Southampton

School of Electronic
and Computer Science

=53 Pependable Sysiems & Software Engineering

Formal Verification of Embedded
Software in Medical Devices Considering
Stringent Hardware Constraints

L. Cordeiro, B. Fischer, H. Chen, J. P. Marques-Silva

Lucas Cordeiro
lccO8r@ecs.soton.ac.uk

UNIVERSITY OF

Southampto

School of Electronics
g e n a and Computer Science

{ e Introduction J

e Formal Verification Methodology
e Case Study and Experimental Results

e Conclusions and Future Work

UNIVERSITY OF

Southampton

School of Electronics

Introduction

e Design HW/SW that implements functionalities and satisfies
constraints.
Allocation, Partition, and Refinement

System-Design and
Verification Tasks

:> Software Hardware
Interface

Evolving system’s j vy
.. . n B L+
specification e

Specification

Identify market needs Time-to-market Product

®* The complexity of ESW increased in embedded products

UNIVERSITY OF

Southampton

Platform-Based Design o

®* Design methodologies looks for solutions to reduce time-
to-market, manufacturing and design costs.

Reuse and programmability Multicore

Reference Applications

c Platform API

“% Operating System

® | DeviceDrivers |
Hardware

ASICs
e The size of ESW is increasing to millions of LOC.

® Software builds are produced on a weekly or daily basis.

UNIVERSITY OF

Southampto

Verification Methodologies and st
Challenges

e State-of-the-art ESW verification methodologies aim to:

i. Generate test vectors (with constraints)
ii. Use assertion-based verification
iii. Use the high-level processor model during simulation

® \erification of embedded systems raises some additional
challenges:

i.Meet the timing constraints

ii.Handle software concurrency

iii. Platform-dependent software

iv.Legacy designs (written in low-level languages)

UNIVERSITY OF

Southampton

School of Electronics

Objective of this work

e Improve coverage and reduce verification time by
combining static and dynamic verification.

Verification Techniques

[
| Embedded Software Simulation
Specification :> , <::
P Microprocessor Formal Verification
model

-
T 1

<: <Coverage>‘~i Improve

Bounded Model Checking

UNIVERSITY OF

Southampto

School of Electronics
and Computer Science

e The basic idea of BMC is to check the negation of a given
property @ at a given depth.

e Given a transition system M, a property ¢ and a bound k:

Initial

state \

\
g ¢ L ¢ [¢
O » O O O —
So S1 S2 Sk-1

/ Property

Counter-example tracej

* BMC unrolls the design k times and translates it into a
verification condition ¢ such that @ is satisfiable iff ¢ has
a counter-example of depth less than or equal to k.

UNIVERSITY OF

Southampton

Predicate Abstraction oo

e It abstracts data by only keeping track of certain
predicates to represent the data.

Initial Abstraction Verification
C/C++ Concurrent P '
Program ——s Boolean —_y| Model roperty
with threads Program Checker holds
Framework Refinement Spurious: -> found
1

e Conservative approach reduces the state space, but
generates spurious counter-examples.

UNIVERSITY OF

Southampto

School of Electronics
g e n a and Computer Science

e Introduction

[- Formal Verification Methodology J

e Case Study and Experimental Results

e Conclusions and Future Work

UNIVERSITY OF

Southampton

Verification Methodology gt

Consider not only higher levels of abstraction, but also the
HW/SW interface.

Evolving and

4 ! rioritizin
Reflect about the : ! P g queue
\ Unit and Product of requirements.
design, coverage Functional Backlog g
and redu;e the Tests
cyclomatic
i Q
_complexity. 2
E Eg“?fdded 2 CTL, RTCTL, LTL]
oftware
x Property and PSL.
o Microprocessor Description
c Model
S
© v
BMC, predicate | Encode model and property |
abstraction, — !
BDDs. ! Decision Procedure i

Model checker

UNIVERSITY OF

Southampton

Proposed Approach S

* In complex embedded systems, there will be modules
that depend on the hardware and others that do not.

