
ESBMC-Python: A Bounded Model Checker for

Python Programs

Bruno Farias, Rafael Menezes, Eddie Lima Filho, Youcheng Sun, Lucas C. Cordeiro

bruno.farias@manchester.ac.uk

18th September 2024

mailto:b%7Bruno.farias@manchester.ac.uk

Introduction

▪ Lack of formal tools for verifying Python program correctness.

▪ Main challenges: dynamic nature of the language and the absence

of type information.

Develop a frontend for an SMT-based Bounded Model Checker that

can infer and add type information, enabling exhaustive exploration of

program paths to identify issues.

Research Problem

Approach

ESBMC-Python: Overview

Verification properties: Division-by-zero, indexing errors, arithmetic
overflow, and user-defined assertions.

Python Parser
Language

Converter

ESBMC

IREP

GOTO Engine
GOTO IRSymbolic

Execution

Type

Annotation

AST Annotated

AST

UNSAT

frontend

{JS N}

SMT

SolverOK

Bug
SAT

CE

C ^ ¬ P

SMT Formulas

Code Representation Transformation

ESBMC IREP

{JS N}

JSON-Based Type Annotation

Constant Values
x = 10 x:int = 10

x = 10 → x:int = 10

Referred Variables

y = x → y:int = x

Class Instances

z = MyClass()

Function Calls

def foo() : return 1

x = foo() → x:int = foo()

PEP 484

ESBMC-Python usage

$ esbmc main.py --multi-property

Verification of Blockchain protocol

Consensus library code ESBMC-Python output

Consensus Specification https://github.com/ethereum/consensus-specs

• Arithmetic overflow and division-by-zero when calling integer_square_root below with

INT_MAX as a parameter.

• A set of runnable specifications in Python.

• Each function invoked individually with non-deterministic values.

https://github.com/ethereum/consensus-specs

Experimental Results

Category Test Cases Memory Usage Execution Time

Arith operations 2 26.4 MB 33.5 ms

Assignments 5 18.5 MB 38 ms

Assume 4 16.5 MB 28.2 ms

Binary operations 2 20.5 MB 29.5 ms

Binary types 4 20.4 MB 28.5 ms

Built-in functions 7 19.9 MB 28.1 ms

Classes 9 19 MB 27.1 ms

Conditionals 4 17.8 MB 25.5 ms

Functions 11 21.8 MB 30 ms

Imports 8 15.3 MB 49.1 ms

Logical operations 6 20.4 MB 24.5 ms

Loops 10 20.7 MB 35.4 ms

Non-determinism 4 21.4 MB 29.2 ms

Numeric types 6 20.9 MB 29.1 ms

Type annotation 3 14.5 MB 27.3 ms

• Benchmark suite consisting of 85

programs, categorized into 15 groups.

• Tests with both failling and passing

assertions to evaluate reasoning on

different Python features.

• The verification time (24.5 to 49.1 ms) is

satisfactory compared to other BMC

tools.

• Memory consumption (14.5 to 26.4 MB) is

also usual and considered low for modern

computers.

Conclusion

• ESBMC-Python demonstrates the feasibility of using BMC for the formal verification of Python
programs.

• The verification process is fully automated and does not require user annotations.

• Our tool identified a significant real-world issue.

Next steps:

• Add support for additional features: Concurrency, unhandled exceptions, and unbounded integer
handling.

• Enhance type annotation and integrate a type checker.

• Enable verification for AI libraries.

ESBMC-Python: A Bounded Model Checker

for Python programs

Thank you

Bruno Farias

bruno.farias@manchester.ac.uk

github.com/esbmc/esbmc

mailto:b%7Bruno.farias@manchester.ac.uk

	Slide 1
	Slide 2: Introduction
	Slide 3: ESBMC-Python: Overview
	Slide 4: Code Representation Transformation
	Slide 5: JSON-Based Type Annotation
	Slide 6: ESBMC-Python usage
	Slide 7: Verification of Blockchain protocol
	Slide 8: Experimental Results
	Slide 9: Conclusion
	Slide 10: ESBMC-Python: A Bounded Model Checker for Python programs

