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Introduction

• Design HW/SW that implements functionalities and satisfies 
constraints.
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• The complexity of ESW increased in embedded products



Platform-Based Design

• Design methodologies looks for solutions to reduce time-
to-market, manufacturing and design costs. 
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• The size of ESW is increasing to millions of LOC.

• Software builds are produced on a weekly or daily basis.



Verification Methodologies and 
Challenges

• State-of-the-art ESW verification methodologies aim to:

i. Generate test vectors (with constraints)
ii. Use assertion-based verification
iii.Use the high-level processor model during simulation

• Verification of embedded systems raises some additional • Verification of embedded systems raises some additional 
challenges:

i.Meet the timing constraints
ii.Handle software concurrency
iii.Platform-dependent software
iv.Legacy designs (written in low-level languages)



Objective of this work

• Improve coverage and reduce verification time by 
combining static and dynamic verification.

Specification

Embedded Software

Microprocessor 

Simulation

Verification Techniques

Specification
Microprocessor 

model
Formal Verification

Coverage Improve

Combine



Bounded Model Checking

• The basic idea of BMC is to check the negation of a given 
property φ at a given depth.

• Given a transition system M, a property φ and a bound k:

¬φ ¬φ ¬φ ¬φ ¬φ∨ ∨ ∨ ∨
Initial

Property

• BMC unrolls the design k times and translates it into a 
verification condition ψ such that ψ is satisfiable iff φ has 
a counter-example of depth less than or equal to k.
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• It abstracts data by only keeping track of certain
predicates to represent the data.

Predicate Abstraction
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• Conservative approach reduces the state space, but 
generates spurious counter-examples.
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Verification Methodology

Consider not only higher levels of abstraction, but also the 
HW/SW interface. 
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complexity.
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Proposed Approach

• In complex embedded systems, there will be modules
that depend on the hardware and others that do not.

2nd phase: 
Platform 
dependent code
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• To reason about temporal properties to assure the 
correctness and timeliness of the design.
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Platform-Independent Software 
Verification

• Implement small changes in the ESW to be able to:

i. Use model checkers;
ii. Perform automated unit tests;
iii. Run the ESW on the target platform.

• Include the platform-dependent software in lower level• Include the platform-dependent software in lower level
driver files:

sensor.c
sensor.h

ep_sensor.c
ep_sensor.h

pc_sensor.c
pc_sensor.h

Platform-dependent softwarePlatform-independent software
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Platform-Independent Software 
Verification

• We separate into two software classes: pure and driven
by the environment.

The TCs aim 

sensorTest Sensor

EmbUni
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the code 
coverage
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a=nondet_int( ); /*assign arbitrary values*/

assume(a>10 && a<200); /* constrain the values*/

SATABS



Platform-Dependent Software
Verification

• Specify properties based on C’s assert macro using the 
microprocessor model.

Fml ::= Fml con Fml | ~Fml | Atm
con  ::= AND | OR | XOR
Atm ::= Trm rel Trm | true | false
rel   ::= < | <= | > | >= | = | !=
Trm := var | const

Examine the call stack 
and interpret the 
counterexample

CBMC

struct module_tc {
unsigned int tl0;

}
extern struct module_tc oc8051_tc;
oc8051_tc.tl0=TLOW;
for(cycle=0; cycle<n; cycle++)

next_timeframe();
assert(oc8051_tc.tl0==Y);
…

Load timer 
register

Change the 
state of the 
registers in the 
verilog model

Check 
user-specified 
assertions

Trm := var | const
and interpret the 
counterexample

Hold the 
value of tl0 
register

CBMC



Domain-Level Verification

We use RTCTL to specify properties that involve time bounds.

