
SMT-Based Refutation
of Spurious Bug Reports

in the Clang Static
Analyzer

Mikhail	R.	Gadelha*,	Enrico	Steffinlongo,	Lucas	C.	
Cordeiro,	Bernd	Fischer,	Denis	A.	Nicole	
*Sidia	Institute	of	Science	and	Technology	

m.gadelha@samsung.com	

Static Analysis vs Testing

• Usually	checks	one	path	in	the	program.	
• May	miss	errors.	
•  It’s	fast.	

Simulation/	
testing	

OK

error

Static Analysis vs Testing

•  Report	errors	as	traces.	
•  Explores	all	executions,	might	over-approximate	paths.	
• Might	present	false	positives	due	to	over-
approximations.	

•  Does	not	scale	well	(state/path	explosion).	

Static	
Analysis		

OK

Error trace

Specification Line 5: …
Line 12: …
…
Line 41:…

Clang Static Analyzer (CSA)
•  Fast	and	easy	to	use	state-of-the-art	static	analyzer	
framework	built	on	top	of	clang.	

•  Performs	context-sensitive	interprocedural	analysis	in	
each	translation	units	of	a	project.	

•  Offer	a	wide	range	of	checkers:	
•  Pattern	matching	checkers,	e.g.,	to	find	unsafe	use	of	strcpy.	
•  Path-sensitive	checkers,	e.g.,	null	pointer	dereference.	

•  Sacrifices	precision	for	speed.	

Clang Static Analyzer (CSA)
•  Fast	and	easy	to	use	state-of-the-art	static	analyzer	
framework	built	on	top	of	clang.	

•  Performs	context-sensitive	interprocedural	analysis	in	
each	translation	units	of	a	project.	

•  Offer	a	wide	range	of	checkers:	
•  Pattern	matching	checkers,	e.g.,	to	find	unsafe	use	of	strcpy.	
•  Path-sensitive	checkers,	e.g.,	null	pointer	dereference.	

•  Sacrifices	precision	for	speed.	

Clang Static Analyzer (CSA)
•  Fast	and	easy	to	use	state-of-the-art	static	analyzer	
framework	built	on	top	of	clang.	

•  Performs	context-sensitive	interprocedural	analysis	in	
each	translation	units	of	a	project.	

•  Offer	a	wide	range	of	checkers,	including	pattern	
matching	checkers	and	path-sensitive	checkers.	

•  Constraints	generated	from	symbolically	executing	the	
program;	no	abstract	interpretation	involved.	

•  Sacrifices	precision	for	speed.	

Clang Static Analyzer (CSA)
•  Fast	and	easy	to	use	state-of-the-art	static	analyzer	
framework	built	on	top	of	clang.	

•  Performs	context-sensitive	interprocedural	analysis	in	
each	translation	units	of	a	project.	

•  Offer	a	wide	range	of	checkers,	including	pattern	
matching	checkers	and	path-sensitive	checkers.	

•  Constraints	generated	from	symbolically	executing	the	
program;	no	abstract	interpretation	involved.	

•  Sacrifices	precision	for	speed.	

Clang Static Analyzer (CSA)

Is	this	program	safe?	

Clang Static Analyzer (CSA)

•  This	program	is	safe,	i.e.,	the	null	pointer	
dereference	is	unreachable.	

Running the CSA

DEMO	

Refuting False Bugs using
SMT Solvers

• Why	don’t	we	replace	the	imprecise	solver?	

•  First	SMT	backend	implemented	(Z3)	in	late	2017	
by	Dominic	Chan.	It	was	aimed	to	replace	the	built-
in	constraint	solver.	

•  It	was	up	to	20	times	slower	than	the	built-in	constraint	solver.	

	

Refuting False Bugs using
SMT Solvers

• Why	don’t	we	replace	the	imprecise	solver?	

•  First	SMT	backend	implemented	(Z3)	in	late	2017	
by	Dominic	Chan.	It	was	aimed	to	replace	the	built-
in	constraint	solver	in	the	CSA.	

•  It	was	up	to	20	times	slower	than	the	built-in	
constraint	solver.	

	

Refuting False Bugs using
SMT Solvers

• Why	don’t	we	replace	the	imprecise	solver?	

•  First	SMT	backend	implemented	(Z3)	in	late	2017	
by	Dominic	Chan.	It	was	aimed	to	replace	the	built-
in	constraint	solver	in	the	CSA.	

•  It	was	up	to	20	times	slower	than	the	built-in	
constraint	solver	:/	

	

Refuting False Bugs using
SMT Solvers

	
We	developed	an	alternative	solution:	to	use	the	
more	precise	SMT	solvers	to	reason	about	bug	
reachability	only	as	a	post	processing	step.	