CPU model, S <JA —_ ~
simulator and rray bounds,
Interruptions J Hardware Software arithmetic

generation overflow, pointer
safety, division
by zero

2nd phase:
Platform
dependent code

/

Jlst phase:

Platform
independent
code

System Boundary

Domain-level

[Brd phase:

* To reason about temporal properties to assure the
correctness and timeliness of the design.

UNIVERSITY OF

Southampton

Platform-Independent Software Ep—
Verification

* Implement small changes in the ESW to be able to:

i. Use model checkers;
ii. Perform automated unit tests;
iii. Run the ESW on the target platform.

* Include the platform-dependent software in lower level
driver files:

— i 7 ep_sensor.c Embedded
SEensor.c ep_sensor.h Platform

sensor.h i B
\\ PC_SEensor.c } PC platform

pc_sensor.h

———
-

Platform-independent software Platform-dependent software

UNIVERSITY OF

Southampton

Platform-Independent Software
Verification

* We separate into two software classes: pure and driven
by the environment.

! sensorTest Sensor

The TCs aim
to improve
the code
coverage

Achieve full

4

Serial path and state
i . coverage
Communication
SATABS
Replace the
explicit input

= i . X i 1 K
values with non- a=nondet_int(); /*assign arbitrary values*/

deterministic
inputs

assume(a>10 && a<200); /* constrain the values*/

UNIVERSITY OF

Southampton

Platform-Dependent Software samrons
Verification

* Specify properties based on C’s assert macro using the
microprocessor model.

Fml ::= Fml con Fml | ~Fml | Atm
con ::= AND | OR | XOR
Atm ::= Trm rel Trm | true | false

Exan_mne the call stack rel ii=<|<=|>]|>=|=]!=
and interpret the Trm := var | const
counterexample T

O
0

struct module_tc {
[Hold the ——b— unsigned int tlO; (Change the

state of the
registers in the
verilog model

.

value of tI0 J/)
register extern struct module_tc oc8051_}

0c8051_tc.tIo=TLOW;
[Load timer j7 for(cycle=0; cycle<n; cycle++)

register next_timeframe(); Check
assert(oc8051_tc.tl0==Y); user-specified

assertions

UNIVERSITY OF

Southampton

Domain-Level Verification i

We use RTCTL to specify properties that involve time bounds.

B
\5 ——> Sensor > compute

HR and Sp0O2

T={t00m<t<n} n

compute_expr :: MIN [rtctl_expr, rtctl_expr] (shortest path)
| MAX [rtctl_expr, rtctl_expr] (longest path) o

rtctl_expr :: EBF m..n p| ABF m..n p| EBG m..n p| ABG m..np

|E[pUm..nq] |A[pUm.nq]
.00

Log system
Ti mer Conponent Function: Fil enane(li ne)
12320 c LCD -> LCD Driver _InitMdule: |cd class driver.c(85)
12789 ¢ LCD -> LCD WiteData: |cd class driver.c(90)
13452 ¢ LCD -> LCD InterfaceDescriptor: lcd class_ interface.c(102)
14216 c LCD -> LCD InterfaceContext Create: lcd class interface.c(18)
14834 ¢ LCD -> LCD.initialize: lcd class_interface.c(80)

UNIVERSITY OF

Southampton

School of Electronics
n ra S r u c u r e and Computer Science

Check
Modifications

CruiseControl

SCM < .
Subversion Send .

feedback -

Scheduled
Builds _.\& _,-
|_,___|
Isnvoke Build CruiseControl
ystem Build Console

If build process

returns OK, generate
and flash the file

—
l

Build Environment

Verification —» Embedded Unit

embUnit

Developer \ Libraries

Environment Reports with all
metrics generated
; after the build
process

o _
Bﬁ?l?:ls Local 2 é W

UNIVERSITY OF

Southampto

School of Electronics
g e n a and Computer Science

e Introduction

e Formal Verification Methodology

[- Case Study and Experimental Results }

e Conclusions and Future Work

UNIVERSITY OF

Southampton

Medical Device Case Study T

* The pulse oximeter measures the oxygen saturation and
cardiac frequency.

i. Show SpO2 and HR on each l
second. L
ii. Change the alarm configuration. | '

iii. User interface (keyboard and a
graphical display).

iv. The design is highly optimized for S
life-cycle cost and effectiveness. -

* Typical of many embedded real-time systems.

