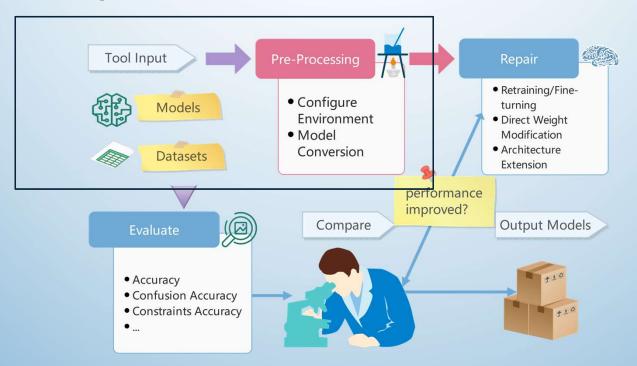
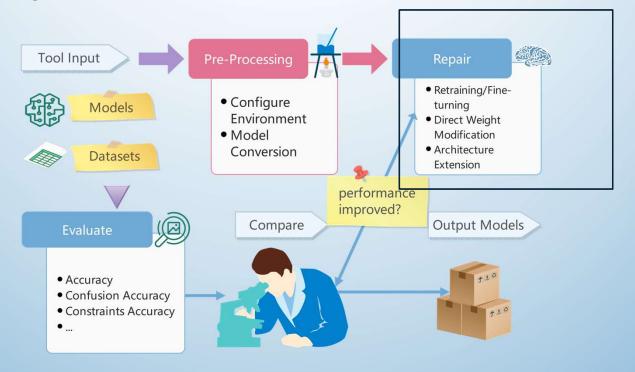


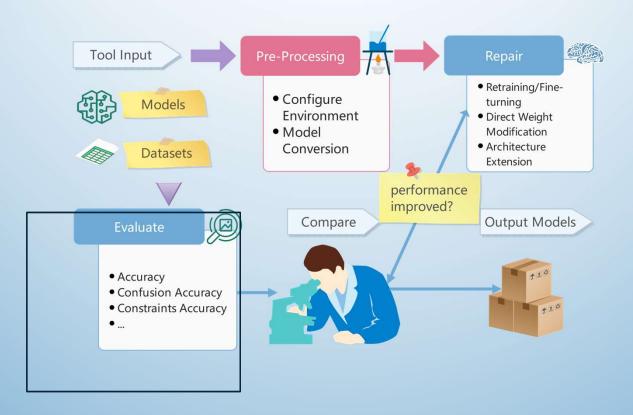
AlRepair: A Repair Platform for Neural Networks

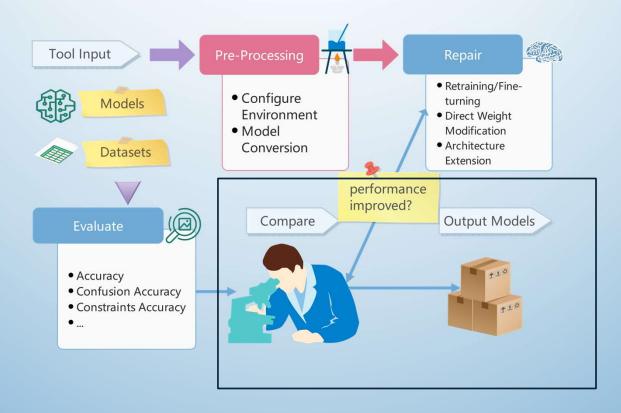
Xidan Song¹, Youcheng Sun¹, Mustafa A. Mustafa¹, Lucas C. Cordeiro¹


¹Department of Computer Science, University of Manchester, UK ²imec-COSIC, KU Leuven, Belgium


AIRepair: A brief introduction

- AIREPAIR is a tool for integrating and evaluating existing (and future) repair techniques on neural networks.
- It performs pre-processing and environment-isolating on different benchmarks to make them capable of different frameworks.
- We benchmark five repair techniques on 8 types of neural network models across four datasets.





Example Usage

```
python AIRepair.py [-h] [--all]
[--net_arch NETARCH] [--dataset DATASET]
[--pretrained PATH_AND_FILENAME]
[--depth DEPTH][--method METHOD] [--auto]
[--additional_param PARAM]
[--input_logs INPUT_LOGS]
[--testonly]
```

python AIRepair.py --method apricot deeprepair dl2 -pretrained cifar10_resnet34_baseline.pt --dataset cifar10 -net_arch resnet --depth 34

Available at: https://github.com/theyoucheng/AIRepai

AIRepair Results

Datasets Models		CIFAR-10				CIFAR-100		MNIST	Fashion-MNIST
		ResNet18	ResNet34	ResNet50	ResNet18	ResNet34	ResNet50	MNIST	Fashion-MNIST
Baselines	Acc. Const.	92.05% 90.51%	91.34% 90.27%	94.42% 90.66%	46.84% 86.62%	44.16% 85.95%	47.36% 85.21%	99.45% 99.96%	92.20% 100%
Apricot	Acc.	-2.65%	-0.38%	-3.4%	+9.02%	+13.74%	+11.15%	+0.06%	+0.61%
DeepRepair	Acc. Const.	+0.5% -9.46%	-1.27% -8.82%	-4.14% -12.77%	+10.91%	+21.42%	+20.32%	+0.17%	+0.47%
DL2	Acc. Const.	-2.16% +9.3%	+0.23%	-1.95% +5.4%	+0.87%	+1.17%	-1.16% -0.4%	+0.08% +2.55%	+0.28%

We ran experiments on a machine with Ubuntu 18.04.6 LTS OS Intel(R) Xeon(R) Gold 5217 CPU @ 3.00GHz and two Nvidia Quadro RTX 6000 GPUs.

The models in the experiments are available at: https://zenodo.org/record/7627801#%23.Y-X6g3bP3tU

References: Fischer, Marc, et al. "DL2: training and querying neural networks with logic." *International Conference on Machine Learning*. PMLR, 2019. Yu, Bing, et al. "Deeprepair: Style-guided repairing for deep neural networks in the real-world operational environment." IEEE Transactions on Reliability 71.4 (2021): 1401-1416. Zhang, Hao, and W. K. Chan. "Apricot: A weight-adaptation approach to fixing deep learning models." 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2019.

Conclusion and Future works

- We present AIREPAIR, a comprehensive platform for repairing neural networks.
- We give the results of five existing neural network repair tools integrated into AIREPAIR.
- In the future, we will support and test more neural network repair methods, propose a unified interface for developers to test and benchmark their repair methods

Thank you!