SMT-Based Refutation
of Spurious Bug Reports
in the Clang Static
Analyzer

Mikhail R. Gadelha*, Enrico Steffinlongo, Lucas C.
Cordeiro, Bernd Fischer, Denis A. Nicole

*Sidia Institute of Science and Technology

m.gadelha@samsung.com

Static Analysis vs Testing

>
testing arror

e Usually checks one path in the program.
* May miss errors.
* It's fast.

Static Analysis vs Testing

Static
Analysis Error trace
Line 5: ..
Line 12: ..
* Report errors as traces. Line 41:..

* Explores all executions, might over-approximate paths.

* Might present false positives due to over-
approximations.

* Does not scale well (state/path explosion).

Clang Static Analyzer (CSA)

* Fast and easy to use state-of-the-art static analyzer
framework built on top of clang.

Clang Static Analyzer (CSA)

* Fast and easy to use state-of-the-art static analyzer
framework built on top of clang.

* Performs context-sensitive interprocedural analysis in
each translation units of a project.

Clang Static Analyzer (CSA)

* Fast and easy to use state-of-the-art static analyzer
framework built on top of clang.

* Performs context-sensitive interprocedural analysis in
each translation units of a project.

e Offer a wide range of checkers, including pattern
matching checkers and path-sensitive checkers.

e Constraints generated from symbolically executing the
program; no abstract interpretation involved.

Clang Static Analyzer (CSA)

* Fast and easy to use state-of-the-art static analyzer
framework built on top of clang.

* Performs context-sensitive interprocedural analysis in
each translation units of a project.

e Offer a wide range of checkers, including pattern
matching checkers and path-sensitive checkers.

e Constraints generated from symbolically executing the
program; no abstract interpretation involved.

e Sacrifices precision for speed.

Clang Static Analyzer (CSA)

1 unsigned int func(unsigned int a) {
2 unsigned int x*z = 0;

3 if ((a& 1) & ((a & 1) © 1))

4 return =z;

5 return 0;

6 }

Is this program safe?

Clang Static Analyzer (CSA)

un51gned 1nt func(un51gned int a) {

return 0;

1
2
3
1
5
6

}

* This program is safe, i.e., the null pointer
dereference is unreachable.

Running the CSA

DEMO

Refuting False Bugs using
SMT Solvers

« Why don’ t we replace the imprecise solver?

Refuting False Bugs using
SMT Solvers

« Why don’ t we replace the imprecise solver?

* First SMT backend implemented (Z3) in late 2017
by Dominic Chan. It was aimed to replace the built-

in constraint solver in the CSA.

Refuting False Bugs using
SMT Solvers

« Why don’ t we replace the imprecise solver?

* First SMT backend implemented (Z3) in late 2017
by Dominic Chan. It was aimed to replace the built-

in constraint solver in the CSA.

* It was up to 20 times slower than the built-in
constraint solver :/

Refuting False Bugs using
SMT Solvers

We developed an alternative solution: to use the
more precise SMT solvers to reason about bug
reachability only as a post processing step.

Refuting False Bugs using
SMT Solvers

e Our extension refutes false bug reports produced
by the path sensitive checkers.

Refuting False Bugs using
SMT Solvers

e Our extension refutes false bug reports produced
by the path sensitive checkers.

* We use SMT solvers to check the reachability of
reported bugs: all the constraints in a bug path are
encoded and checked for satisfiability.

Refuting False Bugs using
SMT Solvers

e Our extension refutes false bug reports produced
by the path sensitive checkers.

* We use SMT solvers to check the reachability of
reported bugs: all the constraints in a bug path are
encoded and checked for satisfiability.

 We implemented support for five different state-
of-the-art SMT solvers in the CSA: Z3, Boolector,
MathSAT, Yices and CVC4.

Running the CSA with SMT
refutation

DEMO

Clang Static Analyzer with
SMT Refutation

Symboli r—-—- -~ - -"--"=-=-=-"
Sourc " bug |
e — _feports .. g\VT Refutation ——
executio : l
Code i I
| [R - : | t
clang | bug | I | constraint SAT/ |
A§T . report | | 5 UNSA :
Checker1$ o I —':rh I
| vice|[£]7CvCy
AT I i R ot
i | (Boolecto ’—MaThSAT
constraint UNSA : ’ ul I
ém straint ' ___________.:
solver

Experimental Evaluation

* We evaluated twelve open-source projects:

* tmux, Redis, openSSL, twin, git, postgreSQL, sqlite3, curl,
libWebM, Memcached, Xerces-c, and XNU.