Sensor
Compute

HR and SpO2

m n

compute_expr :: MIN [ rtctl_expr , rtctl_expr ] (shortest path)

}{ ntmtT ≤≤ℵ∈=  

NuSMV2

Log system

12320 c_LCD  ->  LCD_Driver_InitModule: lcd_class_driver.c(85)
12789 c_LCD  ->  LCD_WriteData: lcd_class_driver.c(90)
13452 c_LCD  ->  LCD_InterfaceDescriptor: lcd_class_interface.c(102)
14216   c_LCD  ->  LCD_InterfaceContext_Create: lcd_class_interface.c(18)
14834 c_LCD  ->  LCD_initialize: lcd_class_interface.c(80)

Timer Component Function:Filename(line)

compute_expr :: MIN [ rtctl_expr , rtctl_expr ] (shortest path)

| MAX [ rtctl_expr , rtctl_expr ] (longest path)

rtctl_expr :: EBF m..n p| ABF m..n p| EBG m..n p| ABG m..n p 
| E [p U m..n q] | A [p U m..n q]

NuSMV2

Simulation



Infrastructure
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Medical Device Case Study

i. Show SpO2 and HR on each 
second.

ii. Change the alarm configuration.

• The pulse oximeter measures the oxygen saturation and 
cardiac frequency.

iii.User interface (keyboard  and a 
graphical display).

iv. The design is highly optimized for 
life-cycle cost and effectiveness.

• Typical of many embedded real-time systems.



Formal Verification using 
Model Checking

• How many bugs can you find in this ANSI-C code 
fragment? (the compiler compiles it without errors)

#define BUFFER_MAX 6400

typedef int Data8;
typedef unsigned int uData8;

static char buffer[BUFFER_MAX];
static Data8 next=0;
static uData8 buffer_size=BUFFER_MAX;

void insertLogElement(Data8 b) {
if (next < buffer_size) {

buffer[next] = b;
next = (next+1)%buffer_size;

}

First bug: the array 
buffer is a char data 
type and the element b 
is a signed integer data 
type (i.e., typecast 
overflow might occur)

Second bug: there is a 
division by zero in 
(next+1)%buffer_size

(pre-production code)



Model Checking with NuSMV2

NuSMV2 accepts models in NuSMV language and system 
properties in CTL, Real-Time CTL, LTL and PSL.

MODULE log
VAR

buffer_size : 0..255;
nextptr : 0..255;

NuSMV2 found a division 
by zero and a typecast 
overflow.

Property (a): ensure that the buffer does not overflow.

nextptr : 0..255;
DEFINE

nextptr_condition := nextptr < buffersize;
ASSIGN

init(nextptr) := 0;
next(nextptr) := case
nextptr = nextptr_condition & buffer_size > 0

:((nextptr+1) mod buffer_size);
1 : nextptr;
esac;

PSLSPEC AG (nextptr <= buffer_size)

Ensure that on all 
paths, at all 
states on each 
path the formula 
holds

overflow.



Specifying Complex Properties 
in CBMC and SATABS

• We specified property (b) in LTL and translated it into 
Buechi Automata. 

Property (b): check the data flow to compute the HR 
value provided by the pulse oximeter sensor hardware. 

•• Property (b) can be expressed as: 

( )FrpAG →

• Let p denote the state that the buffer contains HR. Let r 
denote the state that defines the respective HR value.

• Any state containing the HR raw data is eventually 
followed by a state representing the respective HR value.



Specifying Complex Properties 
in CBMC and SATABS

( )FrpAG →

Example:

…
switch (state) {

case T0_init:
…
break;

Property in LTL Buechi Automata

( ) break;
case accept_S1:

…
break;

…
}
…

C code



Experimental Results

• The pulse oximeter ESW contains approximately 3500
lines of ANSI-C code and 80 functions.First phase: one bug related 

to array bounds.
Some inconsistencies in 

relation to the requirements 
specification

First phase: one bug 
related to pointer safety
Third phase: one bug 

related to timing constraints
First phase: one bug related 

to division by zero and 

• The most relevant related work verified dynamically ESW 
from automotive domain with approximately 3000 lines of 
C code in 34388 seconds (~9 h) using SystemC models 
[Lettnin’08].

another bug related to 
typecast overflow



Conclusions and Future Work

• We have combined static and dynamic verification for 
“pure” and hardware-related embedded software.

• Test driven development helps reduce the cyclomatic 
complexity and alleviates the state explosion problem.

• The proposed methodology allowed us to find • The proposed methodology allowed us to find 
undiscovered bugs.

• We intend to verify formally ANSI-C and SystemVerilog 
using SAT Modulo Theories solvers.

• We aim at defining a subset of Real-Time CTL and PSL
to verify more complex properties in embedded software.


