
JCWIT: A Correctness-Witness Validator for Java

Programs based on Bounded Model Checking

Zaiyu Cheng, Tong Wu, Peter Schrammel, Norbert Tihanyi,

Eddie B. de Lima Filho, Lucas C. Cordeiro

University of Manchester

Department of Computer Science

Introduction

• The formal software verification work is usually performed by

untrusted verification engines or static analysis tools with the

risk of false positives.

— Witness validation is therefore particularly important.

• Witness is a format where verifiers can exchange information.

• Witness validation is a formal verification method to independently

validate software verification tool result.

➢ Correctness witness validation

➢ Violation witness validation

• There are several violation validation tools for the

programming language Java.

Motivation

➢ GWIT

➢ Wit4Java

There is no dedicated correctness witness validator!

• There were seven Java verifiers in

SV-COMP 2023.

• Before JCWIT was born, there

were only two Java validators in

SV-COMP 2023.

Principles

Drawing inspiration from the existing methodology
validation via verification

The core idea of this approach is to use existing

verification tools to confirm the accuracy and reliability

of the evidence generated by the verification process

• Transform the program such that the invariants are asserted.

• A standard verification engine is then asked to verify that the

transformed program satisfies the original specification

and all assertions added to the program hold.

jcwit architecture

Architecture

We implemented an open source1 tool for

Java Correctness Witness

1. https://github.com/Chriszai/JCWIT

https://github.com/Chriszai/JCWIT
https://github.com/Chriszai/JCWIT
https://github.com/Chriszai/JCWIT

Witness Analyzer

➢ Graph Data for Witness Automaton

➢ Node Data for Automaton States

➢ Edge Data for Automaton Transitions

• There are three data elements types in the witness.

• The data elements are accompanied by different

annotations (or sub-elements) based on their respective

categorizations.

Assertion Constructor

1. Match and extract the values of value-type variables or class

identifiers of reference-type variables from the invariants in the

witness.

2. Assert the extracted invariants at the appropriate positions

based on the meta-information.

<node id="n0">
<data key="invariant">

 java.lang.Object.@class_identifier="java::Example";
</data>

</node>
<edge source="n0" target="n1">...</edge>
<node id="n1"><data key="invariant">anonlocal::1i = 5;</data></node>

The value and class identifier are stored in

the witness in the above form

Method Monitor

Solution:

1. Introduce method counters to record the frequency of method calls during program

execution.

2. Upon each invocation, the corresponding method’s counter is incremented

accordingly.

3. The method monitor maintains a static method internally so that the different

invariants corresponding to the same execution statement will be asserted separately

rather than simultaneously.

The principle is to allow programs to be able to selectively execute assertions based

on the current number of times a method is being invoked

When a particular method is executed multiple times, inserted assertions

that are not pertinent to the current method invocation will be

inadvertently executed

publics static void main(String[] args) {

 Example.isRightTriangle(3,4,5);

 Example.isRightTriangle(6,8,10);}

static void isRightTriangle(int a, int b, int c){

 int x =max(max(a,b),c);

 int y= a * a + b * b + c * c;

 if(y == 2* x * x) assert true;

 else assert false;}

Example

publics tatic void main(String[] args) {

 Example.isRightTriangle(3,4,5);

 //Counter incremented.

 Example_isRightTriangle_III_V++;

 Example.isRightTriangle(6,8,10);}

static void isRightTriangle(int a, int b, int c){

 int x =max(max(a,b),c);

 assertionSelection(Example_isRightTriangle_III_V, x==5, x==10);

 int y= a * a + b * b + c * c;

 assertionSelection(Example_isRightTriangle_III_V, y==50, y==200);

 if(y == 2* x * x) assert true;

 else assert false;}

publics static void main(String[] args) {

 Example.isRightTriangle(3,4,5);

 Example.isRightTriangle(6,8,10);}

static void isRightTriangle(int a, int b, int c){

 int x =max(max(a,b),c);

 int y= a * a + b * b + c * c;

 if(y == 2* x * x) assert true;

 else assert false;}

Example

The static method are inserted

publics tatic void main(String[] args) {

 Example.isRightTriangle(3,4,5);

 //Counter incremented.

