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Objectives 

Establish trust in verification results for digital systems 

●  Propose a format to represent the counterexamples that can be used by 
any verifier 

●  Reproduce counterexamples that refute properties related to limit cycle, 
overflow, stability and minimum-phase 

●  Validate a set of intricate counterexamples for digital controllers used in a 
real quadrotor attitude system 
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DSVerifier Counterexample Format

●  A counterexample is a trace that shows that a given property does not 

hold in the model represented by a state transition system 

Property = LIMIT_CYCLE 

Numerator  = { 2002, -4000, 1998 } 

Denominator  = { 1, 0, -1 } 

X_Size = 10 

Sample_Time = 0.001 

Implementation = <13,3> 

Numerator (fixed-point) = { 2002, -4000, 1998 } 

Denominator (fixed-point) = { 1, 0, -1 } 

Realization = DFI 

Dynamical_Range = { -1, 1 } 

Initial_States = { -0.875, 0, -1 } 

Inputs = { 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5} 

Outputs = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1} 
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DSVerifier Counterexample Format

●  A counterexample is a trace that shows that a given property does not 

hold in the model represented by a state transition system 

Property = OVERFLOW
Numerator  = { 2002, -4000, 1998 }
Denominator  = { 1, 0, -1 }
X_Size = 10
Sample_Time = 0.02
Implementation = <10,6>
Numerator (fixed-point) = { 2002, -4000, 1998 }
Denominator (fixed-point) = { 1, 0, -1 }
Realization = DFI
Dynamic_Range = {-1, 1}
Inputs = { -1, -0.75, 0.0, -0.5, 0.0, 0.25, 1, -0.5, 
0.078125, 0.6875 }
Outputs = { -2002, 2498.5, -1000.0, -1.0, 1000.0, -499.5,  
2002, -5001, 6156, -4936.125 }
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DSValidator Reproducibility Engine

●  Supports digital systems (controller and filter) represented by  a transfer 

function:  
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DSValidator Reproducibility Engine


•  Computes 

‣  finite-word lengths effects over the ak and bk coefficients  

‣  roots of a polynomial for stability and minimum-phase  
•  Unrolls the system for a given realization form 

‣  overflow, granular LCO, overflow LCO 

●  Supports digital systems (controller and filter) represented by  a transfer 
function:  
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DSValidator Validation Process


•  Extraction 

‣  obtains the counterexample from the verifier 
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DSValidator Features

•  Validation Functions 

‣  reproduce the validation steps (e.g., extraction, parsing, 
simulation, comparison and report) 

•  Properties 

‣  checks and validates overflow, limit-cycle, stability and minimum-
phase 

•  Realization 

‣  reproduces realization forms to validate overflow and limit-cycle 
(for direct and delta forms) 

•  Numerical Functions 

‣  performs the quantization process, select rounding and overflow 
mode, fixed-point operations and delta operator 
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Graphical Functions


9 

plot_limit_cycle(system) 

plot_overflow(system) 



DSValidator Usage

•  MATLAB Command Line: 

‣  validation(path, property, ovmode, rmode, filename)  

•  path 

‣  is the directory with the counterexample 

•  property 

‣  “m” for minimum phase 

‣  “s” for stability 

‣  “o” for overflow 

‣  “lc” for limit cycle 

•  ovmode 

‣  overflow mode: wrap or saturate 

•  rmode 

‣  rounding mode: round, float or ceil 

•  filename 

‣  represents the .MAT filename, which is generated after the 
validation process; by default, the .MAT file is named 
digital_system 

10 



Case Study: Digital Controllers for UAV

‣  11 digital controllers extracted from a quadrotor unmanned aerial vehicle 

‣  Overflow, minimum-phase, stability and limit-cycle 

‣  8-, 16- and 32-bit 

‣  DFI, DFII and TDFII 

11 



Experimental Evaluation

•  RQ1 (performance) do the executable test cases take considerably less 

effort than verification? 

•  RQ2 (sanity check) are the counterexamples sound and can their 
reproducibility be confirmed? 

12 

Property CE Reproducible CE Irreproducible Time 

Overflow 24 0 0.190 s 

Limit Cycle 26 1 0.483 s 

Minimum-Phase 54 0 0.012 s 

Stability 54 0 0.188 s 

•  For the limit cycle property: 

‣  it did not take into account overflow in intermediate operations to 
compute the system’s output using the DFII realization form 



Github commit to fix the bug
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Conclusions and Future Work

•  DSValidator reproduces counterexamples generated for digital 

controllers of a quadrotor attitude system 

‣  implementation aspects 

‣  stability, minimum-phase, limit-cycle and overflow 
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Conclusions and Future Work

•  DSValidator reproduces counterexamples generated for digital 

controllers of a quadrotor attitude system 

‣  implementation aspects 

‣  stability, minimum-phase, limit-cycle and overflow 

•  There is no other automated MATLAB toolbox that can reproduce 
counterexamples for digital system generated by verifiers  

‣  identify the reason why the counterexample cannot be reproduced 

•  As future work, we expect to contribute to digital system validation by 
supporting further verifiers (e.g., Polyspace) 

‣  Simulate the hybrid dynamics over the continuous time 

14 



DSValidator available at: http://dsverifier.org/
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