Certified Private Inference on Neural Networks
via Lipschitz-Guided Abstraction Refinement

Edoardo Manino Bernardo Magri Mustafa A. Mustafa
Lucas C. Cordeiro

University of Manchester (UK)
This work is funded by the EPSRC grant EP/T026995/1 entitled “EnnCore:
End-to-End Conceptual Guarding of Neural Architectures” under Security for all
in an Al enabled society

é’% MANCHESTER
1824
EnnCore The University of Manchester

1/21

Private inference for neural networks

“bridge”

p

Vv

<

Client

An ideal model for third-party Al services
» The user sends out encrypted data
» The provider never sees the plaintext

» The user deciphers the NN output locally

» But how?

Server

2/21

Fully-homomorphic encryption

Main idea x Yy

x Yy
> enc(x+y) =
» enc(x)+enc(y)
> for all x,y

z enc(x) enc(y)
Current FHE

> “Fast” with +, *
» Slow otherwise
> (garbled circuits)

enc(z) enc(z)

Application to neural networks is non-trivial

» How do we do activation functions with only + and *?

» The whole NN needs to be a large polynomiall!

3/21

Polynomial activations (example)

— ReLU
—d;=1
Zi[|—d; =5 1

o
|

Activation (h(z)),

0

Potential z;

ISy
IS,

IS{
S

General issues with polynomial activations

» The polynomial is “stable” in a limited range only

» Higher-degree polynomials are more expensive to compute

4/21

Existing private inference schemes

Retrain from scratch
» E.g. CryptoNets [2016]
» Uses x? activations
» Gradient instability

Approximate & fine-tune

> E.g. DeepReDuce, SNL

> Low-degree poly
activations

» Escaping activation
problem

Neural architecture search
» E.g. Delphi, SAFENet
> Keep a few RelLUs
» Replace the rest

» Requires garbled circuits

Post-training approximation

> E.g. Lee's work
[2021-2022]

» High-degree poly
activations

» Equivalence problem

5/21

Our research goal

Setting

» To deploy a NN for
private inference

» Replace activations
with polynomials

» (post-training)

Objective

> Keep degree small

Activation (h(z)) ;

» Given target error*
> (fast & equivalent)

*Provide worst-case guarantees on

2l

Potential z;

the output error

6/21

Output error (1): average case vs worst case

0.10 —— layer 0
layer 1
0.08 —— layer 2
—— layer 3
2 —— layer 4
= 0.06 —— layer 5
5 —— layer 6
E 0.04 —— layer 7
layer 8
—— layer 9

0.02 —— layer 10

0.00

Layer

Figure: Attenuation of injected noise on a VGG-19 net trained on
CIFAR-10. A curve starts at the layer where a scaled Gaussian noise is
injected to its input (from Arora et al. ICML 2018).

Polynomial activations inject approximation error everywhere

» For most inputs x, the approximation errors cancel out

> However, we want to minimise maxy |f(x) — f(x)|

7/21

Output error (2): polynomial approximation abstraction

Input-independent guarantee
> [p(x)—act(x)| € [,]

> for any x € [XmimeaX]

Abstract the approximation

» For each activation i
> Add input ¢; € [—5,’,5,’]

1 - — o
T2 - - -= Y
T3 - -

Original Network Network Abstraction

8/21

Output error (3): potential

The abstraction is valid
> If the potentials

> are x; € [x/ . xi]

min>’
» For all activations i
The potential range
» Depends on both:
> The global input x

» And previous ¢;

Forward bound prop.
> xe X, e € [—(5,‘,5,‘]
» Use a SOTA method

range estimation

€] €9 €3 €4 €5

A NN

9/21

Output error (4): Lipschitz constant estimation

What we have so far €1 €2 €3 €4 €5

AU NN

» Start from x € X
» Bound propagation
> Add ¢ € [—(5,',(5,']

> As we go forward

What is the impact of each ¢; on the output error |y — y|?
» We need to compute the local Lipschitz constant L5
» Which guarantees |y — y| < > . L% max ¢
» Use SOTA methods to compute the Lipschitz constants:
» e.g. Shi et al.,, NeurlPS 2022 or Laurel et al., OOPSLA 2022

10/21

Optimisation (1): formalising the problem

Setting

> To deploy a NN for
private inference

Objective

> Keep poly degior small

o) » Given target error* §,
P> Replace activations with

. > *worst-case guarantees
polynomials

We can finally formalise it as an optimisation problem:
Minimise degtot = Zdegi(ei’xrininﬂxrinax) (1)
i

Subject to) L% < 4, (2)

And 0<¢ <¥¢;, Vi (3)

11/21

Optimisation (2): closed-form objective function

0.03 : ‘
—— Obj. Func.
Degree vs error 5 ——d; =5 Error
. A 0.02) |
» Minimax approx. ¥
. 2
» of continuous E
0.01 |
» activation func. §
~ -1
> e~ C,-/degl. 0 ‘ ‘
0 02 04 06 08 1

(0(z:) —o(2:))/(Zi — z)

The optimisation problem is convex!

