
An Efficient
Floating-
Point Bit-

Blasting API
for Verifying
C Programs

Mikhail	R.	Gadelha,	Lucas	C.	Cordeiro,	Denis	A.	
Nicole	
mikhail.gadelha@sidia.com	
	

Motivation

•  To	prevent	bugs!	

•  Ariane	5	rocket	exploded	mid-air	in	
1996	due	to	an	exception	thrown	by	
an	invalid	floating-point	conversion	

Floating-points

•  The	set	of	real	numbers	is	
uncountable,	and	some	numbers	
cannot	be	represented	with	finite	
precision	

•  In	particular,	the	IEEE	754	floating-
point	standard	is	used	by	many	
processors	

Die	photo	of	the	Intel	8087	floating-point	chip.	
Source:	Ken	Shirriff	

IEEE Floating-
points

•  Floating-points	are	divided	into	three	parts:	one	
bit	for	the	sign,	an	exponent,	and	a	significant	part	
which	depends	on	the	bit	length	of	the	type	

•  Floating-points	are	represented	as	​(−1)↑𝑠𝑔𝑛 
×𝑠𝑖𝑔 × ​𝑏𝑎𝑠𝑒↑𝑒𝑥𝑝 	

The	number	0.15625	as	a	single-precision	floating-point.		
Source:	wikipedia.org	

IEEE
Floating-

points

•  Five	kinds:	
•  ±	infinity	
•  ±	zero	
•  NaN	(not	a	number)	
•  Normal	
•  Denormal	or	subnormal	

IEEE
Floating-

points

•  Five	exceptions:	
•  Invalid	operation	
•  Overflow	
•  Division	by	zero	
•  Underflow	
•  Inexact	

IEEE
Floating-

points

•  Five	rounding	modes:	
•  Round	Toward	Positive	(RTP)		
•  Round	Toward	Negative	(RTN)	
•  Round	Toward	Zero	(RTZ)	
•  Round	to	Nearest	ties	to	Even	(RNE)	
•  Round	to	Nearest	ties	Away	from	zero	(RNA)	
	

Floating-points in C
programs

•  Famous	floating-point	“issue”	

•  Assertion	on	line	7	does	not	hold		if	
the	program	is	encoded	using	
radix-2	floating-point	arithmetic	

Floating-points in C
programs

•  Famous	floating-point	“issue”	

•  Assertion	on	line	7	does	not	hold		if	
the	program	is	encoded	using	
radix-2	floating-point	arithmetic	

x	=	0.1000000000000000055511151231257827021181583404541015625;	

Floating-points in C
programs

•  Famous	floating-point	“issue”	

•  Assertion	on	line	7	does	not	hold		if	
the	program	is	encoded	using	
radix-2	floating-point	arithmetic	

x	=	0.1000000000000000055511151231257827021181583404541015625;	

y	=	0.200000000000000011102230246251565404236316680908203125;	

Floating-points in C
programs

•  Famous	floating-point	“issue”	

•  Assertion	on	line	7	does	not	hold		if	
the	program	is	encoded	using	
radix-2	floating-point	arithmetic	

x	=	0.1000000000000000055511151231257827021181583404541015625;	

y	=	0.200000000000000011102230246251565404236316680908203125;	

w	=	0.299999999999999988897769753748434595763683319091796875;	

Floating-points in C
programs

•  Famous	floating-point	“issue”	

•  Assertion	on	line	7	does	not	hold		if	
the	program	is	encoded	using	
radix-2	floating-point	arithmetic	

x	=	0.1000000000000000055511151231257827021181583404541015625;	

y	=	0.200000000000000011102230246251565404236316680908203125;	

w	=	0.299999999999999988897769753748434595763683319091796875;	

z	=	0.3000000000000000444089209850062616169452667236328125;	

Floating-points in C
programs

•  Famous	floating-point	“issue”	

•  Assertion	on	line	7	does	not	hold		if	
the	program	is	encoded	using	
radix-2	floating-point	arithmetic	

x	=	0.1000000000000000055511151231257827021181583404541015625;	

y	=	0.200000000000000011102230246251565404236316680908203125;	

w	=	0.299999999999999988897769753748434595763683319091796875;	

z	=	0.3000000000000000444089209850062616169452667236328125;	

w	<	z	

SMT
Floating-

point Logic

•  The	SMT	FP	logic	is	an	addition	to	the	SMT	
standard,	first	proposed	in	2010	by	Rümmer	
and	Wahl	

•  The	current	version	of	the	theory	largely	follows	
the	IEEE	standard	754.	It	formalizes	floating-
point	arithmetic,	±infinity	and	±zero,	NaNs,	
relational	and	arithmetic	operators,	and	five	
rounding	modes:	RNE,	RNA,	RTP,	RNP	and	RTZ.	
	

