
SMT-Based Refutation of Spurious Bug Reports
in the Clang Static Analyzer

Mikhail R. Gadelha1, Enrico Steffinlongo2, Lucas C. Cordeiro3, Bernd Fischer4, Denis A. Nicole2

m.gadelha@samsung.com
1Sidia Institute of Science and Technology 2University of Southampton 3University of Manchester 4Stellenbosch University

The Clang Static Analyser (CSA)
Consider the following program:

This program is safe, i.e., the unsafe pointer dereference in line 4 is
unreachable because the guard in line 3 is never holds; a & 1 holds if
the last bit in a is one, and (a & 1) ^ 1 inverts the last bit in a. The
clang static analyzer, however, produces the following (spurious) bug
report when analyzing the program:

Experimental evaluation

* The average time of Z3, Boolector, MathSAT, Yices and CVC4.

In total, 89 bugs were refuted and an in-depth analysis of them show that
all of them were false positives. The average time to analyze the projects
with refuted bugs was 35.0 seconds faster, a 6.25% speed up. Out of the
four projects where no bug was refuted the analysis was 1.0 second
slower on average: a 1.24% slowdown.

Thanks to George Karpenkov, Artem Dergachev, Devin Coughlin, Anna
Zaks, Réka Kovács, Dominic Chen and Gábor Horváth for the help
during the development of this project.

This project was developed as part of the Google Summer of Code 2018.

Static analysis with refutation

Such spurious bug reports are in practice common; in our experience,
about 50% of the reports in large systems are actually spurious.
Identifying spurious bug reports and refactoring the code to suppress
them puts a large burden on developers and runs the risk of introducing
actual bugs. Our refutation algorithm removes false bugs introduced by
the unsound constraint solver in the clang static analyzer.

bug
reports

SMT RefutationSource
Code

Static
Analyzer

SAT Bug
Reports

Z3

Boolector MathSAT

Yices CVC4

constraints
SAT/

UNSAT

1 unsigned int func(unsigned int a) {
2 unsigned int *z = 0;
3 if ((a & 1) && ((a & 1) ^ 1))
4 return *z;
5 return 0;
6 }

main.c:4:12: warning: Dereference of null pointer (loaded
from variable 'z')

return *z;
^~

1 warning generated.

Encoding path constraints in SMT

We developed an solution to prevent false bugs found by the unsound
constraint solver from being reported to the user: we use the more
precise SMT solvers to reason about bug reachability in the post
processing step. The clang static analyzer already has heuristics in place
to remove incorrect bug reports, so we extended those heuristics to
precisely encode the constraints in SMT and to check for satisfiability.

After the static analyzer generates the bug reports, the SMT-based
refutation extension will encode the bug constraints as SMT formulas and
check them for satisfiability. If the constraint are unsatisfiable, the bug is
false and no bug report is generated for that bug.

Projects time (s)
(no ref)

time (s)
(with ref)*

reported bugs
(no ref)

refuted
bugs

tmux 86.5 89.9 19 0
redis 347.8 338.3 93 1
openSSL 138 128 38 2
twin 225.6 216.7 63 1
git 488.7 405.9 70 11
PostgreSQL 1167.2 1112.4 196 6
SQLite3 1078.6 1058.4 83 15
curl 79.8 79.9 39 0
libWebM 43.9 44.2 6 0
Memcached 96 96.2 25 0
xerces-c++ 489.8 433.2 81 2
XNU 3441.7 3405.1 557 51
Total 7683.7 7408.5 1270 89

Extending the SMT solver support

We also developed a new generic SMT API which makes it easier to
support new solvers. The API is minimal and only requires the solver to
support quantifier-free bit-vector theories (QF_BV). In particular, the
clang static analyser already supported Z3 as a backend but we rewrote
it to use the new generic SMT API and the new backend was released
as part of clang v7.0. We also implemented support for four new
solvers: Boolector, Yices, MathSAT, and CVC4, but they are not part of
the mainstream clang yet.

The development of the generic SMT API opens the door for SMT
solvers in all LLVM projects: the SMT API is now part of the LLVM
project and can be used by any project under the LLVM umbrella.

Acknowledgements

Checkers

Constraint solver

constraints SAT/
UNSAT

clang
AST

bug
report

unsafe
path

	Slide Number 1

