
Formal Verification of Embedded
Software in Medical Devices Considering

Stringent Hardware Constraints

Lucas Cordeiro
lcc08r@ecs.soton.ac.uk

L. Cordeiro, B. Fischer, H. Chen, J. P. Marques-Silva

• Introduction

• Formal Verification Methodology

• Case Study and Experimental Results

Agenda

• Conclusions and Future Work

Introduction

• Design HW/SW that implements functionalities and satisfies
constraints.

Specification

System-Design and
Verification Tasks

Allocation, Partition, and Refinement

Software Hardware
Specification

Software Hardware

Interface

Evolving system’s
specification

Time-to-marketIdentify market needs Product

• The complexity of ESW increased in embedded products

Platform-Based Design

• Design methodologies looks for solutions to reduce time-
to-market, manufacturing and design costs.

Multicore

Platform API

Reference Applications

P
la

tf
o
rm

Reuse and programmability

ASICs

Hardware

Device Drivers

Operating System

P
la

tf
o
rm

• The size of ESW is increasing to millions of LOC.

• Software builds are produced on a weekly or daily basis.

Verification Methodologies and
Challenges

• State-of-the-art ESW verification methodologies aim to:

i. Generate test vectors (with constraints)
ii. Use assertion-based verification
iii.Use the high-level processor model during simulation

• Verification of embedded systems raises some additional • Verification of embedded systems raises some additional
challenges:

i.Meet the timing constraints
ii.Handle software concurrency
iii.Platform-dependent software
iv.Legacy designs (written in low-level languages)

Objective of this work

• Improve coverage and reduce verification time by
combining static and dynamic verification.

Specification

Embedded Software

Microprocessor

Simulation

Verification Techniques

Specification
Microprocessor

model
Formal Verification

Coverage Improve

Combine

Bounded Model Checking

• The basic idea of BMC is to check the negation of a given
property φ at a given depth.

• Given a transition system M, a property φ and a bound k:

¬φ ¬φ ¬φ ¬φ ¬φ∨ ∨ ∨ ∨
Initial

Property

• BMC unrolls the design k times and translates it into a
verification condition ψ such that ψ is satisfiable iff φ has
a counter-example of depth less than or equal to k.

. . .
s0 s1 s2 sk-1 sk

¬φ ¬φ ¬φ ¬φ ¬φ

Counter-example trace

∨ ∨ ∨ ∨
Initial
state

Bound

• It abstracts data by only keeping track of certain
predicates to represent the data.

Predicate Abstraction

C/C++
Program

with threads

Concurrent
Boolean
Program

Model
Checker

VerificationInitial Abstraction

Property
holdswith threads Program

Spurious?
Bug
found

Refinement

• Conservative approach reduces the state space, but
generates spurious counter-examples.

CEGAR
Framework

• Introduction

• Formal Verification Methodology

• Case Study and Experimental Results

Agenda

• Conclusions and Future Work

Verification Methodology

Consider not only higher levels of abstraction, but also the
HW/SW interface.

Evolving and
prioritizing queue
of requirements.

Reflect about the
design, coverage
and reduce the
cyclomatic
complexity.

Unit and
Functional

Tests

Product
Backlog

e
x
a
m

p
lecomplexity.

CTL, RTCTL, LTL
and PSL.

Embedded
Software

Microprocessor
Model

Property
Description

Encode model and property

Decision Procedure

C
o
u
n
te

r-
e
x
a
m

p
le

Model checker

BMC, predicate
abstraction,
BDDs.

Proposed Approach

• In complex embedded systems, there will be modules
that depend on the hardware and others that do not.

2nd phase:
Platform
dependent code

Hardware Software

CPU model,
simulator and
interruptions
generation

Array bounds,
arithmetic
overflow, pointer
safety, division
by zero

dependent code

1st phase:
Platform
independent
code

System Boundary

• To reason about temporal properties to assure the
correctness and timeliness of the design.

by zero

3rd phase:
Domain-level

Platform-Independent Software
Verification

• Implement small changes in the ESW to be able to:

i. Use model checkers;
ii. Perform automated unit tests;
iii. Run the ESW on the target platform.

• Include the platform-dependent software in lower level• Include the platform-dependent software in lower level
driver files:

sensor.c
sensor.h

ep_sensor.c
ep_sensor.h

pc_sensor.c
pc_sensor.h

Platform-dependent softwarePlatform-independent software

Embedded
Platform

PC platform

Platform-Independent Software
Verification

• We separate into two software classes: pure and driven
by the environment.

The TCs aim

sensorTest Sensor

EmbUni
t

The TCs aim
to improve
the code
coverage

Sensor
data

Serial
Communication

Replace the
explicit input
values with non-
deterministic
inputs

Achieve full
path and state
coverage

a=nondet_int(); /*assign arbitrary values*/

assume(a>10 && a<200); /* constrain the values*/

SATABS

Platform-Dependent Software
Verification

• Specify properties based on C’s assert macro using the
microprocessor model.

Fml ::= Fml con Fml | ~Fml | Atm
con ::= AND | OR | XOR
Atm ::= Trm rel Trm | true | false
rel ::= < | <= | > | >= | = | !=
Trm := var | const

Examine the call stack
and interpret the
counterexample

CBMC

struct module_tc {
unsigned int tl0;

}
extern struct module_tc oc8051_tc;
oc8051_tc.tl0=TLOW;
for(cycle=0; cycle<n; cycle++)

next_timeframe();
assert(oc8051_tc.tl0==Y);
…

Load timer
register

Change the
state of the
registers in the
verilog model

Check
user-specified
assertions

Trm := var | const
and interpret the
counterexample

Hold the
value of tl0
register

CBMC

Domain-Level Verification

We use RTCTL to specify properties that involve time bounds.

