
Towards Counterexample-guided
k-Induction for Fast Bug Detection

Mikhail R. Gadelha

Felipe R. Monteiro

Lucas C. Cordeiro

Denis A. Nicole

1

Towards Counterexample-guided

k-Induction for Fast Bug Detection

Mikhail R. Gadelha, Felipe R. Monteiro, Lucas C. Cordeiro, and Denis A. Nicole

26th ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering

2

3

Motivation

Why should we invest in software
reliability?

Why should we invest in software reliability?

•  The ubiquity of embedded systems drives a need to test and
validate a system before releasing it to the market, in order to
protect against system failures.

“Formal automated reasoning is one of
the investments that AWS is making in
order to facilitate continued
simultaneous growth in both
functionality and security.”

- Byron Cook, FLoC, 2018.

4

Why should we invest in software reliability?

•  Embedded software must be as robust and bug-free as
possible, given that even subtle system bugs can have
drastic consequences:

-  In April 2014, the Heartbleed was publicly disclosed, a
security bug in the OpenSSL cryptography library, which is
a widely used implementation of the Transport Layer
Security (TLS) protocol."

-  “When it is exploited it leads to the leak of memory
contents from the server to the client and from the client
to the server.”

– Synopsys Inc., 2014.

In September 2018, attackers exploited three Facebook
vulnerabilities and stole access tokens from as many as 50
million users, in order to take over their accounts

5

Why should we invest in software reliability?

•  Embedded software must be as robust and bug-free as
possible, given that even subtle system bugs can have
drastic consequences:

-  In April 2014, the Heartbleed was publicly disclosed, a
security bug in the OpenSSL cryptography library, which is
a widely used implementation of the Transport Layer
Security (TLS) protocol."

-  “When it is exploited it leads to the leak of memory
contents from the server to the client and from the client
to the server.”

– Synopsys Inc., 2014.

-  In September 2018, attackers exploited three Facebook
vulnerabilities and stole access tokens from as many as 50
million users, in order to take over their accounts.

6

Propose a faster approach to detect bugs and
prove correctness of a program

Our main goal is to…

7

Improve the k-induction algorithm to work as a
meet-in-the-middle bidirectional search by

using the information from the counterexample

We demonstrate in this paper how to…

8

Background

The k-Induction Algorithm

9

Bounded Model Checking

•  Basic Idea: given a transition system M, check negation of a given
property φ up to given depth k:

•  Translated into a VC ψ such that: ψ is satisfiable iff φ has
counterexample of max. depth k.

•  BMC tools are aimed at finding bugs; they cannot prove
correctness, unless the bound k safely reaches all program states.

10

11

{

BMC tools such as CBMC, ESBMC or LLBMC typically reproduce the loop
k times (lines 4 – 7) and are unable to verify that program unless the loop is

fully unrolled, i.e., the unwinding assertion fails if k < (2^32 − 1)

12

The k-induction Algorithm

I. Base case: usual BMC algorithm, tries to find a property
violation.

•  Explores all states up to a bound k. Cannot prove

correctness.

II. Forward Condition: checks the completeness threshold (if

all loops were unrolled).

•  Cannot find bugs.

III.  Inductive Step: over-approximates loops so all states can
be checked without unrolling them completely.

•  Might return spurious counterexamples.

Approach and Uniqueness

Counterexample-Guided

k-Induction

14

Counterexample-Guided k-Induction

•  The biggest limitation of k-induction is the fact that it performs three
checks for each k (i.e., base case, forward condition and inductive
step).

•  The inductive step is the most computationally expensive one;
it is an over-approximation, forcing the SMT solver to find a set of
assignments in a larger state space than the original program.

•  Moreover, the computation is wasted if a counterexample is found by
the inductive step, as it is assumed to be spurious.

15

Counterexample-Guided k-Induction

•  We propose to use the counterexample
generated by the inductive step to
speed up the bug finding check (i.e., the
base case).

•  Our extension converts the k-induction
algorithm into a bidirectional search
approach by searching simultaneously:

i. both forward (i.e., from the initial state);

ii.  backward (i.e., from the error state ξ
detected in the inductive step);

iii.  stop if both searches meet in the
middle.

16

Running Example

Original Program

17

Running Example

Original Program

18

Running Example

Original Program

Modified Program

19

Preliminary Results

Evaluate our k-induction algorithm
extension

20

Experiments

•  In order to evaluate our k-induction algorithm extension, we selected
a number of benchmarks from the International Competition on
Software Verification 2018.

•  We compare the results from the original k-induction and our
extended version.

Experimental setup. All experiments were conducted on a computer
with an Intel Core i7-2600 running at 3.40GHz and 24GB of RAM under
Fedora 25 64-bit. We used ESBMC v5.0 and no time or memory limit
was set for the verification tasks.

Availability of data & tools. Our experiments are based on a set of
publicly available benchmarks. All tools, benchmarks, and the results of
our evaluation are available on our web page http://esbmc.org/

21

Preliminary Results

•  Preliminary evaluation over the SV-COMP 2018 benchmarks.

22

Preliminary Results

•  Preliminary evaluation over the SV-COMP 2017 benchmarks

23

verification time is not related
to the number of steps or the

program size

Preliminary Results

•  Preliminary evaluation over the SV-COMP 2017 benchmarks

24

our extension to the k-induction
algorithm potentially cuts the

verification time considerably in cases
where the state space explored is large

Preliminary Results

•  Preliminary evaluation over the SV-COMP 2017 benchmarks

25

for small cases, our extension does not
slow things down or use more memory

than the original k-induction

Preliminary Results

•  Preliminary evaluation over the SV-COMP 2017 benchmarks

26

for large cases, the gains are
substantial (e.g., the verification time of

rangesum60.c is 504x faster)

Preliminary Results

•  Preliminary evaluation over the SV-COMP 2017 benchmarks

27

the speed up comes from requiring
roughly half the number of steps to find

a property violation

Contributions

A novel extension to the k-induction
algorithm

28

Contributions

•  Our main contribution is a novel extension to the k-induction
algorithm, to perform a bidirectional search instead of the
conventional iterative deepening search:

-  the preliminary results show that the extension has the
potential to substantially improve the verification time for
problems with large state space, while maintaining a small
verification time for small programs.

•  As future work, we plan to expand our evaluation over the SV-
COMP benchmarks, where the original k-induction algorithm
already proved to be the state-of-art, if compared to other k-
induction tools

29

–E. M. Clarke et al., Handbook of Model Checking, 2018.!

“The main challenge is scalability:
real-world software systems not only

include complex control and data
structure, but depend on much
"context" such as libraries and

interfaces to other code, including
lower-level systems code. As a result,

proving a software system correct
requires much more effort,

knowledge, training, and ingenuity
than writing the software in trial-and-

error style.”

30

