
DSValidator: An Automated Counterexample
Reproducibility Tool for Digital Systems

Joint work with Lennon Chaves, Iury Bessa,
and Daniel Kroening

Lucas Cordeiro

University of Oxford
lucas.cordeiro@cs.ox.ac.uk

21st ACM International Conference on
Hybrid Systems: Computation and Control

(HSCC’18)

Establish Trust in Verification Results

Implementation CE Reproducible

CE Irreproducible

2

Specification

Digital Controller and Filter

Establish Trust in Verification Results

Specification

Implementation

Digital System
Verifiers

CE Reproducible

CE Irreproducible

2

Digital Controller and Filter

Establish Trust in Verification Results

Implementation

Digital System
Verifiers

CE Reproducible

CE Irreproducible Verification

Successful

2

Specification

Digital Controller and Filter

Establish Trust in Verification Results

Implementation

Digital System
Verifiers

DSValidator

CE Reproducible

CE Irreproducible Verification

Successful

Counter-
example

2

Fix the
implementation

Specification

Digital Controller and Filter

Establish Trust in Verification Results

Implementation

Digital System
Verifiers

DSValidator

CE Reproducible

CE Irreproducible Verification

Successful

Counter-
example

2

Incorrect
result

Fix the
implementation

Specification

Digital Controller and Filter

Verification & Validation Methodology

Step 1:
Digital System

Design

Step 2:
Define

Representation

Step 3:
Define

Realization Form

Step 4:
Configure

Verification

Step 5:
Verifier/
Solver

Step 6:
Property
Violation? Counterexample

3

DSValidator

Verification Steps

Fix the
implementation

Verification
Result

(Exchangeable
Format)

Validation Steps

YES

SUCCESS

NO

Verification & Validation Methodology

Step 1:
Digital System

Design

Step 2:
Define

Representation

Step 3:
Define

Realization Form

Step 4:
Configure

Verification

Step 5:
Verifier/
Solver

Step 6:
Property
Violation?

3

DSValidator

Verification Steps

Fix the
implementation

Validation Steps

YES

Counterexample

SUCCESS

NO

Verification
Result

(Exchangeable
Format)

Verification & Validation Methodology

Step 1:
Digital System

Design

Step 2:
Define

Representation

Step 3:
Define

Realization Form

Step 4:
Configure

Verification

Step 5:
Verifier/
Solver

Step 6:
Property
Violation?

3

DSValidator

Verification Steps

Fix the
implementation

Validation Steps

YES

Counterexample

SUCCESS

NO

Verification
Result

(Exchangeable
Format)

Verification & Validation Methodology

Step 1:
Digital System

Design

Step 2:
Define

Representation

Step 3:
Define

Realization Form

Step 4:
Configure

Verification

Step 5:
Verifier/
Solver

Step 6:
Property
Violation?

3

DSValidator

Verification Steps

Fix the
implementation

Validation Steps

YES

Counterexample

SUCCESS

NO

Verification
Result

(Exchangeable
Format)

Verification & Validation Methodology

Step 1:
Digital System

Design

Step 2:
Define

Representation

Step 3:
Define

Realization Form

Step 4:
Configure

Verification

Step 5:
Verifier/
Solver

Step 6:
Property
Violation?

3

DSValidator

Verification Steps

Fix the
implementation

Validation Steps

YES

Counterexample

SUCCESS

NO

Verification
Result

(Exchangeable
Format)

Verification & Validation Methodology

Step 1:
Digital System

Design

Step 2:
Define

Representation

Step 3:
Define

Realization Form

Step 4:
Configure

Verification

Step 5:
Verifier/
Solver

Step 6:
Property
Violation?

3

DSValidator

Verification Steps

Fix the
implementation

Validation Steps

YES

Counterexample

NO

SUCCESS

Verification
Result

(Exchangeable
Format)

Verification & Validation Methodology

Step 1:
Digital System

Design

Step 2:
Define

Representation

Step 3:
Define

Realization Form

Step 4:
Configure

Verification

Step 5:
Verifier/
Solver

Step 6:
Property
Violation?

