
Benchmarking of Java Verification Tools at the
Software Verification Competition (SV-COMP)

Lucas Cordeiro
Daniel Kroening
Peter Schrammel

JPF Workshop 2018

What? How? Java For me? Outlook

What is SV-COMP? https://sv-comp.sosy-lab.org

Annual comparative evaluation of fully automatic software verifiers

Reflect state of the art w.r.t. effectiveness and efficiency

Promote reproducibility and validity of experimental results

Increase the visibility and credits for tool developers

Establish set of benchmarks for software verification
community

Started in 2012 for C programs, 8th edition in 2019:

More than 10000 benchmarks

More than 30 participants

NEW: Java track

2 / 23

https://sv-comp.sosy-lab.org

What? How? Java For me? Outlook

Goals of this talk

Understand how SV-COMP works

Know about the Java track at SV-COMP 2019

Be able to use it for your own research

Be able to contribute tools and benchmarks

3 / 23

What? How? Java For me? Outlook

How does SV-COMP work?

Benchmarks

Tools

Benchexec
Annual

Competition

4 / 23

What? How? Java For me? Outlook

Benchmarks https://github.com/sosy-lab/sv-benchmarks

For each verification task (aka benchmark)

Source files (open source license)

Descriptor (.yml file)

File name is name of the benchmark
Reference to one or more properties (.prp files)

unreach-call:
CHECK(init(main()), LTL(G !call(VERIFIER error())))

termination:
CHECK(init(main()), LTL(F end))

no-overflow, valid-memsafety, . . .

Expected answer: true, false(property), unknown

Categories defined as subsets (.set files)

ReachSafety, ConcurrencySafety, MemorySafety, NoOverflows,
Termination, . . .

There are sub-categories (loops, arrays, heap, . . .).

5 / 23

https://github.com/sosy-lab/sv-benchmarks

What? How? Java For me? Outlook

Benchmarks https://github.com/sosy-lab/sv-benchmarks

For each verification task (aka benchmark)

Source files (open source license)

Descriptor (.yml file)

File name is name of the benchmark
Reference to one or more properties (.prp files)

unreach-call:
CHECK(init(main()), LTL(G !call(VERIFIER error())))

termination:
CHECK(init(main()), LTL(F end))

no-overflow, valid-memsafety, . . .

Expected answer: true, false(property), unknown

Categories defined as subsets (.set files)

ReachSafety, ConcurrencySafety, MemorySafety, NoOverflows,
Termination, . . .

There are sub-categories (loops, arrays, heap, . . .).

5 / 23

https://github.com/sosy-lab/sv-benchmarks

What? How? Java For me? Outlook

Benchexec https://github.com/sosy-lab/benchexec

Benchmark execution software (Beyer et al SPIN’15)

Implemented in Python 3

Resource-limited execution (8 cores, 15GB, 900s CPU time)

Interfaces to competition candidates (aka tools) via
tool-info modules

Name, version
Build command line
Parse answer (true, false, unknown) from tool output

Table-generator to generate HTML table of results

SV-COMP 2019 runs on Ubuntu 18.04

E.g. run CBMC on sub-category ReachSafety-BitVectors:
bin/benchexec cbmc.xml -t ReachSafety-BitVectors

6 / 23

https://github.com/sosy-lab/benchexec

What? How? Java For me? Outlook

Benchexec https://github.com/sosy-lab/benchexec

Benchmark execution software (Beyer et al SPIN’15)

Implemented in Python 3

Resource-limited execution (8 cores, 15GB, 900s CPU time)

Interfaces to competition candidates (aka tools) via
tool-info modules

Name, version
Build command line
Parse answer (true, false, unknown) from tool output

Table-generator to generate HTML table of results

SV-COMP 2019 runs on Ubuntu 18.04

E.g. run CBMC on sub-category ReachSafety-BitVectors:
bin/benchexec cbmc.xml -t ReachSafety-BitVectors

6 / 23

https://github.com/sosy-lab/benchexec

What? How? Java For me? Outlook

Benchexec https://github.com/sosy-lab/benchexec

Benchmark execution software (Beyer et al SPIN’15)

Implemented in Python 3

Resource-limited execution (8 cores, 15GB, 900s CPU time)

Interfaces to competition candidates (aka tools) via
tool-info modules

Name, version
Build command line
Parse answer (true, false, unknown) from tool output

Table-generator to generate HTML table of results

SV-COMP 2019 runs on Ubuntu 18.04

E.g. run CBMC on sub-category ReachSafety-BitVectors:
bin/benchexec cbmc.xml -t ReachSafety-BitVectors