UNIVERSITY OF

Southampton

Formal Verification using samrons
Model Checking

* How many bugs can you find in this ANSI-C code
fragment? (the compiler compiles it without errors)

#define BUFFER_MAX 6400

typedef int Data8;
typedef unsigned int uData8;

static char buffer[BUFFER_MAX];
static Data8 next=0;
static uData8 buffer_size=BUFFER_MAX; [First bug: the array w
buffer_is a char data
void insertLogElement(Data8 b) { typ | A
if (next < buffer_size) { =) Sedend bugt here (5 &
buffer[next] — b typ¢ division by zero in
g t+1)%buff [
next = (next+1)%buffer_size; STESTE oo TSl Slris

/

(pre-production code)

Model Checking with NuSMV2

UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

NuSMV2 accepts models in NuSMV language and system
properties in CTL, Real-Time CTL, LTL and PSL.

Property (a): ensure that the buffer does not overflow.

MODULE log
VAR
[buffer_size : 0..255;]
nextptr : 0..255;
DEFINE
nextptr_condition
ASSIGN
init(nextptr) := 0;
next(nextptr) := case

: = nextptr < buffersize;

NuSMV?2 found a division
by zero and a typecast
overflow.

nextptr = nextptr_condition|& buffer_size > 0

Ensure that on all N

:((nextptr+1) mod buffer_size);
1 : nextptr;
esac;
PSLSPEC AG (nextptr <= buffer_size)

/«@oms D

paths, at all
states on each
path the formula

UNIVERSITY OF

Southampto

Specifying Complex Properties sttt
in CBMC and SATABS

* We specified property (b) in LTL and translated it into
Buechi Automata.

Property (b): check the data flow to compute the HR
value provided by the pulse oximeter sensor hardware.

* Property (b) can be expressed as:
AG(p . Fr)

* Let p denote the state that the buffer contains HR. Let r
denote the state that defines the respective HR value.

* Any state containing the HR raw data is eventually
followed by a state representing the respective HR value.

UNIVERSITY OF

Southampto

Specifying Complex Properties i
in CBMC and SATABS

Example:
switch (state) {
case TO_init:
AG(p - Fr) —> 1 > break:

case accept_S1.:

break:

Property in LTL Buechi Automata C code

UNIVERSITY OF

Southampton

Experimental Results et

* The pulse oximeter ESW contains approximately 3500
lines of ANSI-C cd_Fretphase: onebugrelared
First phase: one bug

related to pointer safety 5 Dynamic Verification
4 Third phase: one bug SMV?2 EmbUnit
Module P _ related to timina constraints [Eries V.T.(s) | Test Cases V.T. (us)
MenuApp 7| . : 03 24 62 130
Sensor 224 First phase: one bug related |, 37 1 403
LCD 27 to division by zero and g 4.1 6 6
Serial 5 another bug related to 8 46 5 8
Timer) typecast overflow 7 4.9 7 2
Kf}:hﬂﬂfd 1 L¥ v T L v 15 4.8].ﬂ].g
Log 14 2 6 1 4 54 10 48
Total 310 33.04 662 134.06 106 319 139 625

* The most relevant related work verified dynamically ESW
from automotive domain with approximately 3000 lines of
C code in 34388 seconds (~9 h) using SystemC models
[Lettnin’08].

UNIVERSITY OF

Southampton

Conclusions and Future Work e

e We have combined static and dynamic verification for
“pure” and hardware-related embedded software.

e Test driven development helps reduce the cyclomatic
complexity and alleviates the state explosion problem.

e The proposed methodology allowed us to find
undiscovered bugs.

e We intend to verify formally ANSI-C and SystemVerilog
using SAT Modulo Theories solvers.

e We aim at defining a subset of Real-Time CTL and PSL
to verify more complex properties in embedded software.

