UNIVERSITY OF
Southampton
School of Electronics

and Computer Science

SMT-based Bounded Model
Checking for Multi-threaded
Software in Embedded Systems

Supervisor: Dr. Bernd Fischer

Lucas Cordeiro
lccO8r@ecs.soton.ac.uk

RRRRRRRRRRRRR

Embedded systems are ubiquitous ~ Shamhon
but their verification becomes more difficult.

« functionality demanded increased significantly
— peer reviewing and testing

« multi-core processors with scalable shared memory
— but most verification tools focus on message passing

void *threadA(void *arg) { void *threadB(void *arg) {
lock(&mutex); lock(&mutex);
X++; y++;
if (x == 1) lock(&lock); A == 1) lock(&lock); (CS2)
unlock(&mutex); (CS1) Deadlock <ack(&mutex);
lock(&mutex); (CS3) K{ximutex);
X--3 y=3
if (x == 0) unlock(&lock); if (y == 0) unlock(&lock);
unlock(&mutex); unlock(&mutex);

b b

UUUUUUUUUUUU

Scalability and Precision 50535';}5:{}33355:“
in Bounded Model Checking for ANSI-C

111111111111111111111

 state space explosion problem
— exploit proof of unsatisfiability

— integrate POR with symbolic algorithms
— visible instruction and read-write analysis

 precision of arithmetic and bit-level operations

— use decision procedures of QF formulae with a more
accurate model of the ANSI-C semantics (SMT)
— combine different background theories and solvers

Can an algorithmic method reason accurately about
multi-threaded software in embedded systems by
controlling the verification complexity?

UNIVERSITY OF

SMT-based Verification Southampto

of Multi-threaded Software
#define N 10

Lazy exploration of interleavings inta[N],i,j=1, x=2;
void *Tx(void *arg) {
if (x>2) <
ali] = *((int *)arg); //XO0
assert(i>=0 && i<N); //X1

void *Ty(void *arg) {
if (x>3)
a[jl=*((int *)arg); //YO
else
=3; //Y1
After y

reduction int main(void) {
int argl=10, arg2=20;
i=nondet_uint();

Y1 X0 X1 //create Tx with argl
//create Ty with arg2
)

SMT-based Verification

of Multi-threaded Software

Schedulina Recording

tsi = |
| = ECS block number

TART_T HREAD)

j = thread identifier
. AU-:J:_:?"-......

ECS block 1™y

Tyl ts1==2
-z al =20,

= }{:3;

¥

ECS block 2" .
~ Y &
Tx1:151==2 &é& ts2==1

== alil=10;

) [END_THREF—RD]

v

-
Tx2 t51==2 && ts2==1
-z assert(i==0 && <N}

~

\ I A

EM D_THREAD]

—-> control-flow

\l! -..> effective context
switch (ECS)

Southampton

School of Electronics
and Computer Science

#define N 10
inta [N],i,]j=1, x=2;
void *Tx(void *arg) {
if (x>2){
ali] = *((int *)arg); //XO0
assert(i>=0 && i<N); //X1

b
b
void *Ty(void *arg) {
if (x>3)
aljl=*((int *)arg); //YO
else
X=3; //Y1
b

int main(void) {
int argl=10, arg2=20;
i=nondet_uint();
//create Tx with argl
//create Ty with arg2

}

UNIVERSITY OF

SMT-based Verification Southampton

of Multi-threaded Software |
#define N 10

Under-approximation & Widening inta [N],i,j=1, x=2;

void *Tx(void *arg) {
(START_THFEEADJ [START_THREAD) if (x>2) {

ly = (ts1 == 2) |((int ®arg); //X0
P >=0 && i<N); //X1

IX = (ts1 == 2) && (ts2==1)
IX -> ali] = 10 Y
IX -> assert(i>=0 && i<N) void *Ty(void *arg) {
ﬁ[TFTt::E J Ty2: ts1==2 if (X>3)

-> a[j[=20; [-> =3 J a[j]l=*((int *)arg); //YO
- = — T e = — else

F | ECS blocka .. X=3; //Y1
Tx1: t51::2 && t52==1 }
-> &[i]=10;) [END_THREAD) int main(void) {
r 1 . int arg1=10, arg2=20;
T2 ts1==2 && ts2==1 i=nondet_uint();
| > assert(i>=0 && i<N), | —> control-flow //create 'ITX Wit(l”)l argl
v 3> effective context //create Ty with arg2

END_THREAD] switch (ECS) \

RRRRRRRRRRRRR

Experimental Evaluation

 described and evaluated SMT-based BMC in large
embedded software

— SMT-based BMC is more efficient than SAT-based
BMC (but not uniformly)

— introduced continuous verification for large systems

 evaluated the UW, schedule recording, and lazy
approaches

— add concurrency constraints lazily
— extremely fast for satisfiable instances

— memory overhead and slowdowns to extract the
unsatisfiable cores

UUUUUUUUUUUU

R e S u I ts and Computer Science

 built and evaluated first SMT-based BMC for ANSI-C
« UW, lazy and schedule recording algorithms

* Iintroduced continuous verification approach

e Users.ecs.soton.ac.uk/1ccO08r/esbmc/

Future Work

 partial order reduction (static and dynamic)
 data races detection (compatibility with compiler)
« Craig interpolation to generate threads scheduling