6 / 23

https://github.com/sosy-lab/benchexec

What? How? Java For me? Outlook

Benchexec https://github.com/sosy-lab/benchexec

Benchmark execution software (Beyer et al SPIN’15)

Implemented in Python 3

Resource-limited execution (8 cores, 15GB, 900s CPU time)

Interfaces to competition candidates (aka tools) via
tool-info modules

Name, version
Build command line
Parse answer (true, false, unknown) from tool output

Table-generator to generate HTML table of results

SV-COMP 2019 runs on Ubuntu 18.04

E.g. run CBMC on sub-category ReachSafety-BitVectors:
bin/benchexec cbmc.xml -t ReachSafety-BitVectors

6 / 23

https://github.com/sosy-lab/benchexec

What? How? Java For me? Outlook

Benchmark definition https://github.com/sosy-lab/sv-comp

Benchmark definition (tool.xml):

Reference to tool-info module
Resource limits
Global options for tool
Definition of (sub-)categories:

Reference to category .set files
Reference to property .prp file

Benchmark
definition .xml

Benchexec

Tool-info

Competition
Candidate

Results

Benchmarks

7 / 23

https://github.com/sosy-lab/sv-comp

What? How? Java For me? Outlook

Annual Competition

Competition
Candidate

Benchexec
Answer
Witness

Time

Benchmarks

Witness
Validator

Benchexec Score

Witness Validation (Beyer et al FSE’15, FSE’16)

Correctness and refutation witnesses (.graphml)

Validated by witness validation tools

8 / 23

What? How? Java For me? Outlook

Annual Competition

Competition
Candidate

Benchexec
Answer
Witness

Time

Benchmarks

Witness
Validator

Benchexec Score

Witness Validation (Beyer et al FSE’15, FSE’16)

Correctness and refutation witnesses (.graphml)

Validated by witness validation tools

8 / 23

What? How? Java For me? Outlook

Scores

https://sv-comp.sosy-lab.org/2019/rules.php

9 / 23

https://sv-comp.sosy-lab.org/2019/rules.php

What? How? Java For me? Outlook

Annual Competition

https://sv-comp.sosy-lab.org/2018/results/results-verified/

10 / 23

https://sv-comp.sosy-lab.org/2018/results/results-verified/

What? How? Java For me? Outlook

Annual Competition

11 / 23

What? How? Java For me? Outlook

Competition Timeline

September: Contribution of benchmarks

October: Tool registration and qualification

November: Tool submission

December: Announcement of winners

January: Tool paper submission

April: SV-COMP session at ETAPS

12 / 23

What? How? Java For me? Outlook

Java Track at SV-COMP

Objectives:

More languages in SV-COMP

Standard benchmark set

Comparability

Reproducibility

Re-use existing benchmarking infrastructure

Current status:

March 2018: Initial benchmarks collected, proof-of-concept
tools integrated, potential participants contacted

April 2018: Proposal accepted at Jury meeting at TACAS

July 2018: Announced at CAV

Since September: detailed discussions with 4 registered
participants (JPF, SPF, JayHorn, JBMC)

Planned start of competition runs: 20 November

13 / 23

What? How? Java For me? Outlook

Java Track at SV-COMP

Objectives:

More languages in SV-COMP

Standard benchmark set

Comparability

Reproducibility

Re-use existing benchmarking infrastructure

Current status:

March 2018: Initial benchmarks collected, proof-of-concept
tools integrated, potential participants contacted

April 2018: Proposal accepted at Jury meeting at TACAS

July 2018: Announced at CAV

Since September: detailed discussions with 4 registered
participants (JPF, SPF, JayHorn, JBMC)

Planned start of competition runs: 20 November

13 / 23

What? How? Java For me? Outlook

Java Track at SV-COMP

Objectives:

More languages in SV-COMP

Standard benchmark set

Comparability

Reproducibility

Re-use existing benchmarking infrastructure

Current status:

March 2018: Initial benchmarks collected, proof-of-concept
tools integrated, potential participants contacted

April 2018: Proposal accepted at Jury meeting at TACAS

July 2018: Announced at CAV

Since September: detailed discussions with 4 registered
participants (JPF, SPF, JayHorn, JBMC)

Planned start of competition runs: 20 November

13 / 23

What? How? Java For me? Outlook

Java Track at SV-COMP

Objectives:

More languages in SV-COMP

Standard benchmark set

Comparability

Reproducibility

Re-use existing benchmarking infrastructure

Current status:

March 2018: Initial benchmarks collected, proof-of-concept
tools integrated, potential participants contacted

April 2018: Proposal accepted at Jury meeting at TACAS

July 2018: Announced at CAV

Since September: detailed discussions with 4 registered
participants (JPF, SPF, JayHorn, JBMC)

Planned start of competition runs: 20 November

13 / 23

What? How? Java For me? Outlook

Java Track at SV-COMP

Objectives:

More languages in SV-COMP

Standard benchmark set

Comparability

Reproducibility

Re-use existing benchmarking infrastructure

Current status:

March 2018: Initial benchmarks collected, proof-of-concept
tools integrated, potential participants contacted

April 2018: Proposal accepted at Jury meeting at TACAS

July 2018: Announced at CAV

Since September: detailed discussions with 4 registered
participants (JPF, SPF, JayHorn, JBMC)

Planned start of competition runs: 20 November

13 / 23

What? How? Java For me? Outlook

Java Track at SV-COMP

Objectives:

More languages in SV-COMP

Standard benchmark set

Comparability

Reproducibility

Re-use existing benchmarking infrastructure

Current status:

March 2018: Initial benchmarks collected, proof-of-concept
tools integrated, potential participants contacted

April 2018: Proposal accepted at Jury meeting at TACAS

July 2018: Announced at CAV

Since September: detailed discussions with 4 registered
participants (JPF, SPF, JayHorn, JBMC)

Planned start of competition runs: 20 November

13 / 23

What? How? Java For me? Outlook

Benchmarks and Properties

368 benchmarks (40LOC on average, 250LOC max)

jayhorn-recursive, jbmc-regression, jpf-regression, MinePump

Java 1.8

Calls to Java standard library (java.*, javax.*) allowed;
sources of other dependencies must be part of the benchmark.

1 category for violation of asserts (“ReachSafety”)
Property: CHECK(init(Main.main), LTL(G assert))

14 / 23

What? How? Java For me? Outlook

Benchmarks and Properties

If a tool requires class files as input it is responsible for compiling
the benchmark.

A benchmark must be compilable by passing all .java files within
the directories listed in input files to javac.

15 / 23

What? How? Java For me? Outlook

Rules for Nondeterminism

Only source of nondeterminism:
return values of methods defined in
org.sosy lab.sv benchmarks.

Verifier class.

Must not be used:

Arguments of main

Library methods that make
system calls

. . .

16 / 23

What? How? Java For me? Outlook

Tool-info and Wrapper Scripts

Benchmark
definition .xml

Benchexec

Tool-info

Tool

Results

Benchmarks

Wrapper

E.g. command line produced for JPF:
./jpf-sv-comp

--graphml-witness witness.graphml

--propertyfile ../sv-benchmarks/java/properties/assert.prp

../sv-benchmarks/java/common/org/sosy lab/sv benchmarks/Verifier.java

../sv-benchmarks/java/jbmc-regression/StringStartEnd02/Main.java

17 / 23

What? How? Java For me? Outlook

Tool-info and Wrapper Scripts

Benchmark
definition .xml

Benchexec

Tool-info

Tool

Results

Benchmarks

Wrapper

E.g. command line produced for JPF:
./jpf-sv-comp

--graphml-witness witness.graphml

--propertyfile ../sv-benchmarks/java/properties/assert.prp

../sv-benchmarks/java/common/org/sosy lab/sv benchmarks/Verifier.java

../sv-benchmarks/java/jbmc-regression/StringStartEnd02/Main.java

17 / 23

What? How? Java For me? Outlook

Tool-info and Wrapper Scripts

Benchmark
definition .xml

Benchexec

Tool-info

Tool

Results

Benchmarks

Wrapper

E.g. command line produced for JPF:
./jpf-sv-comp

--graphml-witness witness.graphml

--propertyfile ../sv-benchmarks/java/properties/assert.prp

../sv-benchmarks/java/common/org/sosy lab/sv benchmarks/Verifier.java

../sv-benchmarks/java/jbmc-regression/StringStartEnd02/Main.java
17 / 23

What? How? Java For me? Outlook

How can I use it?

Re-use existing benchmarking infrastructure

Stop writing benchmarking scripts

Use it for running your tests

’Standard’ benchmark set

Use it for running comparisons

Contribute your benchmarks

Compare with the ’best’ configuration of a tool

Take the most recent competition candidate:
Download from
https://sv-comp.sosy-lab.org/2018/systems.php

18 / 23

What? How? Java For me? Outlook

How can I use it?

