'3
J
/!
L

Error Error

q

:/ | E An eror occurred while displaying the presious emor.

ok

Mikhail R. Gadelha

Towards Counterexample-guided Felipe R. Monteiro

Lucas C. Cordeiro

k-Induction for Fast Bug Detection Denis A. Nicole

26th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering

Towards Counterexample-guided

k-Induction for Fast

SUg

Detection

Mikhail R. Gadelha, Felipe R. Monteiro, Lucas C. Cordeiro, and Denis A. Nicole

UNIVERSITY OF

Southampton

MANCHESTER

1824

DID YOU
FIND oUuT
WHAT WENT

Motivation

Why should we invest in software
reliability?

Why should we invest in software reliability”?

- The ubiquity of embedded systems drives a need to test and
validate a system before releasing it to the market, in order to

protect against system failures.

“Formal automated reasoning is one of
the investments that AWS is making in

amaZOn order to facilitate continued

webservices simultaneous growth in both
functionality and security.”

- Byron Cook, FLoC, 2018.

Why should we invest in software reliability”?

- Embedded software must be as robust and bug-free as
possible, given that even subtle system bugs can have

drastic consequences:

- In April 2014, the Heartbleed was publicly disclosed, a
security bug in the OpenSSL cryptography library, which is
a widely used implementation of the Transport Layer
Security (TLS) protocol.

- “When it is exploited it leads to the leak of memory
contents from the server to the client and from the client
to the server.”

— Synopsys Inc., 2014,

Why should we invest in software reliability”?

- Embedded software must be as robust and bug-free as
possible, given that even subtle system bugs can have

drastic consequences:

- In April 2014, the Heartbleed was publicly disclosed, a
security bug in the OpenSSL cryptography library, which is
a widely used implementation of the Transport Layer
Security (TLS) protocol.

- “When it is exploited it leads to the leak of memory @
contents from the server to the client and from the client =y
=

to the server.” ~
— Synopsys Inc., 2014.

In September 2018, attackers exploited three Facebook)ﬁ\
vulnerabilities and stole access tokens from as many as 50 &% i/
million users, in order to take over their accounts. '1\

S

i/

" &
N

Our main goal is to...

Propose a faster approach to detect bugs and
prove correctness of a program

We demonstrate in this paper how to...

Improve the k-induction algorithm to work as a
meet-in-the-middle bidirectional search by
using the information from the counterexample

BSackground

The k-Induction Algorithm

Bounded Model Checking

Basic Idea: given a transition system M, check negation of a given
property ¢ up to given depth k:

Ve N\ D Property
Transiti Qo v TP v T2 v TPk |V T
amston | Y Y oY
S M0 M1 MZ Mk-1 Mk <— Bound
Kill(a) \ Counterexample trace _/I

Translated into a VC such that: ¢ is satisfiable iff ¢ has
counterexample of max. depth k.

BMC tools are aimed at finding bugs; they cannot prove
correctness, unless the bound k safely reaches all program states.

10

int main() {

uint32_t n;
uinte4 t sn =
for (uint64 t

SN = SN +

assert(sn
¥

assert(sn

n,

11

uinted t 1

int main() A
uint32 t n; if(i <= n)
uinté4 t sn = 0; = sn + 2;
for (uint64 t i :] ' ?SSEFt(Sn == 1% 2);

sn = sn +
assert(sn
-L .
S assert(!(i<=n)):
assert(sn == nx2

BMC tools such as CBMC, ESBMC or LLBMC typically reproduce the loop
k times (lines 4 - 7) and are unable to verify that program unless the loop is
fully unrolled, i.e., the unwinding assertion fails if k < (232 - 1)

12

The k-induction Algorithm

. Base case: usual BMC algorithm, tries to find a property
violation.

- Explores all states up to a bound k. Cannot prove
correctness.

I.Forward Condition: checks the completeness threshold (if
all loops were unrolled).

- Cannot find bugs.

Il. Inductive Step: over-approximates loops so all states can
be checked without unrolling them completely.

- Might return spurious counterexamples.

