
SMT-based Bounded Model

Checking for Multi-threaded

Software in Embedded Systems

Supervisor: Dr. Bernd Fischer

Lucas Cordeiro

lcc08r@ecs.soton.ac.uk

Embedded systems are ubiquitous
but their verification becomes more difficult.

• functionality demanded increased significantly

– peer reviewing and testing

• multi-core processors with scalable shared memory

– but most verification tools focus on message passing

void *threadA(void *arg) {
lock(&mutex);
x++;
if (x == 1) lock(&lock);
unlock(&mutex);
lock(&mutex);
x--;
if (x == 0) unlock(&lock);
unlock(&mutex);

}

void *threadB(void *arg) {
lock(&mutex);
y++;
if (y == 1) lock(&lock);
unlock(&mutex);
lock(&mutex);
y--;
if (y == 0) unlock(&lock);
unlock(&mutex);

}

(CS1)

(CS2)

(CS3)
Deadlock

Scalability and Precision
in Bounded Model Checking for ANSI-C

• state space explosion problem

– exploit proof of unsatisfiability

– integrate POR with symbolic algorithms

→ visible instruction and read-write analysis

• precision of arithmetic and bit-level operations

– use decision procedures of QF formulae with a more
accurate model of the ANSI-C semantics (SMT)

→ combine different background theories and solvers

Can an algorithmic method reason accurately about

multi-threaded software in embedded systems by

controlling the verification complexity?

SMT-based Verification
of Multi-threaded Software

#define N 10
int a [N] , i , j =1, x=2;
void *Tx(void *arg) {
if (x>2) {
a[i] = *((int *)arg); //X0
assert(i>=0 && i<N); //X1

}
}
void *Ty(void *arg) {
if (x>3)
a[j]=*((int *)arg); //Y0

else
x=3; //Y1

}
int main(void) {
int arg1=10, arg2=20;
i=nondet_uint();
//create Tx with arg1
//create Ty with arg2

}

Lazy exploration of interleavings

After

reduction

X0

X0

X1
Y0

Y0

X0 X1Y1

X1

Y1

X0 X1Y1

SMT-based Verification
of Multi-threaded Software

Scheduling Recording
#define N 10
int a [N] , i , j =1, x=2;
void *Tx(void *arg) {
if (x>2) {
a[i] = *((int *)arg); //X0
assert(i>=0 && i<N); //X1

}
}
void *Ty(void *arg) {
if (x>3)
a[j]=*((int *)arg); //Y0

else
x=3; //Y1

}
int main(void) {
int arg1=10, arg2=20;
i=nondet_uint();
//create Tx with arg1
//create Ty with arg2

}

tsi = j
i = ECS block number
j = thread identifier

SMT-based Verification
of Multi-threaded Software

Under-approximation & Widening
#define N 10
int a [N] , i , j =1, x=2;
void *Tx(void *arg) {
if (x>2) {
a[i] = *((int *)arg); //X0
assert(i>=0 && i<N); //X1

}
}
void *Ty(void *arg) {
if (x>3)
a[j]=*((int *)arg); //Y0

else
x=3; //Y1

}
int main(void) {
int arg1=10, arg2=20;
i=nondet_uint();
//create Tx with arg1
//create Ty with arg2

}

ly = (ts1 == 2)
ly -> x=3lx = (ts1 == 2) && (ts2==1)

lx -> a[i] = 10
lx -> assert(i>=0 && i<N)

Experimental Evaluation

• described and evaluated SMT-based BMC in large

embedded software

– SMT-based BMC is more efficient than SAT-based

BMC (but not uniformly)

– introduced continuous verification for large systems

• evaluated the UW, schedule recording, and lazy

approaches

– add concurrency constraints lazily

→ extremely fast for satisfiable instances

– memory overhead and slowdowns to extract the

unsatisfiable cores

Results

Future Work

• partial order reduction (static and dynamic)

• data races detection (compatibility with compiler)

• Craig interpolation to generate threads scheduling

• built and evaluated first SMT-based BMC for ANSI-C

• UW, lazy and schedule recording algorithms

• introduced continuous verification approach

• users.ecs.soton.ac.uk/lcc08r/esbmc/users.ecs.soton.ac.uk/lcc08r/esbmc/users.ecs.soton.ac.uk/lcc08r/esbmc/users.ecs.soton.ac.uk/lcc08r/esbmc/