 Example_isRightTriangle_III_V++;

 Example.isRightTriangle(6,8,10);}

static void isRightTriangle(int a, int b, int c){

 int x =max(max(a,b),c);

 assertionSelection(Example_isRightTriangle_III_V, x==5, x==10);

 int y= a * a + b * b + c * c;

 assertionSelection(Example_isRightTriangle_III_V, y==50, y==200);

 if(y == 2* x * x) assert true;

 else assert false;}

publics static void main(String[] args) {

 Example.isRightTriangle(3,4,5);

 Example.isRightTriangle(6,8,10);}

static void isRightTriangle(int a, int b, int c){

 int x =max(max(a,b),c);

 int y= a * a + b * b + c * c;

 if(y == 2* x * x) assert true;

 else assert false;}

The static method are inserted

• On the first invocation, the invariants x = 5 and y = 50

are asserted. The method's counter is then

incremented, and the invariants x = 10 and y = 200

are asserted on the second invocation.

Example

Verification

• The results of the verification will be divided into three types.

➢ True
• A successful verification report indicates that all invariants within a

correctness witness automaton are valid.

➢ False
• A report informing verification failure means that a witness automaton

contains erroneous program execution trajectories or that the invariants

within the execution states are incorrect.

➢ Unknown
• A report informing an unknown verification result indicates that JCWIT has

encountered impediments during the verification process of a .class file.

• When everything is ready, JCWIT compiles the transformed program

again as a .class file, and is then used as input for verification by the

Java Bounded Model Checker (JBMC).

Evaluation

• Each verification run was initiated on machines equipped with the

GNU/Linux operating system (x86_64-linux Ubuntu 22.04) and featuring

an Intel Xeon E3-1230 v5 Computer Processing Unit (CPU) (3.40 GHz)

with eight processing units.

Result Type Quantities Comment

Correct True 67 Witness Confirmed

Unknown

(38 Witnesses)

13 Invariant Extraction/Insertion

Failed

19 Program Compilation Error

3 Validation timeout

3 IO Exception

JCWIT participated in JavaOverall category adhered to a single specification

called ReachSafety in SV-COMP 2024.

Future Work

• Extend this work for the new witness format. Last year, a new format

was introduced for the competition, we could extend this work to support

this new format.

• Incorporate LLMs to produce invariants for validation. The witness

validation could be used as a method to checks whether invariants

produced by an LLM are valid.

Reference

1. Howar, F., Mues, M. (2022). GWIT: A Witness Validator for Java based on GraalVM

(Competition Contribution). In: Fisman, D., Rosu, G. (eds) Tools and Algorithms for

the Construction and Analysis of Systems. TACAS 2022. Lecture Notes in Computer

Science, vol 13244. Springer, Cham. https://doi.org/10.1007/978-3-030-99527-0_29

2. Wu, T., Schrammel, P., Cordeiro, L.C. (2022). Wit4Java: A Violation-Witness Validator

for Java Verifiers (Competition Contribution). In: Fisman, D., Rosu, G. (eds) Tools

and Algorithms for the Construction and Analysis of Systems. TACAS 2022. Lecture

Notes in Computer Science, vol 13244. Springer, Cham. https://doi.org/10.1007/978-3-

030-99527-0_36

3. Beyer, D., Spiessl, M. (2020). MetaVal: Witness Validation via Verification. In: Lahiri,

S., Wang, C. (eds) Computer Aided Verification. CAV 2020. Lecture Notes in Computer

Science(), vol 12225. Springer, Cham. https://doi.org/10.1007/978-3-030-53291-8_10

4. Cheng, Z., Wu, T., Schrammel, P., Tihanyi, N., de Lima Filho, E. B., & Cordeiro, L.

(Accepted/In press). JCWIT: A Correctness-Witness Validator for Java Programs

based on Bounded Model Checking. In The ACM SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA).

https://doi.org/10.1007/978-3-030-99527-0_29
https://doi.org/10.1007/978-3-030-99527-0_36%0d
https://doi.org/10.1007/978-3-030-99527-0_36%0d
https://doi.org/10.1007/978-3-030-53291-8_10

Thank you !

	Slide 1
	Slide 2: Introduction
	Slide 3: There are several violation validation tools for the programming language Java.
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

