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Motivation

How to find a path from the starting point to the target point?
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Motivation

Path must meet safety constraints (e.g., obstacle avoidance)
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It is the objective of the path planning task
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Motivation

How to find the best path that meets the constraints?

2 of 16



ou

Motivation

The path must be evaluated w.r.t. a cost function (e.g., distance and
energy waste)
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Objectives

Apply Counterexample Guided Inductive
Optimization (CEGIO) to mobile robot

optimal path planning

• Encode the environment, movement space, and static obstacles

• Parametrize the path by using the coordinates of path points and
its respective orientations

• To find the shortest path that satisfies the constraints given by the
problem
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Model checking

Traditional path planning
methodologies (e.g. APF- and

GA-based algorithms) cannot ensure
the global path optimality.
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Model checking

CEGIO optimization ensures the global
optimization because it is based on

model checking procedures.
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ou

Modeling the optimization problem using a
model checker

The directives ASSUME and ASSERT must be employed for mod-
eling optimization problems

• ASSUME:

is used for modeling the knowledge about the problem
and the constraints set

• ASSERT:

is used for holding the global optimization condition loptimal

loptimal ↔ f (x) > fp (1)

• Decision variables are defined as non-deterministic integers that
represents rationals with desired precision

• The verification engine is executed by iteratively increasing the
precision and converging to the optimal solution
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CEGIO-based Path Planning

The main steps of CEGIO-based Path Planning are:

Step 1

Parametrize and encode the environment, movement space, and
static obstacles

Step 2

Formulate the cost function

Step 3

Parametrize the paths and find an optimal path that satisfies
the constraints given by the problem
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Environment Modeling

The search space is delimited by a rectangle
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Environment Modeling

The obstacles are modeled as circles

(xiλ − x0)2 + (yiλ − y0)2 ≥ (r + σ)2 (2)
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Environment Modeling

The constraints of the optimization problem must ensure that
there is no intersection between the path and the obstacles
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Path parametrization
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Path parametrization

The bi-dimensional path has n vertices (P1,P2, ...,Pn)
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Path parametrization

The path must start at the starting point S = P1 and end at
target point T = Pn
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Path parametrization

The vertex matrix L is defined as follows.

L = [P1,P2, ...,Pn−1,Pn] (2)
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Path parametrization

The path is formed by n − 1 straight segments. The i-th
segment is built from Pi to Pi+1
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Path parametrization

The set of points in the i-th segment is parametrized as follows
for all λ ∈ [0, 1]

piλ(L) = (1− λ)Pi + λPi+1 (2)
8 of 16
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Path Optimization Problem

The cost function is defined as follows

J(L) =
n−1∑
i=1

‖Pi+1 − Pi‖2 , (3)

The resulting optimization problem is:

min
L

J(L),

piλ(L) /∈ O
s.t. piλ(L) ∈ E

i = 1, ..., n − 1,

(4)

The model checking procedure checks the satisfiability of
Joptimal :

Joptimal ↔ J(L) > Jc (5)
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CEGIO-based path planning algorithm

CEGIO-based path planning algorithm
1: Input:Cost function J(L), set of constraints Ω, desired precision η
2: Output:The optimal path and length (L∗ and J(L∗)

3: Initialize J(L(0)) randomly, precision variable with p = 1, k = 0 e i = 1, number of
points with n = 1

4: Declare Li as non-deterministic integer vector
5: while k ≤ η do
6: Find the best solution with the precision k
7: k = k + 1
8: Update the set Ωk and the precision variable k
9: end while
10: L∗ = L(i) and J(L∗) = J(L(i))
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CEGIO-based path planning algorithm

Find the best path with precision k
1: Define limits of L with directive ASSUME

2: Describe the objective function model J(L)
3: repeat
4: ASSUME(J(L(i)) < J(L(i−1)))
5: ASSERT(Joptimal )

6: Update L∗ = L(i) and J(L∗) = J(L(i)) based on the counterexample
7: i=i+1;
8: until TRUE
9: if Joptimal is not consecutively SAT then
10: Break
11: else
12: Update n
13: end if
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Benchmarks and Experimental Settings
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Figure

• The experiments were performed in the two above environments
• All experiments were conducted on an otherwise idle Intel Core i7

4790 3.60 GHz processor, with 16 GB of RAM, running Ubuntu
14.10 64-bits

• The CBMC v4.5 with support to the MiniSAT v2.2.0 and ESBMC
v3.1.0 with support to the MathSAT v5.3.13 were employed
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Research Questions

• RQ1 Is it possible to apply CEGIO for robot mobile
path planning?

• RQ2 Which CEGIO parameters can be adjusted to
obtain a good trade off between planning time and
cost?
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Experimental Results

0 2 4 6 8 10

x (m)

0

2

4

6

8

10

y
 (

m
)

S

O

TSMT

SAT

(a) Path for environment 1

0 2 4 6 8 10

x (m)

0

2

4

6

8

10

y
 (

m
)

O
1

O
2

S

TSMT

SAT
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Figure

• Optimal paths are obtained for both settings with 5 and 6 points
respectively
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Experimental Results
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Figure

• The time spent is reduced to about 5% by reducing the precision
from 10−4 to 10−2

15 of 16



ou

Experimental Results

0 2 4 6 8 10

x (m)

0

2

4

6

8

10

y
 (

m
)

S

O

T10-2

10-4

(a)

0 5 10 15 20

Iterations

12

14

16

18

20

22

24

26

J
 (

m
)

10-2

10-4

(b)

Figure

• The time spent is reduced to about 5% by reducing the precision
from 10−4 to 10−2

15 of 16



ou

Conclusions

• The CEGIO is able to produce optimal paths for mobile robots

• CEGIO-based optimization was applied for optimal path planning
in environments with multiple obstacles

• CEGIO-based path planning presents high computational cost,
however after few iterations, the cost becomes almost stationary

• CEGIO-based path planning cost is highly dependent on precision
variable

• The time can be reduced by adjusting the precision and breaking
the optimization process when it achieves the steady state

• Further studies include the usage of multi-objective optimization
and applications to UAVs
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