SUCCESS

3

DSValidator

Verification Steps

Fix the
implementation

Validation Steps

YES

Counterexample

NO

Verification
Result

(Exchangeable
Format)

Verification & Validation Methodology

Step 1:
Digital System

Design

Step 2:
Define

Representation

Step 3:
Define

Realization Form

Step 4:
Configure

Verification

Step 5:
Verifier/
Solver

Step 6:
Property
Violation?

SUCCESS

3

DSValidator

Verification Steps

Fix the
implementation

Validation Steps

YES

Counterexample

NO

Verification
Result

(Exchangeable
Format)

Objectives

Establish trust in verification results for digital systems

4

Objectives

Establish trust in verification results for digital systems

●  Propose a format to represent the counterexamples that can be used by
any verifier

4

Objectives

Establish trust in verification results for digital systems

●  Propose a format to represent the counterexamples that can be used by
any verifier

●  Reproduce counterexamples that refute properties related to limit cycle,
overflow, stability and minimum-phase

4

Objectives

Establish trust in verification results for digital systems

●  Propose a format to represent the counterexamples that can be used by
any verifier

●  Reproduce counterexamples that refute properties related to limit cycle,
overflow, stability and minimum-phase

●  Validate a set of intricate counterexamples for digital controllers used in a
real quadrotor attitude system

