
Certified Private Inference on Neural Networks
via Lipschitz-Guided Abstraction Refinement

Edoardo Manino Bernardo Magri Mustafa A. Mustafa
Lucas C. Cordeiro

University of Manchester (UK)
This work is funded by the EPSRC grant EP/T026995/1 entitled “EnnCore:

End-to-End Conceptual Guarding of Neural Architectures” under Security for all
in an AI enabled society

1 / 21

Private inference for neural networks

Client

“bridge”

Server

An ideal model for third-party AI services

▶ The user sends out encrypted data

▶ The provider never sees the plaintext

▶ The user deciphers the NN output locally

▶ But how?

2 / 21

Fully-homomorphic encryption

Main idea
▶ enc(x + y) =

▶ enc(x)+enc(y)

▶ for all x , y

Current FHE
▶ “Fast” with +, ∗
▶ Slow otherwise

▶ (garbled circuits)

x y

+

z

enc(z)

x y

enc(x) enc(y)

+

enc(z)

Application to neural networks is non-trivial

▶ How do we do activation functions with only + and ∗?
▶ The whole NN needs to be a large polynomial!

3 / 21

Polynomial activations (example)

zi 0 zi

0

zi

Potential zi

A
ct
iv
at
io
n
(h

(z
)) i

ReLU
di = 1
di = 5

General issues with polynomial activations

▶ The polynomial is “stable” in a limited range only

▶ Higher-degree polynomials are more expensive to compute

4 / 21

Existing private inference schemes

Retrain from scratch
▶ E.g. CryptoNets [2016]

▶ Uses x2 activations

▶ Gradient instability

Approximate & fine-tune

▶ E.g. DeepReDuce, SNL

▶ Low-degree poly
activations

▶ Escaping activation
problem

Neural architecture search
▶ E.g. Delphi, SAFENet

▶ Keep a few ReLUs

▶ Replace the rest

▶ Requires garbled circuits

Post-training approximation

▶ E.g. Lee’s work
[2021-2022]

▶ High-degree poly
activations

▶ Equivalence problem

5 / 21

Our research goal

Setting

▶ To deploy a NN for
private inference

▶ Replace activations
with polynomials

▶ (post-training)

Objective

▶ Keep degree small

▶ Given target error*

▶ (fast & equivalent)

x1

x2

x3

y

zi 0 zi

0

zi

Potential zi

A
ct
iv
a
ti
o
n
(h

(z
)) i

ReLU
di = 1
di = 5

*Provide worst-case guarantees on the output error

6 / 21

Output error (1): average case vs worst case

Figure: Attenuation of injected noise on a VGG-19 net trained on
CIFAR-10. A curve starts at the layer where a scaled Gaussian noise is
injected to its input (from Arora et al. ICML 2018).

Polynomial activations inject approximation error everywhere

▶ For most inputs x , the approximation errors cancel out

▶ However, we want to minimise maxx |f (x)− f̂ (x)|

7 / 21

Output error (2): polynomial approximation abstraction

Input-independent guarantee

▶ |p(x)−act(x)| ∈ [−δ, δ]
▶ for any x ∈ [xmin, xmax]

Abstract the approximation

▶ For each activation i

▶ Add input ϵi ∈ [−δi , δi]

xmin 0 xmax

0

xmax ReLU(x)

Poly5(x)

x1

x2

x3

y x2

x1

x3

ŷ

ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

Original Network Network Abstraction

8 / 21

Output error (3): potential range estimation

The abstraction is valid
▶ If the potentials

▶ are xi ∈ [x imin, x
i
max]

▶ For all activations i

The potential range

▶ Depends on both:

▶ The global input x

▶ And previous ϵj

Forward bound prop.

▶ x ∈ X , ϵi ∈ [−δi , δi]
▶ Use a SOTA method

xmin 0 xmax

0

xmax ReLU(x)

Poly5(x)

x2

x1

x3

ŷ

ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

9 / 21

Output error (4): Lipschitz constant estimation

What we have so far
▶ Start from x ∈ X
▶ Bound propagation

▶ Add ϵi ∈ [−δi , δi]
▶ As we go forward

x2

x1

x3

ŷ

ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

What is the impact of each ϵi on the output error |ŷ − y |?
▶ We need to compute the local Lipschitz constant L∞i
▶ Which guarantees |ŷ − y | ≤∑

i L
∞
i max |ϵi |

▶ Use SOTA methods to compute the Lipschitz constants:

▶ e.g. Shi et al., NeurIPS 2022 or Laurel et al., OOPSLA 2022

10 / 21

Optimisation (1): formalising the problem

Setting

▶ To deploy a NN for
private inference

▶ Replace activations with
polynomials

Objective

▶ Keep poly degtot small

▶ Given target error* δy

▶ *worst-case guarantees

We can finally formalise it as an optimisation problem:

Minimise degtot =
∑

i

degi (ϵi , x
i
min, x

i
max) (1)

Subject to
∑

i

L∞i ϵi ≤ δy (2)

And 0 ≤ ϵi ≤ δi , ∀i (3)

11 / 21

Optimisation (2): closed-form objective function

Degree vs error

▶ Minimax approx.

▶ of continuous

▶ activation func.

▶ ϵi ≈ Ci/deg
−1
i

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

(σ(zi)− σ(zi))/(zi − zi)

M
ax

A
p
p
ro
x
.
E
rr
o
r

Obj. Func.
di = 5 Error

The optimisation problem is convex!