SMT
Floating-

point Logic

•  Fully	implemented	by	Z3,	CVC4,	Colibri,	Solonar,	
UppSAT	

•  MathSAT	partially	implements	it:	no	fp.rem	
(remainder	operator)	and	no	fp.fma	(fused	
multiply-add)	

•  Non-standard	calls	to	functions	to	reinterpret	
floating-points	to	and	from	bit-vectors	are	also	
implemented	in	the	solvers	

Bit-blasting
Floating-point
Arithmetic

•  Usual	four	stage	pipeline:	
•  Unpack	
•  Operate	
•  Round	
•  Pack	

Bit-blasting
Floating-point
Arithmetic

•  Seven	operation	groups:	
•  Sort	constructors	
•  Rounding	mode	constructors	
•  Value	constructors	
•  Classification	operations	
•  Comparison	operations	
•  Conversion	operations	
•  Arithmetic	operations	

Bit-blasting
Floating-point
Arithmetic
•  Sort	constructors:	supports	
constructing	16,	32,	64	and	128	bits	
long	floating-points	(no	support	for	
80-bit	long	double	extended	
precision	format)	

•  Rounding	mode	constructors:	
supports	all	five	rounding	modes	
even	though	the	C	standard	does	
not	support	RNA;	these	are	encoded	
as	3-bits	long	bit-vectors	

Name Common
Name

Size
(exponent +
significand)

fp16 Half
precision 16 (5 + 10)

fp32 Single
precision 32 (8 + 23)

fp64 Double
precision 64 (11 + 52)

fp128 Quadruple
precision 128 (15 + 112)

Bit-blasting
Floating-point
Arithmetic
•  Value	constructors:	Floating-point	
literals,	±infinity,	±zero	and	NaN	can	
be	created	

•  NaN	are	always	created	using	the	
same	bit-pattern	(exponent	all	1,	
significand	is	000…01)	

•  Different	from	the	standard,	we	
support	negative	NaNs	

Name Common
Name

Size
(exponent +
significand)

fp16 Half
precision 16 (5 + 10)

fp32 Single
precision 32 (8 + 23)

fp64 Double
precision 64 (11 + 52)

fp128 Quadruple
precision 128 (15 + 112)

Bit-blasting
Floating-

point
Arithmetic

•  Classification	operators:	Algorithms	to	classify	
normals,	subnormals,	zeros	
(regardless	of	sign),	infinities	(regardless	of	
sign),	NaNs,	and	negatives	and	positives.		

•  Comparison	operators:	The	operators	“greater	
than	or	equal	to”,	“greater	than”,	“less	than	or	
equal	to”,	“less	than”,	and	“equality”	are	
supported.		
	

Bit-blasting
Floating-

point
Arithmetic

•  Conversion	operators:	
•  Floating-points	to	signed	bit-vectors	and	
floating-points	to	unsigned	bit-vectors	

•  Floating-points	to	another	floating-point*	
•  Signed	bit-vectors	to	floating-points	and	
unsigned	bit-vectors	to	floating-points	

*	Different	from	the	standard,	we	preserve	NaN	sign	in	these	operations	

Bit-blasting
Floating-

point
Arithmetic

•  Arithmetic	operators:	
•  Absolute	value*	
•  Negation*	
•  Addition	
•  Subtraction	
•  Multiplication	
•  Division	
•  Fused	multiply-add		
•  Square	root	

*	These	operations	handle	the	NaN	sign	accordingly	(non-standard).	

Experiment
al

Evaluation

•  First,	we	compare	the	verification	results	of	466	
benchmarks	of	the	sub-category	ReachSafety-
Floats	from	SV-COMP	2020.	

•  The	programs	are	verified	using	ESBMC	and	the	
following	solvers	(fp2bv	is	our	bit-blasting	API):	

•  Boolector	(lingeling,	fp2bv)	
•  Boolector	(CaDiCaL,	fp2bv)	
•  Z3	
•  Yices	(fp2bv)	
•  MathSAT	
•  Z3	(fp2bv)	
•  MathSAT	(fp2bv)	
•  CVC4	(fp2bv)	

Experimental
Evaluation
•  Boolector	(lingeling,	fp2bv)	reports	
the	highest	number	of	correct	
results	(421),	followed	by	MathSAT	
using	their	native	floating-point	
API	(414)	

•  Z3	with	its	native	floating-point	
API	and	Z3	with	our	fp2bv	API	
produce	very	similar	results:	390	
and	387,	respectively.	Our	fp2bv	
API	is	based	on	the	bit-blasting	
performed	by	Z3	

ESBMC	produced	no	incorrect	result	in	this	evaluation:	although	we	
can	not	formally	prove	that	our	algorithm	is	sound	and	complete,	

empirical	evidence	suggests	it.		

Experiment
al

Evaluation

• We	compare	the	implementation	of	our	
floating-point	API	with	other	software	verifiers	
from	SV-COMP	2020:	

•  2LS	
•  CBMC	
•  CPA-Seq	
•  DIVINE	
•  PeSCo	
•  Pinaka	
•  Symbiotic	
•  VeriAbs	
	

Experimental
Evaluation

•  Overall	number	of	correct	
results	and	verification	
time:	
•  VeriAbs	435	in	53600s	
•  Pinaka	422	with	27800s	
•  ESBMC	421	with	46100s	

Our	floating-point	API	is	on	par	with	other	state-of-the-art	tools.	
VeriAbs	and	Pinaka	implement	several	heuristics	to	simplify	the	

check	for	satisfiability	using	CBMC,	while	ESBMC	using	an	
incremental	approach	produced	close	results.	ESBMC	was	also	

slightly	faster	and	provided	a	few	more	results	than	CBMC,	which	
lead	us	to	believe	that	our	tool	would	also	greatly	benefit	VeriAbs	

and	Pinaka	if	used	as	backend.		

The Future
of fp2bv:

libcamada

•  Given	the	great	results	we	achieved	using	fp2bv	
in	ESBMC,	we	decided	to	decouple	it	from	the	
verifier.	

• Work-in-progress	C++11	libcamada:	
https://github.com/mikhailramalho/camada	

•  Version	1.0	to	be	released	late	summer	

•  It	will	be	integrated	in	LLVM	and	Klee	once	the	
code	is	stable	

Thank you!
mikhail.gadelha@sidia.com		