4

DSVerifier Counterexample Format

●  A counterexample is a trace that shows that a given property does not

hold in the model represented by a state transition system

Property = LIMIT_CYCLE

Numerator = { 2002, -4000, 1998 }

Denominator = { 1, 0, -1 }

X_Size = 10

Sample_Time = 0.001

Implementation = <13,3>

Numerator (fixed-point) = { 2002, -4000, 1998 }

Denominator (fixed-point) = { 1, 0, -1 }

Realization = DFI

Dynamical_Range = { -1, 1 }

Initial_States = { -0.875, 0, -1 }

Inputs = { 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}

Outputs = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1}

5

DSVerifier Counterexample Format

●  A counterexample is a trace that shows that a given property does not

hold in the model represented by a state transition system

Property = LIMIT_CYCLE

Numerator = { 2002, -4000, 1998 }

Denominator = { 1, 0, -1 }

X_Size = 10

Sample_Time = 0.001

Implementation = <13,3>

Numerator (fixed-point) = { 2002, -4000, 1998 }

Denominator (fixed-point) = { 1, 0, -1 }

Realization = DFI

Dynamical_Range = { -1, 1 }

Initial_States = { -0.875, 0, -1 }

Inputs = { 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}

Outputs = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1}

5

DSVerifier Counterexample Format

●  A counterexample is a trace that shows that a given property does not

hold in the model represented by a state transition system

Property = LIMIT_CYCLE

Numerator = { 2002, -4000, 1998 }

Denominator = { 1, 0, -1 }

X_Size = 10

Sample_Time = 0.001

Implementation = <13,3>

Numerator (fixed-point) = { 2002, -4000, 1998 }

Denominator (fixed-point) = { 1, 0, -1 }

Realization = DFI

Dynamical_Range = { -1, 1 }

Initial_States = { -0.875, 0, -1 }

Inputs = { 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}

Outputs = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1}

5

DSVerifier Counterexample Format

●  A counterexample is a trace that shows that a given property does not

hold in the model represented by a state transition system

Property = LIMIT_CYCLE

Numerator = { 2002, -4000, 1998 }

Denominator = { 1, 0, -1 }

X_Size = 10

Sample_Time = 0.001

Implementation = <13,3>

Numerator (fixed-point) = { 2002, -4000, 1998 }

Denominator (fixed-point) = { 1, 0, -1 }

Realization = DFI

Dynamical_Range = { -1, 1 }

Initial_States = { -0.875, 0, -1 }

Inputs = { 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}

Outputs = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1}

5

DSVerifier Counterexample Format

●  A counterexample is a trace that shows that a given property does not

hold in the model represented by a state transition system

Property = LIMIT_CYCLE

Numerator = { 2002, -4000, 1998 }

Denominator = { 1, 0, -1 }

X_Size = 10

Sample_Time = 0.001

Implementation = <13,3>

Numerator (fixed-point) = { 2002, -4000, 1998 }

Denominator (fixed-point) = { 1, 0, -1 }

Realization = DFI

Dynamical_Range = { -1, 1 }

Initial_States = { -0.875, 0, -1 }

Inputs = { 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}

Outputs = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1}

5

DSVerifier Counterexample Format

●  A counterexample is a trace that shows that a given property does not

hold in the model represented by a state transition system

Property = LIMIT_CYCLE

Numerator = { 2002, -4000, 1998 }

Denominator = { 1, 0, -1 }

X_Size = 10

Sample_Time = 0.001

Implementation = <13,3>

Numerator (fixed-point) = { 2002, -4000, 1998 }

Denominator (fixed-point) = { 1, 0, -1 }

Realization = DFI

Dynamical_Range = { -1, 1 }

Initial_States = { -0.875, 0, -1 }

Inputs = { 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}

Outputs = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1}

5

DSVerifier Counterexample Format

●  A counterexample is a trace that shows that a given property does not

hold in the model represented by a state transition system

Property = LIMIT_CYCLE

Numerator = { 2002, -4000, 1998 }

Denominator = { 1, 0, -1 }

X_Size = 10

Sample_Time = 0.001

Implementation = <13,3>

Numerator (fixed-point) = { 2002, -4000, 1998 }

Denominator (fixed-point) = { 1, 0, -1 }

Realization = DFI

Dynamical_Range = { -1, 1 }

Initial_States = { -0.875, 0, -1 }

Inputs = { 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}

Outputs = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1}

5

DSVerifier Counterexample Format

●  A counterexample is a trace that shows that a given property does not

hold in the model represented by a state transition system

Property = LIMIT_CYCLE

Numerator = { 2002, -4000, 1998 }

Denominator = { 1, 0, -1 }

X_Size = 10

Sample_Time = 0.001

Implementation = <13,3>

Numerator (fixed-point) = { 2002, -4000, 1998 }

Denominator (fixed-point) = { 1, 0, -1 }

Realization = DFI

Dynamical_Range = { -1, 1 }

Initial_States = { -0.875, 0, -1 }

Inputs = { 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}

Outputs = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1}

5

DSVerifier Counterexample Format

●  A counterexample is a trace that shows that a given property does not

hold in the model represented by a state transition system

Property = LIMIT_CYCLE

Numerator = { 2002, -4000, 1998 }

Denominator = { 1, 0, -1 }

X_Size = 10

Sample_Time = 0.001

Implementation = <13,3>

Numerator (fixed-point) = { 2002, -4000, 1998 }

Denominator (fixed-point) = { 1, 0, -1 }

Realization = DFI

Dynamical_Range = { -1, 1 }

Initial_States = { -0.875, 0, -1 }

Inputs = { 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5}

Outputs = { 0, -1, 0, -1, 0, -1, 0, -1, 0, -1}

5

DSVerifier Counterexample Format

●  A counterexample is a trace that shows that a given property does not

hold in the model represented by a state transition system

Property = OVERFLOW
Numerator = { 2002, -4000, 1998 }
Denominator = { 1, 0, -1 }
X_Size = 10
Sample_Time = 0.02
Implementation = <10,6>
Numerator (fixed-point) = { 2002, -4000, 1998 }
Denominator (fixed-point) = { 1, 0, -1 }
Realization = DFI
Dynamic_Range = {-1, 1}
Inputs = { -1, -0.75, 0.0, -0.5, 0.0, 0.25, 1, -0.5,
0.078125, 0.6875 }
Outputs = { -2002, 2498.5, -1000.0, -1.0, 1000.0, -499.5,
2002, -5001, 6156, -4936.125 }

5

DSVerifier Counterexample Format

●  A counterexample is a trace that shows that a given property does not

hold in the model represented by a state transition system

Property = OVERFLOW
Numerator = { 2002, -4000, 1998 }
Denominator = { 1, 0, -1 }
X_Size = 10
Sample_Time = 0.02
Implementation = <10,6>
Numerator (fixed-point) = { 2002, -4000, 1998 }
Denominator (fixed-point) = { 1, 0, -1 }
Realization = DFI
Dynamic_Range = {-1, 1}
Inputs = { -1, -0.75, 0.0, -0.5, 0.0, 0.25, 1, -0.5,
0.078125, 0.6875 }
Outputs = { -2002, 2498.5, -1000.0, -1.0, 1000.0, -499.5,
2002, -5001, 6156, -4936.125 }