* Using five different SMT solvers:
e 73, Boolector, MathSAT, CVC4 and Yices

* Instructions to reproduce the experiments in:
https://github.com/mikhailramalho/analyzer-projects

Experimental Evaluation

Projects time (S). time @'s) . reported b.u 9s refuted bugs
(no refutation) (refutation) (no refutation)

redis 3478 3383 93 1
opensSSL 138 128 38 2
twin 2256 216.7 63 1
git 4887 405.9 70 T1
postgreSQL 1167.2 1112.4 196 6
SQLite3 10780 1058.4 83 5
Xerces-c++ 489.8 4332 81 2
XNU 34417 34051 557 51
tmux 86.5 89.9 T9 0
curt 798 799 39 0
TioVWebM 439 4472 6 0
memcached 96 96.2 25 0

* average time of Z3, Boolector, MathSAT, Yices and CVCA4.

Experimental Evaluation

Projects

time (S)
(no refutation)

time (S)
(refutation)*

reported bugs
(no refutation)

refuted bugs

opensSSL 33

twin 53

git 70

postgreSQL

SqQrLite3

Xerces-c++ . 2
XNUO 4 51 51
tmux 0. 9 0

J.0 S U

1ibVWebM 439 4472 3) 0
memcached 96 96.2 25 0

* average time of Z3, Boolector, MathSAT, Yices and CVCA4.

Experimental Evaluation

Projects

time (S)
(no refutation)

time (S)
(refutation)*

reported bug

Average 10%
bugs removed

(no refutatior.

opensSSL

twin

git

~N O W
D W O

postgreSQL

SQLite3

Xerces-c++

ANU

tmux

memcached

* average time of Z3, Boolector, MathSAT, Yices and CVCA4.

Experime

Projects

time (S)

Average 6%

luation

speedup

(no refutatior,

U UI\\/‘_'7_

reported bugs
(no refutation)

refuted bugs

opensSSL

twin

git

~N O W
D W O

postgreSQL

SQLite3

Xerces-c++

ANU

tmux

memcached

* average time of Z3, Boolector, MathSAT, Yices and CVCA4.

Experimental Evaluation

) time (S) time (S) reported bugs
Projects . .) refuted bugs
) (no refutation) (refutation)* (no refutation) 9
redis 3478 3383 93 1
opensSSL 138 128 38 2
twin 2250 210.7 03 1
git 4887 4059 70 11
postgreSQL 1167.2 1112.4 196 6
SQLite3 0786 OO 83 5
XErces-c++ 4898 Average 1% 81 2
XNU 34417 slowdown 557 51
9.
13,

memcached

* average time of Z3, Boolector, MathSAT, Yices and CVCA4.

Experimental Evaluation

* In total, 89 bugs were refuted and an in-depth analysis
of them show that all of them were false positives.

Experimental Evaluation

* In total, 89 bugs were refuted and an in-depth analysis
of them show that all of them were false positives.

* The average time to analyse the projects with refuted
bugs was 35.0 seconds faster, a 6.25% speed up.

Experimental Evaluation

* In total, 89 bugs were refuted and an in-depth analysis
of them show that all of them were false positives.

* The average time to analyse the projects with refuted
bugs was 35.0 seconds faster, a 6.25% speed up.

e Out of the four projects where no bug was refuted the
analysis was 1.0 second slower on average: a 1.24%
slowdown.

How do | run CSA on my
project?

DEMO

Conclusions

* The techniqgue removes from 0% to 20% bugs in
real-world projects:

* Empirical evidences shows that, on average, 50% of the
bugs reported are spurious.

* The technique only incurs in a small overhead, and
can actually make the analysis faster in a number of
real-world projects.

* Further improvements can only be achieved
through cross translation-unit support in the CSA.

The future?

* D54978: Move the SMT API to LLVM:
* Part of the clang 9.0.

* Validation of optimizations using SMT:
* Already done in the ScalarEvolution pass.

* Maybe an SMT backend in LLVM:

* Memory handling?
* Loops?

Acknowledgments

* Thank you to:
* George Karpenkov
* Artem Dergachev
* Devin Coughlin
* Anna Zaks
* Réka Kovacs
* Dominic Chen
* Gabor Horvath

Thank you!

* Me: mikhail.ramalho@gmail.com

* Experiments:
https://github.com/mikhailramalho/analyzer-projects

* Clang static analyzer: https://clang-analyzer.llvm.org/

* 5 min video:
https://www.voutube.com/watch?v=yIW5iRYNsGA