	

Refuting False Bugs using
SMT Solvers
• Our	extension	refutes	false	bug	reports	produced	
by	the	path	sensitive	checkers.	

• We	use	SMT	solvers	to	check	the	reachability	of	
reported	bugs:	all	the	constraints	in	a	bug	path	are	
encoded	and	checked	for	satisfiability.	

• We	implemented	support	for	five	different	state-
of-the-art	SMT	solvers	in	the	CSA:	Z3,	Boolector,	
MathSAT,	Yices	and	CVC4.	

Refuting False Bugs using
SMT Solvers
• Our	extension	refutes	false	bug	reports	produced	
by	the	path	sensitive	checkers.	

• We	use	SMT	solvers	to	check	the	reachability	of	
reported	bugs:	all	the	constraints	in	a	bug	path	are	
encoded	and	checked	for	satisfiability.	

• We	implemented	support	for	five	different	state-
of-the-art	SMT	solvers	in	the	CSA:	Z3,	Boolector,	
MathSAT,	Yices	and	CVC4.	

Refuting False Bugs using
SMT Solvers
• Our	extension	refutes	false	bug	reports	produced	
by	the	path	sensitive	checkers.	

• We	use	SMT	solvers	to	check	the	reachability	of	
reported	bugs:	all	the	constraints	in	a	bug	path	are	
encoded	and	checked	for	satisfiability.	

• We	implemented	support	for	five	different	state-
of-the-art	SMT	solvers	in	the	CSA:	Z3,	Boolector,	
MathSAT,	Yices	and	CVC4.	

Running the CSA with SMT
refutation

DEMO	

Clang Static Analyzer with
SMT Refutation

bug
reports SMT Refutation

Symboli
c

executio
n

SAT
Bug

Report
s

Z
3

Boolecto
r

MathSA
T

Yice
s

CVC
4

constraint
s

Sourc
e

Code
SAT/

UNSA
T Checkers

Constraint
solver

constraint
s

SAT/
UNSA

T

clang
AST

bug
report

Experimental Evaluation

• We	evaluated	twelve	open-source	projects:	
•  tmux,	Redis,	openSSL,	twin,	git,	postgreSQL,	sqlite3,	curl,	
libWebM,	Memcached,	Xerces-c,	and	XNU.	

• Using	five	different	SMT	solvers:	
•  Z3,	Boolector,	MathSAT,	CVC4	and	Yices	

•  Instructions	to	reproduce	the	experiments	in:	
https://github.com/mikhailramalho/analyzer-projects		

Experimental Evaluation
 Projects time (s)

(no refutation)
time (s)

(refutation)*
reported bugs
(no refutation) refuted bugs

 redis 347.8 338.3 93 1
 openSSL 138 128 38 2
 twin 225.6 216.7 63 1
 git 488.7 405.9 70 11

 postgreSQL 1167.2 1112.4 196 6

 SQLite3 1078.6 1058.4 83 15
 xerces-c++ 489.8 433.2 81 2
 XNU 3441.7 3405.1 557 51
 tmux 86.5 89.9 19 0
 curl 79.8 79.9 39 0
 libWebM 43.9 44.2 6 0

 memcached 96 96.2 25 0

*	average	time	of	Z3,	Boolector,	MathSAT,	Yices	and	CVC4.	

Experimental Evaluation
 Projects time (s)

(no refutation)
time (s)

(refutation)*
reported bugs
(no refutation) refuted bugs

 redis 347.8 338.3 93 1
 openSSL 138 128 38 2
 twin 225.6 216.7 63 1
 git 488.7 405.9 70 11

 postgreSQL 1167.2 1112.4 196 6

 SQLite3 1078.6 1058.4 83 15
 xerces-c++ 489.8 433.2 81 2
 XNU 3441.7 3405.1 557 51
 tmux 86.5 89.9 19 0
 curl 79.8 79.9 39 0
 libWebM 43.9 44.2 6 0

 memcached 96 96.2 25 0

*	average	time	of	Z3,	Boolector,	MathSAT,	Yices	and	CVC4.	

Experimental Evaluation
 Projects time (s)

(no refutation)
time (s)

(refutation)*
reported bugs
(no refutation) refuted bugs

 redis 347.8 338.3 93 1
 openSSL 138 128 38 2
 twin 225.6 216.7 63 1
 git 488.7 405.9 70 11

 postgreSQL 1167.2 1112.4 196 6

 SQLite3 1078.6 1058.4 83 15
 xerces-c++ 489.8 433.2 81 2
 XNU 3441.7 3405.1 557 51
 tmux 86.5 89.9 19 0
 curl 79.8 79.9 39 0
 libWebM 43.9 44.2 6 0

 memcached 96 96.2 25 0

*	average	time	of	Z3,	Boolector,	MathSAT,	Yices	and	CVC4.	