5

DSValidator Reproducibility Engine

●  Supports digital systems (controller and filter) represented by a transfer

function:

6

H z() =
B z()
A z()

=
b0 + b1z

−1 +…+ bMz
−M

a0 + a1z
−1 +…+ aNz

−N

DSValidator Reproducibility Engine

•  Computes

‣  finite-word lengths effects over the ak and bk coefficients

‣  roots of a polynomial for stability and minimum-phase

●  Supports digital systems (controller and filter) represented by a transfer
function:

6

H z() =
B z()
A z()

=
b0 + b1z

−1 +…+ bMz
−M

a0 + a1z
−1 +…+ aNz

−N

DSValidator Reproducibility Engine

•  Computes

‣  finite-word lengths effects over the ak and bk coefficients

‣  roots of a polynomial for stability and minimum-phase
•  Unrolls the system for a given realization form

‣  overflow, granular LCO, overflow LCO

●  Supports digital systems (controller and filter) represented by a transfer
function:

() () ()∑ ∑
= =

−+−−=
N

k

M

k
kk knxbknyany

1 0

6

H z() =
B z()
A z()

=
b0 + b1z

−1 +…+ bMz
−M

a0 + a1z
−1 +…+ aNz

−N

b0

b1

b2

a1

a2

DSValidator Validation Process

•  Extraction

‣  obtains the counterexample from the verifier

Counterexamples

.out files

Step 1:
Extraction

Step 2:
Parser

Step 3:
Simulation

Step 4:
Comparison

Step 5:
Report

Validation Process

Successful Failed

.MAT file

Counterexample
.out MATLAB

Variables

Outputs
Computation

Verification Output
vs

Simulation Outout

Automatic Counterexample Validation Process

7

DSValidator Validation Process

•  Extraction

‣  obtains the counterexample from the verifier

•  Parser

‣  converts all counterexample attributes into variables

Counterexamples

.out files

Step 1:
Extraction

Step 2:
Parser

Step 3:
Simulation

Step 4:
Comparison

Step 5:
Report

Validation Process

Successful Failed

.MAT file

Counterexample
.out MATLAB

Variables

Outputs
Computation

Verification Output
vs

Simulation Outout

Automatic Counterexample Validation Process

7

DSValidator Validation Process

•  Extraction

‣  obtains the counterexample from the verifier

•  Parser

‣  converts all counterexample attributes into variables

•  Simulation

‣  simulates the counterexample (violation) for the failed property

Counterexamples

.out files

Step 1:
Extraction

Step 2:
Parser

Step 3:
Simulation

Step 4:
Comparison

Step 5:
Report

Validation Process

Successful Failed

.MAT file

Counterexample
.out MATLAB

Variables

Outputs
Computation

Verification Output
vs

Simulation Outout

Automatic Counterexample Validation Process

7

DSValidator Validation Process

•  Extraction

‣  obtains the counterexample from the verifier

•  Parser

‣  converts all counterexample attributes into variables

•  Simulation

‣  simulates the counterexample (violation) for the failed property

•  Comparison

‣  checks MATLAB simulation vs verifier output

Counterexamples

.out files

Step 1:
Extraction

Step 2:
Parser

Step 3:
Simulation

Step 4:
Comparison

Step 5:
Report

Validation Process

Successful Failed

.MAT file

Counterexample
.out MATLAB

Variables

Outputs
Computation

Verification Output
vs

Simulation Outout

Automatic Counterexample Validation Process

7

DSValidator Validation Process

•  Extraction

‣  obtains the counterexample from the verifier

•  Parser

‣  converts all counterexample attributes into variables

•  Simulation

‣  simulates the counterexample (violation) for the failed property

•  Comparison

‣  checks MATLAB simulation vs verifier output

•  Report

‣  stores the counterexample in a .MAT file and reports its reproducibility

Counterexamples

.out files

Step 1:
Extraction

Step 2:
Parser

Step 3:
Simulation

Step 4:
Comparison

Step 5:
Report

Validation Process

Successful Failed

.MAT file

Counterexample
.out MATLAB

Variables

Outputs
Computation

Verification Output
vs

Simulation Outout

Automatic Counterexample Validation Process

7

DSValidator Features

•  Validation Functions

‣  reproduce the validation steps (e.g., extraction, parsing,
simulation, comparison and report)