Reproduce the competition results:

Download:
git clone https://github.com/sosy-lab/sv-benchmarks

git clone https://github.com/sosy-lab/benchexec

git clone https://github.com/sosy-lab/sv-comp

git clone https://gitlab.com/sosy-lab/sv-comp/archives-2019

Run:
cd benchexec

for tool in jpf spf jayhorn jbmc

do

unzip ../archives-2019/2019/$tool.zip; mv $tool/* .

bin/benchexec ../sv-comp/benchmark-defs/$tool.xml

done

bin/table-generator results/*.xml.bz2

Currently (5 Nov 2018) only runs with benchexec’s yaml branch.

19 / 23

What? How? Java For me? Outlook

How can I use it?

Run JPF on your own benchmarks:

Add descriptor yml file for each benchmark

List descriptor files in MyBenchmarks.set

Add MyBenchmarks.set to benchmark definition jpf.xml:
<tasks name="MyBench">

<includesfile>

../sv-benchmarks/java/MyBenchmarks.set</includesfile>

<propertyfile>

../sv-benchmarks/java/properties/assert.prp</propertyfile>

</tasks>

Run with -t MyBench

bin/benchexec ../sv-comp/benchmark-defs/jpf.xml -t MyBench

bin/table-generator results/*.xml.bz2

20 / 23

What? How? Java For me? Outlook

Outlook

What is needed for 2020:

More benchmarks:
Fork https://github.com/sosy-lab/sv-benchmarks and
create PR with your benchmarks

Witness validators

Encourage participation of more tools and tool variants

Subscribe to sv-comp@googlegroups.com

Up-to-date version of paper:
http://arxiv.org/abs/1809.03739

21 / 23

https://github.com/sosy-lab/sv-benchmarks
http://arxiv.org/abs/1809.03739

What? How? Java For me? Outlook

Outlook

What is needed for 2020:

More benchmarks:
Fork https://github.com/sosy-lab/sv-benchmarks and
create PR with your benchmarks

Witness validators

Encourage participation of more tools and tool variants

Subscribe to sv-comp@googlegroups.com

Up-to-date version of paper:
http://arxiv.org/abs/1809.03739

21 / 23

https://github.com/sosy-lab/sv-benchmarks
http://arxiv.org/abs/1809.03739

What? How? Java For me? Outlook

Witness Validation for Java

Refutation witnesses (for ReachSafety property):

Witness contains counterexample trace
annotated with evaluated assignments and conditionals
→ Check whether counterexample trace is feasible and
violates the property

Proposed implementation: generate harness, compile and
execute

Correctness witnesses (for ReachSafety property):

Witness contains dynamic CFG annotated with invariants
→ Check whether invariants hold and imply properties

???

22 / 23

What? How? Java For me? Outlook

Outlook

What is needed for 2020:

More benchmarks:
Fork https://github.com/sosy-lab/sv-benchmarks and
create PR with your benchmarks

Witness validators

Encourage participation of more tools and tool variants

Subscribe to sv-comp@googlegroups.com

Up-to-date version of paper: http://arxiv.org/abs/1809.03739

www.diffblue.com

Jobs in program analysis,
verification and machine learning!

23 / 23

https://github.com/sosy-lab/sv-benchmarks
http://arxiv.org/abs/1809.03739
www.diffblue.com

What? How? Java For me? Outlook

Outlook

What is needed for 2020:

More benchmarks:
Fork https://github.com/sosy-lab/sv-benchmarks and
create PR with your benchmarks

Witness validators

Encourage participation of more tools and tool variants

Subscribe to sv-comp@googlegroups.com

Up-to-date version of paper: http://arxiv.org/abs/1809.03739

www.diffblue.com

Jobs in program analysis,
verification and machine learning!

23 / 23

https://github.com/sosy-lab/sv-benchmarks
http://arxiv.org/abs/1809.03739
www.diffblue.com

What? How? Java For me? Outlook

Outlook

What is needed for 2020:

More benchmarks:
Fork https://github.com/sosy-lab/sv-benchmarks and
create PR with your benchmarks

Witness validators

Encourage participation of more tools and tool variants

Subscribe to sv-comp@googlegroups.com

Up-to-date version of paper: http://arxiv.org/abs/1809.03739

www.diffblue.com

Jobs in program analysis,
verification and machine learning!

23 / 23

https://github.com/sosy-lab/sv-benchmarks
http://arxiv.org/abs/1809.03739
www.diffblue.com

	What?
	How?
	Java
	For me?
	Outlook

