
Verifying Digital Systems with MATLAB (Tool Demo)

Roll (Φ)
XI (North)

YI (East)
Pitch ()

ZI (Down)

Yaw ()

Lennon Chaves1, Iury Bessa1, Lucas Cordeiro1,2, Daniel Kroening2 and Eddie Lima1

1Federal University of Amazonas, Brazil 2University of Oxford, United Kingdom
lennonchaves@ufam.edu.br • iurybessa@ufam.edu.br • lucas.cordeiro@cs.ox.ac.uk • kroening@cs.ox.ac.uk • eddie_batista@yahoo.com.br

For further information, publications, and downloads, see: http://www.dsverifier.org/

Sponsors:

IV Contributions
i. support for transfer-function and state-space representations in

open- and closed-loop form;
ii. verify different numerical representations and realization forms

of digital systems;
iii. provide a MATLAB toolbox to check specific properties of digital

systems while taking into account FWL;

As future work:

● verify uncertainties in digital systems represented by state-space;
● integrate counterexample reproducibility for digital systems

III DSVerifier Toolbox

I Motivation

“...guaranteeing the correctness of cyber-physical systems (CPS) remains
an a stounding challenge”

Xi Zheng et al., 2014.

“Simulation alone is not sufficient to support verification and validation
of CPS.”

Sayan Mitra et al., 2013.

Step A
DSVerifier builds an ANSI-C code
representation of the digital system
based on the specification.

Step B
DSVerifier formulates a FWL model based
on fixedpoint arithmetic:

Step C
DSVerifier checks a property Φ up to a bound k:

Φ Bits < I, F > Result

Quantization error 32-bits <15,16> >1%

16-bits <7,8> >1%

8-bits <3,4> <1%

Stability 8-bits <3,4> Unstable

II Approach and Uniqueness

Step 1

Step 2
Numerical representation < I , F >:

● I is the integer part and
● F is the fractional part

Step 3
Setup verification:

● choose a property Φ;
● a maximum

verification time;
● a bound k;
● a BMC tool.

x (k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

State-space model

H(z) =
b0 + b1z-1 + ... + bmz-m

1 + a1z-1 + ... + bnz-n
Transfer-function model

Translate the model into a VC ψ such that:
ψ is satisfiable iff φ has counterexample of max. depth k

Bounded model checking

Step 1

Digital
controller

design

Step 2

Define
numerical

representation

Step 3

Configure
verification

Input file
(ANSI-C)

Step A

Parser

Step B

Compute a
FWL controller

model

Step C

Verify using a
BMC tool

User

DSVerifier

Counterexample

Verification
Successful

x(k + 1) =
0.9969
-0.0001
 0
y = (k) = [0

0.05649 0
 0.9957 0
 0.5658 1
 0 1]x(k) + [0]u(k)

x(k) +
0.0024
0.0002
0.0001

u(k)

implementation <3,4>
states = 3;
inputs = 1;
outputs = 1;
A = [...]
B = [...]
C = [...]
D = [...]

Properties:

● stability;
● quantization error;
● controllability;
● observability;

CCC

FWL [•]: Q[]

Digital
Controller

Finite word-length (FWL) effects

Microprocessor

C(k)

u(k) y(k) = Pitch()

