

1
Q
After fixing the MQTT Client
concurrency
- P &
vulnerability >

MQTT Client

4

MQTT Broker

Bug Report

Fixes for multi-threading issues #209 ¢ Cota

b« embhorn me commit into m 3 Jun 20:
) Conversation 2 - Commits 1 [Fl Checks @ Files changed 4 +74 -48 mEEN
o dgarske commented on 2 ntributor | () ++- Reviewers
) . lygstate]
1. The client lock is needed earlier to protect the "reset the packet state”.
o embhorn o

2. The subscribe ack was using an unprotected pointer to response code list. Now it makes a copy of those codes.

3. Add protection to multi-thread example "stop" variable.
Thanks to Fatimah Aljaafari (@fatimahkj) for the report.
ZD 12379 and PR () Data race at function MqttClient_WaitType #198 0 embhorn

Assignees

O 0 Fixes for three multi-thread issues —

® @ doarske reg

Projects

2 @ doarske z

Milestone

0 0 embhorn a 1 2021

https://github.com/wolfSSL/wolfMOTT

https://github.com/wolfSSL/wolfMQTT

Agenda

* Present recent advancements towards a
hybrid approach to protect against memory
safety vulnerabilities

Capability Hardware Enhanced RISC

63

Instructions (CHERI)

permissions (15 bits)

reserved base and bounds (41 bits)

pointer address (64 bits)

CHERI 128-bit capability

CHERI Clang/LLVM and LLD?* - compiler

and linker for CHERI ISAs

Thttps://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-llvm.html

CheriBSD? - adaptation of FreeBSD to

support CHERI ISAs

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheribsd.html

ARM Morello® - SoC development board

with a CHERI-extended ARMvS8-A

processor

Shttps://www.arm.com/architecture/cpu/morello

Mnemonic Description

CGetBase Move base to a GPR

CGetLen Move length to a GPR

CGetTag Move tag bit to a GPR

CGetPerm Move permissions to a GPR

CGetPCC Move the PCC and PC to GPRs

ClIncBase Increase base and decrease length

CSetLen Set (reduce) length

CClearTag Invalidate a capability register

CAndPerm Restrict permissions

CToPtr Generate C0-based integer pointer from
a capability

CFromPtr ClIncBase with support for NULL casts

CBTU Branch if capability tag is unset

CBTS Branch if capability tag is set

[ailal A H ;

,,,,,,,,,

CHERI-C program

#include <stdlib.h>
#include <string.h>

#include <cheri/cheric.h>j€—

CHERI-C API

void main() {

int n = nondet uint() % 1024;
char a[n+1])*__capability|b 5 cheri_ptr|a

b[n] =17; T

/* models arbitrary user input */

/* succeeds */

char *_capabilityjc 4 cheri_setboundg(b-1, n); /* fails: not the same object */

J* . %/ /* more CHERI-C API checks */

memset_c(c, 42, n|; /* setting memory through a capability */
}

New capability types

Pure-capability CHERI-C model

#include <stdlib.h> #include <string.h>
#include <string.h> #include <stdio.h>
#include <cheri/cheric.h>
void main(void) {
void main() { int n = nondet_uint() % 1024;

int n = nondet_uint() % 1024; /ﬂ.{_&bﬂ-ﬂ‘]’ *b = a;
char a[n+1]|*__capability b = cheri_ptr(a, n+1); b[n]=17;
b[n]=17; 4/dta1- *c=Db-1;
cha‘*__capability c = cheri_setbounds(b-1, n); memset(c, 42, n);

/* . % }

memset_c(c, 42, n);

}
All pointers are automatically replaced with capabilities by the CHERI Clang/LLVM
compiler

The Efficient SMT-based Bounded
Model Checker (ESBMC)

External Memory Correctness
Libraries Model Proof
v v t* swur Property holds
Scan AsT | Control-flow Symbolic formula
C Program > clang > Graph > P?f:fm » Execution > SSO'K'/;
Generator 9 Engine

Property is violated

Violation
Witness

ESBMC-CHERI

External Memory Correctness
Libraries Model Proof
Scan AST
clang \ ¢ v 4 SMT Property holds
Control-flow Symbolic
f I
C Program Graph > PCrEOO I;)m » Execution "4 SSOIYI;
Generator 9 Engine v
CHERI- f v 4 Property is violated
Scan AST
Clang CHERI-C CHERI —
. iolation
API Memory

/ Model Witness

CHERI Clang/LLVM

compiler Implement computational
model for CHERI-C API
functions inside ESBMC
(e.g., cheri_setbounds)

* New capability types
« Tagged memory
« Capability dereferencing

BrauBe et al.: ESBMC-CHERI: towards verification of C programs for CHERI
platforms with ESBMC. ISSTA 2022: 773-776

Achlevements

Distinguished Paper Award at ACM ICSE’11
(acceptance rate 14%)

32 awards from the international competitions
on software verification (SV-COMP) and testing
(Test-Comp) 2012-2022 at TACAS/FASE

— Bug finding
— Cover error

Intel deploys ESBMC in production as one of its
verification engines for verifying firmware in C

Nokia has found security vulnerabilities In
telecommunication software written in C++

Research Mission

Automated testing, verification and
synthesis to ensure the security In
embedded and loT software

Methods, algorithms, and
tools to write software
with respect to security