Approach and Uniqueness

Counterexample-Guided
kK-Induction

Counterexample-Guided k-Induction

The biggest Iimitation of k-induction is the fact that it performs three

checks for each k (i.e., base case, forward condition and inductive
step).

The inductive step is the most computationally expensive one;
it is an over-approximation, forcing the SMT solver to find a set of
assignments in a larger state space than the original program.

Moreover, the computation is wasted if a counterexample is found by
the inductive step, as it Is assumed to be spurious.

NEUTRAL, SUBLANG_NEUTRAL

Only individual ICONGROUP resources can be save dt
6513 "Only individual CURSORGROUP resources can be
"Only individual DFM forms can be saved to DF
"Multiple resources can only be extracted to 15
6514 "Only IconGroup or CursorGroup items can be d

6514y, "Warning: Cursor images cannot be manipulated

Counterexample-Guided k-Induction

- We propose to use the counterexample
generated by the inductive step to
speed up the bug finding check (i.e., the
base case).

- Our extension converts the k-induction
algorithm into a bidirectional search
approach by searching simultaneously:

. both forward (i.e., from the initial state);

i. backward (i.e., from the error state ¢
detected in the inductive step);

il. stop If both searches meet In the
middle.

By (k)

Iy (k)

16

Running Example

Original Program

unsigned int a
while(1)

I

1L

if(a == 6)

assert(0):

a++:

’

Running Example

Original Program

unsigned int a

while(1)
{

if(a == 6)

assert(0);
a++:

’

1
1]

Q
I

start %Q

s

By (k)

Ii. (k)

18

Running

Original Program

unsigned int a

while(1)
{

if(a == 6)
assert(0):

unsigned 1int a
while(1)
{
if(a == 6)
assert(0):;
a++:

’

assert(a !'= 5);
¥

—Xxample

start —

By (k)

Ii. (k)

19

- ”

N - AR AR
V X f/&/%i/r ¥
&) / 3\ LRLIREY 1 0
SRR | JIELARE
,._.,_‘,,w_m\.fu. i
QLRSI 5
...\4....@;: gig

i
&

Evaluate our k-induction algorithm

extension

Preliminary Results

=Xperiments

- In order to evaluate our k-induction algorithm extension, we selectead
a number of benchmarks from the International Competition on

Software Verification 2018.

- We compare the results from the original k-induction and our
extended version.

Experimental setup. All experiments were conducted on a computer
with an Intel Core i7-2600 running at 3.40GHz and 24GB of RAM under
Fedora 25 64-bit. We used ESBMC v5.0 and no time or memory limit
was set for the verification tasks.

Availability of data & tools. Our experiments are based on a set of
publicly available benchmarks. All tools, benchmarks, and the results of
our evaluation are available on our web page http://esbmc.org/

21

Preliminary Results

- Preliminary evaluation over the SV-COMP 2018 benchmarks.

Benchmark k-induction Extended k-induction
LOC T(s) | M(MB) | k T(s) | M(MB) | k
sum04.c 19 1 38.7 9 1 38.7 5
sum01.c 18 1 389 | 11 1 38.8 6
sum03.c 25 3 39.1 | 11 1 38.8 6
diamondl.c 24 13 43.6 | 51 6 39.1 | 26
rangesum.c 64 7 66.2 4 1 39.0 2
rangesum05.c 59 11 72.3 6 1 65.4 3
rangesum10.c 59 28 78.2 | 11 16 47.5 6
Problem01_label15.c | 594 7 87.3 5 5 70.3 4
rangesumz20.c 59 101 999 | 21 26 78.2 | 12
rangesum40.c 59 847 269.5 | 41 90 113.9 | 22
const.c 20 || 2606 796.6 | 1025 | 890 253.2 | 513
rangesumo60.c 59 || 80272 | 11069 | 61 159 134.6 | 32
Average 88 || 6991 228.1 | 104 99 79.8 | 53
Total 1059 || 83897 | 2737.2 | 1255 | 1197 957.5 | 6338