Average	10%	
bugs	removed	

Experimental Evaluation
 Projects time (s)

(no refutation)
time (s)

(refutation)*
reported bugs
(no refutation) refuted bugs

 redis 347.8 338.3 93 1
 openSSL 138 128 38 2
 twin 225.6 216.7 63 1
 git 488.7 405.9 70 11

 postgreSQL 1167.2 1112.4 196 6

 SQLite3 1078.6 1058.4 83 15
 xerces-c++ 489.8 433.2 81 2
 XNU 3441.7 3405.1 557 51
 tmux 86.5 89.9 19 0
 curl 79.8 79.9 39 0
 libWebM 43.9 44.2 6 0

 memcached 96 96.2 25 0

*	average	time	of	Z3,	Boolector,	MathSAT,	Yices	and	CVC4.	

Average	6%	
speedup	

Experimental Evaluation
 Projects time (s)

(no refutation)
time (s)

(refutation)*
reported bugs
(no refutation) refuted bugs

 redis 347.8 338.3 93 1
 openSSL 138 128 38 2
 twin 225.6 216.7 63 1
 git 488.7 405.9 70 11

 postgreSQL 1167.2 1112.4 196 6

 SQLite3 1078.6 1058.4 83 15
 xerces-c++ 489.8 433.2 81 2
 XNU 3441.7 3405.1 557 51
 tmux 86.5 89.9 19 0
 curl 79.8 79.9 39 0
 libWebM 43.9 44.2 6 0

 memcached 96 96.2 25 0

*	average	time	of	Z3,	Boolector,	MathSAT,	Yices	and	CVC4.	

Average	1%	
slowdown	

Experimental Evaluation

•  In	total,	89	bugs	were	refuted	and	an	in-depth	analysis	
of	them	show	that	all	of	them	were	false	positives.	

•  The	average	time	to	analyze	the	projects	with	refuted	
bugs	was	35.0	seconds	faster,	a	6.25%	speed	up.		

•  Out	of	the	four	projects	where	no	bug	was	refuted	the	
analysis	was	1.0	second	slower	on	average:	a	1.24%	
slowdown.	

Experimental Evaluation

•  In	total,	89	bugs	were	refuted	and	an	in-depth	analysis	
of	them	show	that	all	of	them	were	false	positives.	

•  The	average	time	to	analyse	the	projects	with	refuted	
bugs	was	35.0	seconds	faster,	a	6.25%	speed	up.		

•  Out	of	the	four	projects	where	no	bug	was	refuted	the	
analysis	was	1.0	second	slower	on	average:	a	1.24%	
slowdown.	

Experimental Evaluation

•  In	total,	89	bugs	were	refuted	and	an	in-depth	analysis	
of	them	show	that	all	of	them	were	false	positives.	

•  The	average	time	to	analyse	the	projects	with	refuted	
bugs	was	35.0	seconds	faster,	a	6.25%	speed	up.		

•  Out	of	the	four	projects	where	no	bug	was	refuted	the	
analysis	was	1.0	second	slower	on	average:	a	1.24%	
slowdown.	

How do I run CSA on my
project?

DEMO	

Conclusions

•  The	technique	removes	from	0%	to	20%	bugs	in	
real-world	projects:	

•  Empirical	evidences	shows	that,	on	average,	50%	of	the	
bugs	reported	are	spurious.	

•  The	technique	only	incurs	in	a	small	overhead,	and	
can	actually	make	the	analysis	faster	in	a	number	of	
real-world	projects.	

•  Further	improvements	can	only	be	achieved	
through	cross	translation-unit	support	in	the	CSA.	

The future?

• D54978:	Move	the	SMT	API	to	LLVM:	
•  Part	of	the	clang	9.0.	

• Validation	of	optimizations	using	SMT:	
•  Already	done	in	the	ScalarEvolution	pass.	

• Maybe	an	SMT	backend	in	LLVM:	
•  Memory	handling?	
•  Loops?	

Acknowledgments

•  Thank	you	to:	
•  George	Karpenkov	
•  Artem	Dergachev	
•  Devin	Coughlin		
•  Anna	Zaks		
•  Réka	Kovács	
•  Dominic	Chen		
•  Gábor	Horváth	

Thank you!

• Me:	mikhail.ramalho@gmail.com	

•  Experiments:	
https://github.com/mikhailramalho/analyzer-projects		

• Clang	static	analyzer:	https://clang-analyzer.llvm.org/	

•  5	min	video:	
https://www.youtube.com/watch?v=ylW5iRYNsGA	

	