Minimise degtot =
∑

i

Ci (x
i
min, x

i
max)

ϵi
(4)

Subject to
∑

i

L∞i ϵi ≤ δy , 0 ≤ ϵi ≤ δi (5)

12 / 21

LiGAR (1): algorithmic challenges

The optimisation problem is convex, but. . .

Minimise degtot =
∑

i

Ci (x
i
min, x

i
max)

ϵi
(6)

Subject to
∑

i

L∞i ϵi ≤ δy , 0 ≤ ϵi ≤ δi (7)

Over-estimated coefficients
▶ L∞i , x imin and x imax

▶ depend on the domain δi
▶ via bound propagation

Coefficient tightness

▶ Ideally, we set δi small

▶ to tighten L∞i , x imin, x
i
max

▶ but also let ϵi be large!

13 / 21

LiGAR (2): our iterative solution

{δi} ← LargeGuess
()

Repeat for t ∈ [0,∞]

{xi
min, x

i
max} ← PotentialRanges

(
f,X , {δi}

)

{L∞
i } ← LipschitzConstants

(
f, {xi

min, x
i
max}

)

{Ci} ← CostCoefficients
(
{xi

min, x
i
max}

)

{ϵi}, v ← OptimalPolyError
(
{Ci, L

∞
i , δi}, δy,

)

{δi} ← TightenDomains
(
{δi, ϵi}

)

Until v(t− 1)− v(t) < threshold

Return ϵ(t∗) where t∗ = argmint v(t)

Given
▶ f neural net

▶ X input dom.

▶ δy output err.

Estimated
▶ δi max err.

▶ L∞i Lipschitz

▶ xmin low pot.

▶ xmax up pot.

▶ Ci cost coeff.

Optimised

▶ ϵi actual err.

▶ v obj. value

14 / 21

Results (1): effects of polynomial approximation error

1 2 3 4 5 6

10−2

101

104

Layer ID

L
ip
sc
h
it
z
C
o
n
st
an

t
L
∞ i

δx, δϵ = 0
δx, δϵ = 0.001
δx, δϵ = 0.003
δx, δϵ = 0.01
δx, δϵ = 0.03

δx , δϵ measure the size of the input and error domains

▶ Smaller domains yield tighter estimates (esp. early layers)

▶ LiGAR may run 20-30 iterations to tighten δϵ for each i

15 / 21

Results (2): effects of worst-case guarantees

1 2 3 4 5 6

10−11

10−9

10−7

10−5

Layer ID

O
p
ti
m
a
l
E
rr
o
r
A
ll
o
ca
ti
on

δx = 0
δx = 0.001
δx = 0.01
δx = 0.1

Pure sampling δx = 0 vs robust estimates δx > 0

▶ To get guarantees, early layers will be conservative

▶ Sampled estimates yield uniform polynomial approximation

16 / 21

Results (3): effects of output error requirements

1 2 3 4 5 6

10−10

10−8

10−6

Layer ID

O
p
ti
m
a
l
E
rr
o
r
A
ll
o
ca
ti
on δy = 0.1

δy = 0.01
δy = 0.001
δy = 0.0001

δy is the output error guarantee (design requirement)

▶ The optimisation constraint is
∑

i L
∞
i ϵi ≤ δy

▶ Linear effect on the optimal allocation of polynomial error

17 / 21

Discussion (1): drawbacks of worst-case design

Precision vs speed

▶ Potential ranges

▶ Lipschitz constants

▶ are slow to compute

▶ and over-estimated

LiGAR equivalence

▶ We guarantee

▶ maxx ||f (x)− f̂ (x)||∞
▶ which is not equal to

▶ classification accuracy

{δi} ← LargeGuess
()

Repeat for t ∈ [0,∞]

{xi
min, x

i
max} ← PotentialRanges

(
f,X , {δi}

)

{L∞
i } ← LipschitzConstants

(
f, {xi

min, x
i
max}

)

{Ci} ← CostCoefficients
(
{xi

min, x
i
max}

)

{ϵi}, v ← OptimalPolyError
(
{Ci, L

∞
i , δi}, δy,

)

{δi} ← TightenDomains
(
{δi, ϵi}

)

Until v(t− 1)− v(t) < threshold

Return ϵ(t∗) where t∗ = argmint v(t)

18 / 21

Discussion (2): generality of LiGAR’s error abstraction

x1

x2

x3

y x2

x1

x3

ŷ

ϵ1 ϵ2 ϵ3 ϵ4 ϵ5

Original Network Network Abstraction

Any kind of neuron-specific error injection is possible!

▶ Applicable to: quantised neural network design

▶ Applicable to: robustness against weight perturbation

▶ Collaboration potential ;-)

19 / 21

Discussion (3): future of private inference?

Client

“bridge”

Server

Inference on Encrypted Data is Hard

▶ FHE schemes are order of magnitudes slower than plaintext

▶ Privacy vs speed tradeoff may not be worth it

▶ E.g. just focus on compressed NNs for edge computing?

▶ Time will tell. . .

20 / 21

Summary

Private inference on neural networks
▶ Run the NN on encrypted inputs

▶ Possible with FHE and polynomial activations

▶ Can we guarantee output equivalence?

LiGAR: Lipschitz-Guided Abstraction Refinement

▶ Polynomial error abstraction via neuron noise injection

▶ Iterative algorithmic design alternates between

▶ Estimating potential ranges and Lipschitz constants

▶ Minimising the polynomial degree of each activation

Any question?

21 / 21