22

Preliminary Results

verification time is not related

- Preliminary evaluation over the SV-C(

Benchmark k-induction | Extended k-induction
LOC T(s) |M(MB) | k T(s) ||IM(MB) | k
sumo04.c 19 1 38.7 9 1 38.7 5
sumO1.c 18 1 389 | 11 1 38.8 6
sum03.c 25 3 39.1 | 11 1 38.8 6
diamondl.c 24 13 43.6 | 51 6 39.1 | 26
rangesum.c 64 l‘ 7 66.2 4 1 39.0 2
rangesumo05.c 59 11 72.3 6 1 65.4 3
rangesum1l0.c 59 28 78.2 | 11 16 47.5 6
Problem01_label15.c | 594 7 87.3 S} 5 70.3 4
rangesum20.c 59 101 999 | 21 26 78.2 | 12
rangesum40.c 59 347 269.5 | 41 920 113.9 | 22
const.c 20 || 2606 796.6 | 1025|| 890 253.2 | 513
rangesumo60.c 59 | 80272 || 1106.9 | 61 159 134.6 | 32
Average 88 || 6991 228.1 | 104 929 79.8 | 53
Total 1059 | 83897 || 2737.2 | 1255|| 1197 957.5 | 638

to the number of steps or the
program size

23

our extension to the k-induction
algorithm potentially cuts the

Preliminary Results

verification time considerably in cases

- Preliminary evaluation over :
b where the state space explored is large

Benchmark k-induction | Extended k-induction
LOC T(s) |M(MB) | k T(s) ||IM(MB) | k
sumo04.c 19 1 38.7 9 1 38.7 5
sumO1.c 18 1 389 | 11 1 38.8 6
sum03.c 25 3 39.1 | 11 1 38.8 6
diamondl.c 24 13 43.6 | 51 6 39.1 | 26
rangesum.c 64 l‘ 7 66.2 4 1 39.0 2
rangesumo05.c 59 11 72.3 6 1 65.4 3
rangesum1l0.c 59 28 78.2 | 11 16 47.5 6
Problem01_label15.c | 594 7 87.3 S} 5 70.3 4
rangesum20.c 59 101 999 | 21 26 78.2 | 12
rangesum40.c 59 347 269.5 | 41 920 113.9 | 22
const.c 20 || 2606 796.6 | 1025|| 890 253.2 | 513
rangesumo60.c 59 | 80272 || 1106.9 | 61 159 134.6 | 32
Average 88 | 6991 228.1 | 104 99 79.8 | 53
Total 1059 | 83897 || 2737.2 | 1255|| 1197 957.5 | 638

24

Preliminary Results [Ty —

slow things down or use more memory

- Preliminary evaluation over than the original k-induction

Benchmark k-induction Extended k-induction
LOC T(s) | M(MB)| k T(s)

sum04.c 19 1 38.7 9 1

sumO1.c 18 1 389 11 1

sum03.c 25 3 39.1) 11 1

diamondl.c 24 13 43.6| 51 6

rangesum.c 64 7 66.2 4 1

rangesumo05.c 59 11 72.3 6 1

rangesum1l0.c 59 28 78.2| 11 16

Problem0O1 label15.c | 594 7 87.3 5 5

rangesum20.c 59 101 9991 21 26

rangesum40.c 59 347 269.5| 41 920

const.c 20 2606 796.6 | 1025 | 890

rangesumo60.c 59 || 80272 | 1106.9| 61 159

Average 88 || 6991 228.1|| 104 99

Total 1059 || 83897 | 2737.2| 1255 | 1197

25

Preliminary Results for large cases, the gains are

substantial (e.g., the verification time of

- Preliminary evaluation over rangesum60 . c is 504x faster)

