Benchmarking of Java Verification Tools at the

Software Verification Competition (SV-COMP)

MANCHESTER
1824

The University of Manchester

Daniel Kroening IB

Peter Schrammel JACGALON UNIVERSITY
OF SUSSEX

€ Jiffblue

Al for Code

Lucas Cordeiro

JPF Workshop 2018

What?

What is SV-COMP? https://sv-comp.sosy-lab.org

Annual comparative evaluation of fully automatic software verifiers
o Reflect state of the art w.r.t. effectiveness and efficiency
@ Promote reproducibility and validity of experimental results
@ Increase the visibility and credits for tool developers
°

Establish set of benchmarks for software verification
community

Started in 2012 for C programs, 8th edition in 2019:
@ More than 10000 benchmarks
@ More than 30 participants
e NEW: Java track

2/23

https://sv-comp.sosy-lab.org

What?
Goals of this talk

@ Understand how SV-COMP works

@ Know about the Java track at SV-COMP 2019
@ Be able to use it for your own research

°

Be able to contribute tools and benchmarks

3/23

How?

How does SV-COMP work?

(Benchmarks)

Annual

(Benchexec Competition

dblp.org 5]

era Hensel, Frank Em

AProVE: Proving and Disproving Termination of Memory-Manipulating C Programs - (Competition Contribution). 350-354

Mikhail U. Mandrykin, Vadim S. Mutilin, v
CPA-BAM-BnB: Block-Abstraction Memoization and Region-Based Memory Models for Predicate Abstractions - (Competition
Contribution). 355-359

pavel Andrianov, Karlheinz Friedbel

williame Rocha, Herbert

cha, Hussama Ismail, Lucas C. Cordeiro, Bernd Fischer:
DepthK: A k-Induction Verifier Based on Invariant Inference for C Programs - (Competition Contribution). 360-364

Lukas Holik, Martin Hruska,

dndrej Lengal, Adam

lewicz, Jiri Si

4/23

Benchmarks https://github.com/sosy-lab/sv-benchmarks

For each verification task (aka benchmark)

@ Source files (open source license)
@ Descriptor (.yml file)
o File name is name of the benchmark
o Reference to one or more properties (. prp files)

@ unreach-call:

CHECK (init(main()), LTL(G 'call(__VERIFIER error())))
@ termination:

CHECK (init (main()), LTL(F end))
e no-overflow, valid-memsafety, ...

o Expected answer: true, false(property), unknown

5/23

https://github.com/sosy-lab/sv-benchmarks

Benchmarks https://github.com/sosy-lab/sv-benchmarks

For each verification task (aka benchmark)

@ Source files (open source license)
@ Descriptor (.yml file)

e File name is name of the benchmark
o Reference to one or more properties (. prp files)

@ unreach-call:

CHECK (init(main()), LTL(G 'call(__VERIFIER error())))
@ termination:

CHECK (init (main()), LTL(F end))
e no-overflow, valid-memsafety, ...

o Expected answer: true, false(property), unknown
Categories defined as subsets (. set files)

@ ReachSafety, ConcurrencySafety, MemorySafety, NoOverflows,
Termination, ...

@ There are sub-categories (loops, arrays, heap, ...).

5/23

https://github.com/sosy-lab/sv-benchmarks

Benchexec https://github.com/sosy-lab/benchexec

Benchmark execution software (Beyer et al SPIN'15)
@ Implemented in Python 3

@ Resource-limited execution (8 cores, 15GB, 900s CPU time)

o Interfaces to competition candidates (aka tools) via
tool-info modules
o Name, version
e Build command line
o Parse answer (true, false, unknown) from tool output

6/23

https://github.com/sosy-lab/benchexec

Benchexec https://github.com/sosy-lab/benchexec

Benchmark execution software (Beyer et al SPIN'15)
@ Implemented in Python 3

@ Resource-limited execution (8 cores, 15GB, 900s CPU time)

o Interfaces to competition candidates (aka tools) via
tool-info modules

o Name, version
o Build command line
o Parse answer (true, false, unknown) from tool output

@ Table-generator to generate HTML table of results

6/23

https://github.com/sosy-lab/benchexec

Benchexec https://github.com/sosy-lab/benchexec

Benchmark execution software (Beyer et al SPIN'15)
@ Implemented in Python 3

@ Resource-limited execution (8 cores, 15GB, 900s CPU time)

o Interfaces to competition candidates (aka tools) via
tool-info modules

o Name, version
o Build command line
o Parse answer (true, false, unknown) from tool output

Table-generator to generate HTML table of results
SV-COMP 2019 runs on Ubuntu 18.04

6/23

https://github.com/sosy-lab/benchexec

Benchexec https://github.com/sosy-lab/benchexec

Benchmark execution software (Beyer et al SPIN'15)
@ Implemented in Python 3

@ Resource-limited execution (8 cores, 15GB, 900s CPU time)

o Interfaces to competition candidates (aka tools) via
tool-info modules

o Name, version
o Build command line
o Parse answer (true, false, unknown) from tool output

@ Table-generator to generate HTML table of results
e SV-COMP 2019 runs on Ubuntu 18.04

E.g. run CBMC on sub-category ReachSafety-BitVectors:
bin/benchexec cbmc.xml -t ReachSafety-BitVectors

6/23

https://github.com/sosy-lab/benchexec

How?