. Ci(Xrinina Xrinax)
Minimise deg,,;, = Z T (4)
Subject to Y L <4y, 0<e <4 (5)

1

12/21

LiGAR (1): algorithmic challenges

The optimisation problem is convex, but. ..

T Ci(xrlnimxrlnax)
Minimise deg;.; = Z,: — (6)
Subject to Z L€ <0y, 0<¢ <0 (7)
i
Over-estimated coefficients Coefficient tightness

> L?Oax,';q,'n and Xrinax » ldeally, we set §; small
» depend on the domain J; > to tighten L, x . xi

> via bound propagation > but also let ¢; be large!

13/21

LiGAR (2): our iterative solution _
Given

» f neural net
> X input dom.

I
—>{ Repeat for ¢ € [0, 0] ‘ > 5y output err.
l

‘ {6;} + LargeGuess() ‘

‘ {28 iy T} PotelitialRanges (f, X, {61}) ‘ Estimated
‘ {L$°} + LipschitzConstants(f, {2, a0 }) ‘ > §; max err.
L » L[Lipschitz
‘ {Ci} «+ CostCoefficients ({22, Thae }) ‘
T > Xpmin low pot.
‘ {e;},v < OptimalPolyError ({C;, L, 6;},6,,) ‘ > Xnax Up pot.
I
>
‘ {6;} + TightenDomains({d;, ;}) ‘ Ci cost coeff.
I .
4{ Until v(t — 1) — v(t) < threshold ‘ Opt|m|sed
I » ¢; actual err.

‘ Return €(t*) where t* = arg min, v(t) ‘

> v obj. value

14 /21

Results (1): effects of polynomial approximation error

I I T T
3. 5 "0z, 0c =0
S) + wd,, 0. = 0.001
+ 4 |- |
f U T b
7 m,, 0. =0.
Og T ? u5,,5. = 0.03
N 10t |- N
% ==
2 T z *
— 10—2 - % |

—
o -
w
S
ot
D

Layer ID

0x, 0. measure the size of the input and error domains

» Smaller domains yield tighter estimates (esp. early layers)
» LiGAR may run 20-30 iterations to tighten §. for each /

15/21

Results (2): effects of worst-case guarantees

I I I I

é - = T T T

g 10—5 - = % |
< - T k&
f« 1077 | = I = T -

: = i
€3 == mj, =0
= 107° Fm wd, = 0.001 ||
;% = =), = 0.01
S 107 mo, =01 |

| | | | T T

1 2 3 4) 6
Layer ID
Pure sampling d, = 0 vs robust estimates 0, > 0

> To get guarantees, early layers will be conservative

» Sampled estimates yield uniform polynomial approximation

16/21

Results (3): effects of output error requirements

mj, =0.1

I
=
=]
bS =6, = 0.01 T
& 107 {ms, = 0.001 +
< =6, = 0.0001 |7 H
: — ¥
= *
B 1078 F +
& -
B =
) >
) 10—10 -
| | | | | |

1 2 3 4 5 6
Layer ID

Jy is the output error guarantee (design requirement)

» The optimisation constraint is > ; L7°¢; < 4,
» Linear effect on the optimal allocation of polynomial

error

17/21

Discussion (1): drawbacks of worst-case design

Precision vs speed
> Potential ranges
» Lipschitz constants
> are slow to compute

» and over-estimated

LiGAR equivalence
> We guarantee
> max, [|f(x) — f(X)Hoo
» which is not equal to

> classification accuracy

{d;} + LargeGuess ()

Repeat for ¢ € [0, 0]

‘ {&}in: Thar } < PotentialRanges(f, X', {0;}) ‘

‘ {L3} « LipschitzConstants(f, {z?,;,,, ¢}as }) ‘

“min>

‘ {Ci} « CostCoefficients ({a%,,,, 24,02 }) ‘

‘ {ei}, v« OptimalPolyError({Ci, L°,6;},6y,)

‘ {6;} + TightenDomains({5;, €;}) ‘

[
4{ Until v(t — 1) — v(t) < threshold‘
|

‘ Return €(t*) where ¢* = arg min, v(t) ‘

18/21

Discussion (2): generality of LiGAR's error abstraction

1 - — o
T — -
T3 - -

Original Network

]

Ir1 - -

T - -

I3 - -

€1 €2 €3 €4 €5
\

AN

Network Abstraction

Any kind of neuron-specific error injection is possible!

» Applicable to: quantised neural network design

» Applicable to: robustness against weight perturbation

» Collaboration potential ;-)

19/21

Discussion (3): future of private inference?

W
=0
W

“bridge” <

Client Server

Inference on Encrypted Data is Hard
» FHE schemes are order of magnitudes slower than plaintext
» Privacy vs speed tradeoff may not be worth it
» E.g. just focus on compressed NNs for edge computing?
> Time will tell. ..

20/21

Summary

Private inference on neural networks
» Run the NN on encrypted inputs
» Possible with FHE and polynomial activations

» Can we guarantee output equivalence?

LiGAR: Lipschitz-Guided Abstraction Refinement
» Polynomial error abstraction via neuron noise injection
P lterative algorithmic design alternates between
» Estimating potential ranges and Lipschitz constants

» Minimising the polynomial degree of each activation

Any question?

21/21