Sensor
Compute

HR and SpO2

m n

compute_expr :: MIN [rtctl_expr , rtctl_expr] (shortest path)

}{ ntmtT ≤≤ℵ∈=

NuSMV2

Log system

12320 c_LCD -> LCD_Driver_InitModule: lcd_class_driver.c(85)
12789 c_LCD -> LCD_WriteData: lcd_class_driver.c(90)
13452 c_LCD -> LCD_InterfaceDescriptor: lcd_class_interface.c(102)
14216 c_LCD -> LCD_InterfaceContext_Create: lcd_class_interface.c(18)
14834 c_LCD -> LCD_initialize: lcd_class_interface.c(80)

Timer Component Function:Filename(line)

compute_expr :: MIN [rtctl_expr , rtctl_expr] (shortest path)

| MAX [rtctl_expr , rtctl_expr] (longest path)

rtctl_expr :: EBF m..n p| ABF m..n p| EBG m..n p| ABG m..n p
| E [p U m..n q] | A [p U m..n q]

NuSMV2

Simulation

Infrastructure

Check
Modifications

Send
feedback

CruiseControl

Invoke Build
System

CruiseControl
Build Console

SCM

Subversion

Scheduled
Builds

If build process

Embedded Unit

embUnit

Libraries

Build Environment

make

Reports with all
metrics generated

after the build
process

Local
Developer
Environment

Local
Builds

If build process
returns OK, generate

and flash the file

Verification

Libraries

• Introduction

• Formal Verification Methodology

• Case Study and Experimental Results

Agenda

• Conclusions and Future Work

Medical Device Case Study

i. Show SpO2 and HR on each
second.

ii. Change the alarm configuration.

• The pulse oximeter measures the oxygen saturation and
cardiac frequency.

iii.User interface (keyboard and a
graphical display).

iv. The design is highly optimized for
life-cycle cost and effectiveness.

• Typical of many embedded real-time systems.

Formal Verification using
Model Checking

• How many bugs can you find in this ANSI-C code
fragment? (the compiler compiles it without errors)

#define BUFFER_MAX 6400

typedef int Data8;
typedef unsigned int uData8;

static char buffer[BUFFER_MAX];
static Data8 next=0;
static uData8 buffer_size=BUFFER_MAX;

void insertLogElement(Data8 b) {
if (next < buffer_size) {

buffer[next] = b;
next = (next+1)%buffer_size;

}

First bug: the array
buffer is a char data
type and the element b
is a signed integer data
type (i.e., typecast
overflow might occur)

Second bug: there is a
division by zero in
(next+1)%buffer_size

(pre-production code)

Model Checking with NuSMV2

NuSMV2 accepts models in NuSMV language and system
properties in CTL, Real-Time CTL, LTL and PSL.

MODULE log
VAR

buffer_size : 0..255;
nextptr : 0..255;

NuSMV2 found a division
by zero and a typecast
overflow.

Property (a): ensure that the buffer does not overflow.

nextptr : 0..255;
DEFINE

nextptr_condition := nextptr < buffersize;
ASSIGN

init(nextptr) := 0;
next(nextptr) := case
nextptr = nextptr_condition & buffer_size > 0

:((nextptr+1) mod buffer_size);
1 : nextptr;
esac;

PSLSPEC AG (nextptr <= buffer_size)

Ensure that on all
paths, at all
states on each
path the formula
holds

overflow.

Specifying Complex Properties
in CBMC and SATABS

• We specified property (b) in LTL and translated it into
Buechi Automata.

Property (b): check the data flow to compute the HR
value provided by the pulse oximeter sensor hardware.

•• Property (b) can be expressed as:

()FrpAG →

• Let p denote the state that the buffer contains HR. Let r
denote the state that defines the respective HR value.

• Any state containing the HR raw data is eventually
followed by a state representing the respective HR value.

Specifying Complex Properties
in CBMC and SATABS

()FrpAG →

Example:

…
switch (state) {

case T0_init:
…
break;

Property in LTL Buechi Automata

() break;
case accept_S1:

…
break;

…
}
…

C code

Experimental Results

• The pulse oximeter ESW contains approximately 3500
lines of ANSI-C code and 80 functions.First phase: one bug related

to array bounds.
Some inconsistencies in

relation to the requirements
specification

First phase: one bug
related to pointer safety
Third phase: one bug

related to timing constraints
First phase: one bug related

to division by zero and

• The most relevant related work verified dynamically ESW
from automotive domain with approximately 3000 lines of
C code in 34388 seconds (~9 h) using SystemC models
[Lettnin’08].

another bug related to
typecast overflow

Conclusions and Future Work

• We have combined static and dynamic verification for
“pure” and hardware-related embedded software.

• Test driven development helps reduce the cyclomatic
complexity and alleviates the state explosion problem.

• The proposed methodology allowed us to find • The proposed methodology allowed us to find
undiscovered bugs.

• We intend to verify formally ANSI-C and SystemVerilog
using SAT Modulo Theories solvers.

• We aim at defining a subset of Real-Time CTL and PSL
to verify more complex properties in embedded software.