Benchmark definition https://github.com/sosy-1lab/sv-comp

Benchmark definition (tool.xml):
Reference to tool-info module
Resource limits

Global options for tool

Definition of (sub-)categories:
e Reference to category .set files
o Reference to property .prp file

(Benchmarks)

|
Benchmark
BencFexec)—(Results)

(Tool-info)

Competition
Candidate

7/23

https://github.com/sosy-lab/sv-comp

How?

Annual Competition

(Benchmarks >

Competition l
Benchexec
JVtness Benchexec)—(Score)
Validator

Answer
Witness
Time

How?

Annual Competition

(Benchmarks >

Competition l
Benchexec
JVtness Benchexec)—(Score)
Validator

Witness Validation (Beyer et al FSE'15, FSE'16)
o Correctness and refutation witnesses (.graphml)

o Validated by witness validation tools

Answer
Witness
Time

Scores

Points || Reported result Description
o Failure to compute verification result, out of resources,
program crash.
1 FALSE The error in the program was found and a violation witness
+
correct was confirmed.
18 FALSE An error is reported for a program that fulfills the specification
B incorrect (false alarm, incomplete analysis).
5 TRUE The program was analyzed to be free of errors and a
+
correct correciness witness was confirmed.
TRUE
) The program was analyzed to be free of errors but the
+1 correct, witness .)
) correctness witness was not confirmed.
unconfirmed
a0 TRUE The program had an error but the competition candidate did
- incorrect not find it (missed bug, unsound analysis).

https://sv-comp.sosy-lab.org/2019/rules.php

9/23

https://sv-comp.sosy-lab.org/2019/rules.php

How?

Annual Competition

Timeins

1000

100

Overall
1. CPA-Seq
2. Ul e
3. ESBMC-king

218
CBMC =—¢—
CPA-Seq —¥—
Depthk
ESBMC-iner
ESBMC-kind
InterpChecker
Map2Check —#—
Skink
Symbiotic
UAutomizer
UKojak ==
UTaipan
VIAP —@—

—
—

g T AT s A R T
R s == —
-2000] 2000 4000 6000
Accumulated score

https://sv-comp.sosy-lab.org/2018/results/results-verified/

10 /23

https://sv-comp.sosy-lab.org/2018/results/results-verified/

How?

Annual Competition

[Toor JPF 32 | JayHom 5.1 | JBMC 5.8
[Cimits Timelimit: 180 s, memiimit: 15000 MB, CPU core limit 8
Imm localhost
o5 Linux 4.4.0-116-generic xB6_64
System CPU: Intel Core 74 57UDHQ CPU @ 2.60GHz with 8 cores, frequency: 3500 MHZ, Turbo Boost enabled; RAM: 16014056 kB
[Date of execution 20180310 14:09'57 GM | 2018-03-10 11:39:56 GMT I 2018-03-10 16:54:00 GMT
[Run set jpi.sv-comp18 [jayhorn.sv-comp1 [jbmc.sv-comp18
—— Status] cputime [walltime] memUsage | _status | cputime emUsage cputime [walltime | memUsage
alse assert jar true 75 EZ I
rue-assert jar true 2123
ptions false assert jar rue ue 251
ofB; alse-assert jar] _true 2563
078! alse-assert jar| __true 0-2505]
ofs alse-assert jar] _true 2234
ncregress False-assert jar rue 3733
ncregress False-assert jar rue
ncregress True-assert jar e
False-assertjar
true-assert jar e e
False-assert jar
255 method] true-assert jar e e
true-assert jar e e
False assert jar true
gat, False-assert_jar true
alse-assert jar
alse-assert jar
alse-assert jar
alse-assert jar
true-assert jar e true
False-assert jar rue reac Talse(reach)
true-assert jar e (reacl 2
False-assertjar rue reach;
true-assert jar rue (reaci
true-assert jar Tue
False-assert jar rue
False assert.jar rue 243417088] false(reach)
Talse-assert jar rue a496384] false(reach 231260640| false(reach) | o

How?