Benchmark k-induction Extended k-induction
LOC T(s) | M(MB)| k T(s)

sum04.c 19 1 38.7 9 1

sumO1.c 18 1 389 11 1

sum03.c 25 3 39.1) 11 1

diamondl.c 24 13 43.6| 51 6

rangesum.c 64 7 66.2 4 1

rangesumo05.c 59 11 72.3 6 1

rangesum1l0.c 59 28 78.2| 11 16

Problem0O1 label15.c | 594 7 87.3 5 5

rangesum20.c 59 101 9991 21 26

rangesum40.c 59 347 269.5| 41 920

const.c 20 2606 796.6 || 1025 | 890

rangesumo60.c 59 || 80272 | 1106.9| 61 159

Average 88 || 6991 228.1|| 104 99

Total 1059 || 83897 | 2737.2| 1255 | 1197

26

Preliminary Results T o e

roughly half the number of steps to find

- Preliminary evaluation over a property violation

Benchmark k-induction ‘ Extended k-induction
LOC T(s) | M(MB) | k T(s) | M(MB)
sumo04.c 19 1 38.7 9 1 38.7
sumO1.c 18 1 389 | 11 1 38.8
sum03.c 25 3 39.1| 11 1 38.8
diamondl.c 24 13 43.6 | 51 6 39.1
rangesum.c 64 7 66.2 4 1 39.0
rangesumo05.c 59 11 72.3 6 1 65.4
rangesum1l0.c 59 28 78.2| 11 16 47.5
Problem01_label15.c | 594 7 87.3 5 5 70.3
rangesum20.c 59 101 99.9 | 21 26 78.2
rangesum40.c 59 347 269.5 | 41 920 113.9
const.c 20 || 2606 796.6 | 1025 | 890 253.2
rangesumo60.c 59 || 80272 | 1106.9 | 61 159 134.6
Average 88 || 6991 228.1 | 104 99 79.8
Total 1059 || 83897 | 2737.2 || 1255 | 1197 957.5

27

Contributions

A novel extension to the k-induction
algorithm

Contributions

- Our main contribution is a novel extension to the k-induction
algorithm, to perform a bidirectional search instead of the
conventional iterative deepening search:

- the preliminary results show that the extension has the
potential to substantially improve the verification time for

oroblems with large state space, while maintaining a small
verification time for small programs.

- As future work, we plan to expand our evaluation over the SV-
COMP benchmarks, where the original k-induction algorithm

already proved to be the state-of-art, if compared to other k-
iInduction tools

29

“The main challenge is scalability:
real-world software systems not only
include complex control and data
structure, but depend on much
‘context” such as libraries and
interfaces to other code, including
ower-level systems code. As a result
proving a software system correct
requires much more effort,
knowledge, training, and ingenuity
than writing the software in trial-and-
error style.”

—-E. M. Clarke et al., Handbook of Model Checking, 2018.

GitHub

Documentation
News

Publications.

sv-comp

People

Applications

Download Archive

‘Third Party Contributions.

15:30 ® 0 61% mm)

esbmc.org

ESBMC is an open source, permissively licensed,
context-bounded model checker based on satisfiability
modulo theories for the verification of single- and multi-
threaded C/C++ programs. It does not require the user
to annotate the programs with pre- or postconditions,
but allows the user to state additional properties using
assert-statements, that are then checked as well
Furthermore, ESBMC also provides two approaches
(lazy and schedule recording) to model check multi-
threaded programs. It converts the verification
conditions using different background theories and
passes them directly to an SMT solver. In addition,
ESBMC provides C++ and Python APIs to access to
the internals of ESBMC, allowing inspection and
extension at any stage of the verification process.

ESBMC is a joint project with the Federal University of
Amazonas, University of Bristol, University of
Manchester, University of Stellenbosch, and University
of Southampton.

News

25/07/2018: Our NIER paper Towards Counterexample-
Guided k-Induction for Fast Bug Detection has been
accepted at ESEC/FSE 2018.

24/07/2018: ESBMC v5.1.0 for Linux released.

16/01/2018: ESBMC-kind won the Bronze Medal in the
overall ranking at SV-COMP 2018

Download
esbme-v5.1.0 (last update: 24/07/2018)
Documentation

Find the documentation of ESBMC's public C and
Python APIs here

Bibtex Entry

If you cite ESBMC >= version 5.0, please use the tool
paper in ASE 2018 (BibTex) as listed below.

License

—

30

