
BMCLua: Verification of Lua Programs 
in Digital TV Interactive Applications

Francisco A. Januario, Lucas C. Cordeiro, Vicente F. 
Lucena Jr., and Eddie B. de Lima Filho

lucascordeiro@ufam.edu.br



• the Lua language is used in many areas, from games to

digital TV applications

─ Adobe’s Photoshop Lightroom

─ World of Warcraft e Angry Birds

─ Ginga Middleware (Digital TV)

The Lua Language and its Applications

– C/C++

– JAVA

– NCL

extension language used in

other programming languages

– Mobile

– Set-Top Box

interpreted, compact, and fast;

it is used in embedded devices

2

incorrect implicit conversion of variable types, returning null 
from functions with multiple values, and arithmetic overflow



Interactive TV applications are widely spread, 

but their verification becomes more difficult

local counter = 0

local dx, dy = canvas:attrSize()

function handler (evt)

if evt.class=='ncl' then

dy = dy + 1

while dx ~= dy do

counter = counter + 1

canvas:drawText(10,10,'Progress: '..counter)

end

end

end

event.register(handler)

• negative impact on the performance of interactive TV

applications (presentation failures)

Arithmetic

OverFlow

3

• functionality demands increased significantly in digital TV

– peer reviewing and testing



Basic Idea: check negation of given property up to given depth

• transition system M unrolled k times

– for programs: unroll loops, unfold arrays, …

• translated into verification condition ψ such that

ψ satisfiable iff ϕ has counterexample of max. depth k

• has been applied successfully to verify (embedded) software 
since early 2000’s

. . .

M0 M1 M2 M
k-1 M

k

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕ
k-1 ¬ϕ

k

counterexample trace 

∨ ∨ ∨ ∨

transition 

system

property

bound

Bounded Model Checking (BMC)

3



Objectives of this work

5

Apply BMC for Interactive TV software applications 
based on the Lua programming language

• develop a verification platform for Lua programs:

– translate a Lua program to an intermediate representation

– check for arithmetic overflow, division by zero, and user-
specified assertions

– interpret the counterexample

• exploit BMC tools to prune the property and data dependent

search space and to exploit the bit-accurate representation

• implement this approach in BMCLua tool and evaluate it 
using Lua applications

– consider time and correctness metrics



• BMCLua consists of a Translator and Interpreter, and

makes use of an existing Verifier

The BMCLua Verification Platform

Translate the Lua 

code to ANSI-C

Verify the

ANSI-C code

Verified the property

for a bound k of a Lua 

program

Counterexample

interpretation. 

Correct the Lua code
6

Lua 
code

Translator

Verification
Result

Verifier
(BMC tool)

ANSI-C 
code

Success

Lua code
OK

Counter
example

Interpreter



The BMCLua Translator

7

Generated by ANTLR

and modified by us

• the translator consists of the language grammar, the lexical 
analyzer (lexer), and the syntax analyzer (parser)

• the grammar consists of a set of rules describing the syntax
• the lexer generates tokens from a sequence of characters
• the parser checks the syntax of the input characters

Interface to

the C code

Lua 
code

lexer parser

visitorgrammar
ANSI-C 

code

blo ::= stat

stat ::= varlist “=“ explist

| functionalcall

| label

...



Translation, Verification, and Interpretation

n = 5

while n >= 0 do

print(4/n)

n = n - 1

end

#include <stdio.h>

void main(void){

int n = 5;

while(n >= 0){

printf("%f",4/n);

n = n – 1;

}

}

Violated property:

division by zero

n != 0

VERIFICATION FAILED

Interpretation

Verification

Translation

• translates to an ANSI-C code (adds more code lines)
‒ supports most primitive data types, relational and logical

operators, decision and loops structures, and functions

8
• counterexample informs the code line and the violation



Experimental Evaluation

• Experimental setup:

─ Intel Core i3 2.5 GHz with 2 GB of RAM running on Linux

Ubuntu 32-bits

─ ESBMC v1.21 with SMT solver Z3 v3.2

• Goal: evaluate the performance and correctness of

BMCLua using standard benchmarks with a single user-

specified property

‒ compare to the verification time of ESBMC as a reference

9



Experimental Evaluation (Cont.)

10

0
100
200
300
400
500
600
700

Bound
2000

Bound
5000

Bound
10000

Bellman-Ford

BMCLua ESBMC

• the verification time reported by BMCLua and ESBMC are

comparable to each other for smaller bounds

‒ the translation time is typically less than one second

no false-positive / false-negative

0

100

200

300

400

500

600

Bound
201

Bound
400

Bound
500

Prim

BMCLua ESBMC



Experimental Evaluation (Cont.)

11

0

50

100

150

200

250

Bound
50

Bound
70

Bound
140

Bound
200

BubbleSort

BMCLua ESBMC

0

50

100

150

200

Bound
50

Bound
70

Bound
140

Bound
200

SelectionSort

BMCLua ESBMC

• the BMCLua verification time is higher due to the

increase of code lines when translating into ANSI-C code

‒ common subexpression elimination and constant propagation

no false-positive / false-negative



• proposed first application of BMC to Lua programs

• BMCLua checks for arithmetic overflow, division by zero

and user-specified assertions

• the verification time of BMCLua is comparable to ESBMC

‒ only 21% of the benchmarks present higher verification time

• BMCLua did not report false-positive or false-negative

• support the remaining Lua constructs (typecasts,

functional call, NCLua, and Lua library)

• convert Lua programs to SMT formulas

• integrate BMCLua into the Eclipse and Ginga middleware

Conclusions

12

Future Work