Competition Timeline

September: Contribution of benchmarks
October: Tool registration and qualification
November: Tool submission

December: Announcement of winners
January: Tool paper submission

April: SV-COMP session at ETAPS

12/23

Java Track at SV-COMP

Objectives:

@ More languages in SV-COMP
Standard benchmark set
Comparability
Reproducibility -
Re-use existing benchmarking mfrastructure

13 /23

Java Track at SV-COMP

Objectives:
@ More languages in SV-COMP

Standard benchmark set

Comparability

Reproducibility —

Re-use existing benchmarking mfrastructure

Current status:
@ March 2018: Initial benchmarks collected, proof-of-concept
tools integrated, potential participants contacted

13 /23

Java Track at SV-COMP

Objectives:
@ More languages in SV-COMP

Standard benchmark set

Comparability

Reproducibility —

Re-use existing benchmarking mfrastructure

Current status:
@ March 2018: Initial benchmarks collected, proof-of-concept
tools integrated, potential participants contacted
@ April 2018: Proposal accepted at Jury meeting at TACAS

13 /23

Java Track at SV-COMP

Objectives:
@ More languages in SV-COMP

Standard benchmark set

Comparability

Reproducibility —

Re-use existing benchmarking mfrastructure

Current status:
@ March 2018: Initial benchmarks collected, proof-of-concept
tools integrated, potential participants contacted
@ April 2018: Proposal accepted at Jury meeting at TACAS
@ July 2018: Announced at CAV

13 /23

Java Track at SV-COMP

Objectives:

@ More languages in SV-COMP
Standard benchmark set
Comparability
Reproducibility -
Re-use existing benchmarking mfrastructure

Current status:
@ March 2018: Initial benchmarks collected, proof-of-concept
tools integrated, potential participants contacted
@ April 2018: Proposal accepted at Jury meeting at TACAS
@ July 2018: Announced at CAV
@ Since September: detailed discussions with 4 registered
participants (JPF, SPF, JayHorn, JBMC)

13 /23

Java Track at SV-COMP

Objectives:
@ More languages in SV-COMP

Standard benchmark set

Comparability

Reproducibility —

Re-use existing benchmarking mfrastructure

Current status:
@ March 2018: Initial benchmarks collected, proof-of-concept
tools integrated, potential participants contacted
@ April 2018: Proposal accepted at Jury meeting at TACAS
@ July 2018: Announced at CAV
@ Since September: detailed discussions with 4 registered
participants (JPF, SPF, JayHorn, JBMC)
@ Planned start of competition runs: 20 November
13/23

Benchmarks and Properties

368 benchmarks (40LOC on average, 250LOC max)

@ jayhorn-recursive, jbmc-regression, jpf-regression, MinePump

Java 1.8

Calls to Java standard library (java.*, javax.*) allowed;
sources of other dependencies must be part of the benchmark.

1 category for violation of asserts (“ReachSafety”)
Property: CHECK (init(Main.main), LTL(G assert))

14 /23

Benchmarks and Properties

[® javaljbmc-regression/StringStartEnd02/Main. java import org.sosy lab.sv_benchmarks.Verifier;

[javaljbme-regression/StringStartEnd02.ym| ss Main {

tic void main(String[] args) {

g strings = new String[4];
strings[@] = Verifier.nondetString

)
strings[1] = Verifier.nondetString();
strings[2] = Verifier.nondetString();

)i

strings[3] = Verifier.nondetString

int i = ©;
format_version: "0.1" for (String string : strings) {
input_files: 1f (string.startsWith("te"))
- ../common/ ++1;
- StringStartEnd@2/ 1
prope s: ssert i == 1;

./properties/assert.prp }
¢ false 1

If a tool requires class files as input it is responsible for compiling
the benchmark.

A benchmark must be compilable by passing all . java files within

the directories listed in input_files to javac.
15 /23

Rules for Nondeterminism

Only source of nondeterminism:
return values of methods defined in
org.sosy_lab.sv_benchmarks.
Verifier class.

Must not be used:
@ Arguments of main

@ Library methods that make
system calls

package org.sosy_lab.sv_benchmarks;

import java.util.Random;

public final class Verifier

{
public static void assume(boolean condition)
{

if(!condition) {
Runtime.getRuntime().halt(1);
}
1

public static boolean nondetBoolean()
{
return new Random().nextBoolean();

¥

public static byte nondetByte()
{
return (byte)(new Random().nextInt());

1

16 /23

Tool-info and Wrapper Scripts

(Benchmarks)

|
Benchmark
BencFexec)—(Results)

(Tool-info)

(Tool)

17 /23

Java

Tool-info and Wrapper Scripts

(Benchmarks)

|
Benchmark
BencFexec)—(Results)

(Tool-info)
[

(Wrapper)

C Tiol)

17 /23

Java

Tool-info and Wrapper Scripts

(Benchmarks)

|
Benchmark
BencFexec)—(Results)

(Tool-info)
[

(Wrapper)

C Tiol)

E.g. command line produced for JPF:

./ jpf-sv-comp
--graphml-witness witness.graphml
--propertyfile ../sv-benchmarks/java/properties/assert.prp
../sv-benchmarks/java/common/org/sosy_lab/sv_benchmarks/Verifier. java

../sv-benchmarks/java/jbmc-regression/StringStartEnd02/Main. java
17 /23

For me?

