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Motivation


Why should we invest in software 
reliability?




Why should we invest in software reliability?


•  The ubiquity of embedded systems drives a need to test and 
validate a system before releasing it to the market, in order to 
protect against system failures. 


“Formal automated reasoning is one of 
the investments that AWS is making in 
order to facilitate continued 
simultaneous growth in both 
functionality and security.”


- Byron Cook, FLoC, 2018.
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Why should we invest in software reliability?


•  Embedded software must be as robust and bug-free as 
possible, given that even subtle system bugs can have 
drastic consequences: 


-  In April 2014, the Heartbleed was publicly disclosed, a 
security bug in the OpenSSL cryptography library, which is 
a widely used implementation of the Transport Layer 
Security (TLS) protocol."



-  “When it is exploited it leads to the leak of memory 
contents from the server to the client and from the client 
to the server.”


– Synopsys Inc., 2014.




In September 2018, attackers exploited three Facebook 
vulnerabilities and stole access tokens from as many as 50 
million users, in order to take over their accounts
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Propose a faster approach to detect bugs and 
prove correctness of a program


Our main goal is to…
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Improve the k-induction algorithm to work as a 
meet-in-the-middle bidirectional search by 

using the information from the counterexample


We demonstrate in this paper how to…
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Background


The k-Induction Algorithm


9




Bounded Model Checking


•  Basic Idea: given a transition system M, check negation of a given 
property φ up to given depth k:


•   Translated into a VC ψ such that: ψ is satisfiable iff φ has 
counterexample of max. depth k.


•  BMC tools are aimed at finding bugs; they cannot prove 
correctness, unless the bound k safely reaches all program states.
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{

BMC tools such as CBMC, ESBMC or LLBMC typically reproduce the loop 
k times (lines 4 – 7) and are unable to verify that program unless the loop is 

fully unrolled, i.e., the unwinding assertion fails if k < (2^32 − 1)


12




The k-induction Algorithm


I. Base case: usual BMC algorithm, tries to find a property 
violation.

•  Explores all states up to a bound k. Cannot prove 

correctness.

II. Forward Condition: checks the completeness threshold (if 

all loops were unrolled).

•  Cannot find bugs.


III.  Inductive Step: over-approximates loops so all states can 
be checked without unrolling them completely. 

•  Might return spurious counterexamples.




Approach and Uniqueness


Counterexample-Guided

k-Induction
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Counterexample-Guided k-Induction


•  The biggest limitation of k-induction is the fact that it performs three 
checks for each k (i.e., base case, forward condition and inductive 
step).


•  The inductive step is the most computationally expensive one; 
it is an over-approximation, forcing the SMT solver to find a set of 
assignments in a larger state space than the original program.


•  Moreover, the computation is wasted if a counterexample is found by 
the inductive step, as it is assumed to be spurious.
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Counterexample-Guided k-Induction


•  We propose to use the counterexample 
generated by the inductive step to 
speed up the bug finding check (i.e., the 
base case).


•  Our extension converts the k-induction 
algorithm into a bidirectional search 
approach by searching simultaneously:


i. both forward (i.e., from the initial state);


ii.  backward (i.e., from the error state ξ 
detected in the inductive step);


iii.   stop if both searches meet in the 
middle.
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Running Example

Original Program
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Running Example

Original Program
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Running Example

Original Program


Modified Program


19




Preliminary Results


Evaluate our k-induction algorithm 
extension
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Experiments


•  In order to evaluate our k-induction algorithm extension, we selected 
a number of benchmarks from the International Competition on 
Software Verification 2018.


•  We compare the results from the original k-induction and our 
extended version.


Experimental setup. All experiments were conducted on a computer 
with an Intel Core i7-2600 running at 3.40GHz and 24GB of RAM under 
Fedora 25 64-bit. We used ESBMC v5.0 and no time or memory limit 
was set for the verification tasks.


Availability of data & tools. Our experiments are based on a set of 
publicly available benchmarks. All tools, benchmarks, and the results of 
our evaluation are available on our web page http://esbmc.org/
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Preliminary Results


•  Preliminary evaluation over the SV-COMP 2018 benchmarks.
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Preliminary Results


•  Preliminary evaluation over the SV-COMP 2017 benchmarks
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verification time is not related 
to the number of steps or the 

program size




Preliminary Results


•  Preliminary evaluation over the SV-COMP 2017 benchmarks
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our extension to the k-induction 
algorithm potentially cuts the 

verification time considerably in cases 
where the state space explored is large




Preliminary Results


•  Preliminary evaluation over the SV-COMP 2017 benchmarks
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for small cases, our extension does not 
slow things down or use more memory 

than the original k-induction




Preliminary Results


•  Preliminary evaluation over the SV-COMP 2017 benchmarks
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for large cases, the gains are 
substantial (e.g., the verification time of 

rangesum60.c is 504x faster)




Preliminary Results


•  Preliminary evaluation over the SV-COMP 2017 benchmarks
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the speed up comes from requiring 
roughly half the number of steps to find 

a property violation 




Contributions


A novel extension to the k-induction 
algorithm
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Contributions


•  Our main contribution is a novel extension to the k-induction 
algorithm, to perform a bidirectional search instead of the 
conventional iterative deepening search:


-  the preliminary results show that the extension has the 
potential to substantially improve the verification time for 
problems with large state space, while maintaining a small 
verification time for small programs.


•  As future work, we plan to expand our evaluation over the SV-
COMP benchmarks, where the original k-induction algorithm 
already proved to be the state-of-art, if compared to other k-
induction tools
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–E. M. Clarke et al., Handbook of Model Checking, 2018.!

“The main challenge is scalability: 
real-world software systems not only 

include complex control and data 
structure, but depend on much 
"context" such as libraries and 

interfaces to other code, including 
lower-level systems code. As a result, 

proving a software system correct 
requires much more effort, 

knowledge, training, and ingenuity 
than writing the software in trial-and-

error style.”
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