Verifying Digital Systems with MATLAB (Tool Demo)

Lennon Chaves¹, lury Bessa¹, Lucas Cordeiro^{1,2}, Daniel Kroening² and Eddie Lima¹

¹Federal University of Amazonas, Brazil ²University of Oxford, United Kingdom

lennonchaves@ufam.edu.br • iurybessa@ufam.edu.br • lucas.cordeiro@cs.ox.ac.uk • kroening@cs.ox.ac.uk • eddie_batista@yahoo.com.br

"...guaranteeing the correctness of cyber-physical systems (CPS) remains an a stounding challenge"

Xi Zheng *et al.,* 2014.

"Simulation alone is not sufficient to support verification and validation of CPS."

Step A

DSVerifier builds an ANSI-C code representation of the digital system based on the specification.

Step B

DSVerifier formulates a FWL model based on fixedpoint arithmetic:

$$\mathsf{FWL} [\bullet] : \mathfrak{R} \longrightarrow \mathsf{Q}[\mathfrak{R}]$$

Step C

DSVerifier checks a property Φ **up to a bound** *k*:

Φ	Bits < I, F >	Result
Quantization error	32-bits <15,16>	>1%
	16-bits <7,8>	>1%
	8-bits <3,4>	<1%
Stability	8-bits <3,4>	Unstable

Approach and Uniqueness

Bounded model checking

Translate the model into a VC ψ such that:

 ψ is satisfiable iff φ has counterexample of max. depth k

DSVerifier Toolbox

🔵 🔲 DSVerifier App

riansier Function	Ciosed-Loop	State-Space		
Closed-Loop Representation			Implementation	
Plant			Integer Bits 12 Fractional Bits 3	
Numerator [1 -1 -2]				
Denominator [11	Denominator [1 1 0.576]		max range 1 — min range -1 —	
Controller			Delta	
Numerator [1 0.576 0.927]			Timeout 3600	
Denominator [1-4.867 0.736] Sample Time 0.02 Configurations BMC ESBMC Solver Boolector Overflow Mode Wrap-Around Rounding Mode Round			Realization Form DFII	
			K bound	
)	0 10 20 30 40 50 60 70 80 90 100 Properties	
)))	 Stability ✓ Limit Cycle Quantization Error 	
Error Mode	Absolute 🔻	•)	Reset Verify	

Contributions

i. support for transfer-function and state-space representations in open- and closed-loop form;

Step 2

Numerical representation < *I* , *F* >:

- *I* is the integer part and
- **F** is the fractional part

Step 3

Setup verification:

- choose a property Φ;
- a maximum
 verification time;
- a bound k;
- a BMC tool.

implementation <3,4>
states = 3;
inputs = 1;
outputs = 1;
A = [...]
B = [...]
C = [...]
D = [...]

stability;

Properties:

- quantization error;
- controllability;
- observability;

ii. verify different numerical representations and realization forms of digital systems;

iii. provide a MATLAB toolbox to check specific properties of digital systems while taking into account FWL;

As future work:

- verify uncertainties in digital systems represented by state-space;
- integrate counterexample reproducibility for digital systems

For further information, publications, and downloads, see: http://www.dsverifier.org/