How can | use it?

Re-use existing benchmarking infrastructure
@ Stop writing benchmarking scripts

@ Use it for running your tests

’Standard’ benchmark set
@ Use it for running comparisons

o Contribute your benchmarks

Compare with the ’'best’ configuration of a tool

@ Take the most recent competition candidate:
Download from
https://sv-comp.sosy-lab.org/2018/systems . php

18 /23

For me?

How can | use it?

Reproduce the competition results:

@ Download:
git clone https://github.com/sosy-lab/sv-benchmarks
git clone https://github.com/sosy-lab/benchexec
git clone https://github.com/sosy-lab/sv-comp
git clone https://gitlab.com/sosy-lab/sv-comp/archives-2019

@ Run:

cd benchexec

for tool in jpf spf jayhorn jbmc

do
unzip ../archives-2019/2019/$tool.zip; mv $tool/*
bin/benchexec ../sv-comp/benchmark-defs/$tool.xml

done

bin/table-generator results/*.xml.bz2

Currently (5 Nov 2018) only runs with benchexec’s yaml branch.

19/23

For me?

How can | use it?

Run JPF on your own benchmarks:

Add descriptor yml file for each benchmark
List descriptor files in MyBenchmarks.set
Add MyBenchmarks.set to benchmark definition jpf .xml:

<tasks name="MyBench">
<includesfile>
../sv-benchmarks/java/MyBenchmarks.set</includesfile>
<propertyfile>
../sv-benchmarks/java/properties/assert.prp</propertyfile>
</tasks>

Run with -t MyBench

bin/benchexec ../sv-comp/benchmark-defs/jpf.xml -t MyBench
bin/table-generator results/*.xml.bz2

20/23

Outlook

Outlook

What is needed for 2020:

@ More benchmarks:
Fork https://github.com/sosy-lab/sv-benchmarks and
create PR with your benchmarks

21/23

https://github.com/sosy-lab/sv-benchmarks
http://arxiv.org/abs/1809.03739

Outlook

Outlook

What is needed for 2020:

@ More benchmarks:
Fork https://github.com/sosy-lab/sv-benchmarks and

create PR with your benchmarks

@ Witness validators

21/23

https://github.com/sosy-lab/sv-benchmarks
http://arxiv.org/abs/1809.03739

Outlook

Witness Validation for Java

Refutation witnesses (for ReachSafety property):

@ Witness contains counterexample trace
annotated with evaluated assignments and conditionals
— Check whether counterexample trace is feasible and
violates the property

@ Proposed implementation: generate harness, compile and
execute

Correctness witnesses (for ReachSafety property):

@ Witness contains dynamic CFG annotated with invariants
— Check whether invariants hold and imply properties
e 777

22 /23

Outlook

Outlook

What is needed for 2020:

@ More benchmarks:
Fork https://github.com/sosy-lab/sv-benchmarks and
create PR with your benchmarks

@ Witness validators

23 /23

https://github.com/sosy-lab/sv-benchmarks
http://arxiv.org/abs/1809.03739
www.diffblue.com

Outlook

Outlook

What is needed for 2020:

@ More benchmarks:
Fork https://github.com/sosy-lab/sv-benchmarks and
create PR with your benchmarks

e Witness validators
@ Encourage participation of more tools and tool variants

Subscribe to sv-comp@googlegroups.com

Up-to-date version of paper: http://arxiv.org/abs/1809.03739

23 /23

https://github.com/sosy-lab/sv-benchmarks
http://arxiv.org/abs/1809.03739
www.diffblue.com

Outlook

Outlook

What is needed for 2020:

@ More benchmarks:
Fork https://github.com/sosy-lab/sv-benchmarks and
create PR with your benchmarks

e Witness validators
@ Encourage participation of more tools and tool variants

Subscribe to sv-comp@googlegroups.com

Up-to-date version of paper: http://arxiv.org/abs/1809.03739

www.diffblue.com

@ Jobs in program analysis, 9 dlffbl ue

verification and machine learning! Al for Code

23 /23

https://github.com/sosy-lab/sv-benchmarks
http://arxiv.org/abs/1809.03739
www.diffblue.com

	What?
	How?
	Java
	For me?
	Outlook