8

DSValidator Features

•  Validation Functions

‣  reproduce the validation steps (e.g., extraction, parsing,
simulation, comparison and report)

•  Properties

‣  checks and validates overflow, limit-cycle, stability and minimum-
phase

8

DSValidator Features

•  Validation Functions

‣  reproduce the validation steps (e.g., extraction, parsing,
simulation, comparison and report)

•  Properties

‣  checks and validates overflow, limit-cycle, stability and minimum-
phase

•  Realization

‣  reproduces realization forms to validate overflow and limit-cycle
(for direct and delta forms)

8

DSValidator Features

•  Validation Functions

‣  reproduce the validation steps (e.g., extraction, parsing,
simulation, comparison and report)

•  Properties

‣  checks and validates overflow, limit-cycle, stability and minimum-
phase

•  Realization

‣  reproduces realization forms to validate overflow and limit-cycle
(for direct and delta forms)

•  Numerical Functions

‣  performs the quantization process, select rounding and overflow
mode, fixed-point operations and delta operator

8

Graphical Functions

9

plot_limit_cycle(system)

plot_overflow(system)

DSValidator Usage

•  MATLAB Command Line:

‣  validation(path, property, ovmode, rmode, filename)

•  path

‣  is the directory with the counterexample

•  property

‣  “m” for minimum phase

‣  “s” for stability

‣  “o” for overflow

‣  “lc” for limit cycle

•  ovmode

‣  overflow mode: wrap or saturate

•  rmode

‣  rounding mode: round, float or ceil

•  filename

‣  represents the .MAT filename, which is generated after the
validation process; by default, the .MAT file is named
digital_system

10

Case Study: Digital Controllers for UAV

‣  11 digital controllers extracted from a quadrotor unmanned aerial vehicle

‣  Overflow, minimum-phase, stability and limit-cycle

‣  8-, 16- and 32-bit

‣  DFI, DFII and TDFII

11

Experimental Evaluation

•  RQ1 (performance) do the executable test cases take considerably less

effort than verification?

•  RQ2 (sanity check) are the counterexamples sound and can their
reproducibility be confirmed?

12

Property CE Reproducible CE Irreproducible Time

Overflow 24 0 0.190 s

Limit Cycle 26 1 0.483 s

Minimum-Phase 54 0 0.012 s

Stability 54 0 0.188 s

•  For the limit cycle property:

‣  it did not take into account overflow in intermediate operations to
compute the system’s output using the DFII realization form

Github commit to fix the bug

13

Conclusions and Future Work

•  DSValidator reproduces counterexamples generated for digital

controllers of a quadrotor attitude system

‣  implementation aspects

‣  stability, minimum-phase, limit-cycle and overflow

14

Conclusions and Future Work

•  DSValidator reproduces counterexamples generated for digital

controllers of a quadrotor attitude system

‣  implementation aspects

‣  stability, minimum-phase, limit-cycle and overflow

•  There is no other automated MATLAB toolbox that can reproduce
counterexamples for digital system generated by verifiers

‣  identify the reason why the counterexample cannot be reproduced

14

Conclusions and Future Work

•  DSValidator reproduces counterexamples generated for digital

controllers of a quadrotor attitude system

‣  implementation aspects

‣  stability, minimum-phase, limit-cycle and overflow

•  There is no other automated MATLAB toolbox that can reproduce
counterexamples for digital system generated by verifiers

‣  identify the reason why the counterexample cannot be reproduced

•  As future work, we expect to contribute to digital system validation by
supporting further verifiers (e.g., Polyspace)

‣  Simulate the hybrid dynamics over the continuous time

14

DSValidator available at: http://dsverifier.org/

15

