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Motivation




Motivation

How to find a path from the starting point to the target point?

2 of 16




Motivation
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Motivation

How to find the best path that meets the constraints?




Motivation

The path must be evaluated w.r.t. a cost function (e.g., distance and

ener waste
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Motivation

It is the objective of optimal path planning
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Objectives

Apply Counterexample Guided Inductive
Optimization (CEGIO) to mobile robot
optimal path planning

e Encode the environment, movement space, and static obstacles
e Parametrize the path by using the coordinates of path points and
its respective orientations

e To find the shortest path that satisfies the constraints given by the
problem
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Model checking

Traditional path planning
methodologies (e.g. APF- and
GA-based algorithms) cannot ensure

the global path optimality.




Model checking

CEGIO optimization ensures the global
optimization because it is based on
model checking procedures.




Model checking

Finite State Machine

Temporal logic specifications

G (p->Fq)
EG (!p~EFq)

Model
Checker

Counterexample

State 319 thread 0
<main invocation>

c:main::$tmp::tmp$2=FALSE
State 320 file main.cu line 31 thread 0
<main invocation>

Violated property:
file main.cu line 31
assertion

FALSE
VERIFICATION FAILED




Modeling the optimization problem using a
model checker

The directives ASSUME and ASSERT must be employed for mod-
eling optimization problems
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Modeling the optimization problem using a
model checker

The directives ASSUME and ASSERT must be employed for mod-
eling optimization problems

e ASSUME: is used for modeling the knowledge about the problem
and the constraints set
® ASSERT:is used for holding the global optimization condition /optimal

/optimal — f(X) > fp (1)

e Decision variables are defined as non-deterministic integers that
represents rationals with desired precision
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Modeling the optimization problem using a
model checker

The directives ASSUME and ASSERT must be employed for mod-
eling optimization problems

e ASSUME: is used for modeling the knowledge about the problem
and the constraints set

® ASSERT:is used for holding the global optimization condition /optimal

/optimal — f(X) > fp (1)

e Decision variables are defined as non-deterministic integers that
represents rationals with desired precision
e The verification engine is executed by iteratively increasing the

precision and converging to the optimal solution
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CEGIO-based Path Planning

The main steps of CEGIO-based Path Planning are:

Parametrize and encode the environment, movement space, and
static obstacles

Formulate the cost function

Parametrize the paths and find an optimal path that satisfies
the constraints given by the problem
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Environment Modeling

4.

The search space is delimited by a rectangle




Environment Modeling

4.

The obstacles are modeled as circles

(xix —x0)% + (yix — Y0)* > (r + 0)? (2)




Environment Modeling

4.

The constraints of the optimization problem must ensure that
there is no intersection between the path and the obstacles




Path parametrization

4.




Path parametrization

P3

The bi-dimensional path has n vertices (Py, Pa, ..., Pp)




Path parametrization

&, @)

~—e Pp=T|

P3

The path must start at the starting point S = P; and end at
target point T = P,




Path parametrization

&, @)

~—e Pp=T|

P3

The vertex matrix L is defined as follows.
L=[P1, P2 ..., Pn_1, Ps] (2)




Path parametrization

& Ci

The path is formed by n — 1 straight segments. The /-th
segment is built from P; to P;




Path parametrization

& Ci

The set of points in the /-th segment is parametrized as follows
for all A € [0,1]

p,')\(L) = (].—A)P,‘—FAPH_]_ (2)
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Path Optimization Problem




Path Optimization Problem

The cost function is defined as follows
n—1

J(L) =D lIPis1 = Pill,, (3)

i=1




Path Optimization Problem

The cost function is defined as follows
n—1

L) =D IPis1 = Pill,, (3)
i=1
The resulting optimization problem is:
mLin J(L),
pir(L) ¢ O (4)
s.t. pian(L) € E
i=1..,n—1,

The model checking procedure checks the satisfiability of
-/optimal:

Joptimal < J(L) > Jc (5)
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CEGIO-based path planning algorithm

CEGIO-based path planning algorithm

1:
2:
3:

coXNaO A

Input:Cost function J(L), set of constraints €2, desired precision n

Output: The optimal path and length (L* and J(L*)

Initialize J(L(O)) randomly, precision variable with p = 1, k = 0 e i = 1, number of
points with n =1

. Declare L' as non-deterministic integer vector

while kK < 7 do
Find the best solution with the precision k
k=k+1
Update the set Q¥ and the precision variable k
end while

s L* = L0 and J(L*) = J(LD)
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CEGIO-based path planning algorithm

Find the best path with precision k
1: Define limits of L with directive ASSUME

2: Describe the objective function model J(L)
3: repeat

4:  assuME(J(L()) < J(LU=D)Y)

5:  ASSERT(Joptimar)

6: Update L* = L() and J(L*) = J(L()) based on the counterexample
7 i=i+1;

8: until TRUE

9: if Joptimal is not consecutively SAT then
10: Break

11: else

12: Update n

13: end if
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Benchmarks and Experimental Settings
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Figure
e The experiments were performed in the two above environments

e All experiments were conducted on an otherwise idle Intel Core i7
4790 3.60 GHz processor, with 16 GB of RAM, running Ubuntu
14.10 64-bits
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Benchmarks and Experimental Settings

T
Obstacle * Obstacle

(a) Environment 1 (b) Environment 2

Figure
e The experiments were performed in the two above environments
e All experiments were conducted on an otherwise idle Intel Core i7
4790 3.60 GHz processor, with 16 GB of RAM, running Ubuntu
14.10 64-bits
e The CBMC v4.5 with support to the MiniSAT v2.2.0 and ESBMC
v3.1.0 with support to the MathSAT v5.3.13 were employed
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Research Questions
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Research Questions

« RQ1 Is it possible to apply CEGIO for robot mobile
path planning?
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Research Questions

« RQ1 Is it possible to apply CEGIO for robot mobile
path planning?

e« RQ2 Which CEGIO parameters can be adjusted to
obtain a good trade off between planning time and
cost?
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Experimental Results
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(a) Path for environment 1 (b) Path for environment 2

Figure




Experimental Results
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(a) Path for environment 1 (b) Path for environment 2

Figure
e Optimal paths are obtained for both settings with 5 and 6 points

respectively
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Experimental Results
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Experimental Results
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Figure
e The time spent is reduced to about 5% by reducing the precision
from 10™* to 1072

15 of 16



Conclusions

e The CEGIO is able to produce optimal paths for mobile robots
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Conclusions

e The CEGIO is able to produce optimal paths for mobile robots

e CEGIO-based optimization was applied for optimal path planning
in environments with multiple obstacles

e CEGIO-based path planning presents high computational cost,
however after few iterations, the cost becomes almost stationary

e CEGIO-based path planning cost is highly dependent on precision
variable

e The time can be reduced by adjusting the precision and breaking
the optimization process when it achieves the steady state

e Further studies include the usage of multi-objective optimization
and applications to UAVs
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