
Bounded Model Checking of C++ Programs
based on the Qt Cross-Platform Framework  

(Journal-First Abstract)

Felipe R. Monteiro
Mário A. P. Garcia

Lucas C. Cordeiro

Eddie B. de Lima Filho

Bounded Model Checking of C++ Programs
based on the Qt Cross-Platform Framework

Felipe R. Monteiro, Mário A. P. Garcia, Lucas C. Cordeiro, and Eddie B. de Lima Filho

Federal University of Amazonas

33rd IEEE/ACM International Conference on Automated Software Engineering

Motivation

Why should we ensure software
reliability?

Why should we ensure software reliability?

• Consumer electronic products must be as robust
and bug-free as possible, given that even medium
product-return rates tend to be unacceptable

•

Not only
safety-critical

systems

“Engineers reported the static analyser
Infer was key to build a concurrent
version of Facebook app to the Android
platform.”

- Peter O’Hearn, FLoC, 2018.

Why should we ensure software reliability?

• Consumer electronic products must be as robust
and bug-free as possible, given that even medium
product-return rates tend to be unacceptable

- In 2014, Apple revealed a bug known as
Gotofail, which was caused by a single
misplaced “goto” command in the code

- “Impact: An attacker with a privileged network
position may capture or modify data in sessions
protected by SSL/TLS”

– Apple Inc., 2014.

•

Why should we ensure software reliability?

• Consumer electronic products must be as robust
and bug-free as possible, given that even medium
product-return rates tend to be unacceptable

- In 2014, Apple revealed a bug known as
Gotofail, which was caused by a single
misplaced “goto” command in the code

- “Impact: An attacker with a privileged network
position may capture or modify data in sessions
protected by SSL/TLS”

– Apple Inc., 2014.

- “Mozilla browser has around 20,000 open bugs”
– Michail, Amir. ICSE, 2005.

•

Industry NEEDS Formal Verification

“There has been a tremendous amount of
valuable research in formal methods, but
rarely have formal reasoning techniques
been deployed as part of the
development process of large industrial
codebases.”

- Peter O’Hearn, FLoC, 2018.

“Formal automated reasoning is one of
the investments that AWS is making in
order to facilitate continued simultaneous
growth in both functionality and security.”

- Byron Cook, FLoC, 2018.

Extend the analysis power of model checkers
through operational models to support linked

libraries and frameworks

Our main goals is to…

Apply model checking techniques to formally
verify Qt-based applications

We demonstrate in this paper how to…

Background

Model Checking

Bounded Model Checking

• Basic Idea: given a transition system M, check negation of a given
property φ up to given depth k

• Translated into a VC ψ such that: ψ is satisfiable iff φ has
counterexample of max. depth k

• BMC has been applied successfully to verify (embedded) software
since early 2000’s.

. . .
M0 M1 M2 Mk-1

¬j0 ¬j1 ¬j2 ¬jk-1 ¬jkÚ Ú Ú Ú

Counterexample trace

Transition
System

Property

BoundMk

Explicit-State Model Checking

• Basic Idea: represent state transition graph explicitly
- also represents the system as a finite-state machine
- states are enumerated on-the-fly
- forward analysis

• Some characteristics
- memory intensive
- good for finding concurrency

erros
- this approach can handle

dynamic creation of objects/
threads

Qt Cross-Platform Framework

• Qt framework provides programs that run
on different hardware/software platforms,
with as few changes as possible, while
maintaining the same power and speed

• Its libraries are organised into modules
that rely on two main cores:
- QtCore – contains all non-graphical

core classes
- QtGUI – provides a complete

abstraction for the Graphical User
Interface

8 of Top 10 Fortune 500 use

Qt in Action

 fights skin cancer with a
lightning-fast and low-cost diagnostics
device built with Qt

Panasonic Avionics Inflight
Entertainment is built with Qt

“To fulfil on its vision as a single OS running on a full range of
displays, interfaces and inputs Ubuntu relies on Qt to create
the rich visual components which deliver the Ubuntu User
Interface that is familiar to the many millions of Ubuntu users.”

Richard Collins, Ubuntu Mobile Product Manager at Canonical

Qt in Action

 fights skin cancer with a
lightning-fast and low-cost diagnostics
device built with Qt

Panasonic Avionics Inflight
Entertainment is built with Qt

“To fulfil on its vision as a single OS running on a full range of
displays, interfaces and inputs Ubuntu relies on Qt to create
the rich visual components which deliver the Ubuntu User
Interface that is familiar to the many millions of Ubuntu users.”

Richard Collins, Ubuntu Mobile Product Manager at Canonical

All applications use QtCore and QtGUI modules

Approach and Uniqueness

Qt Operational Model

Qt Operational Model

• QtOM is a simplified representation that considers the structure of
each Qt library and its associated classes, including attributes,
method signatures, and function prototypes.

Model
Checker

Property holds up to bound k

Property violation

Counterexample

Verification Successful

Qt/C++
Source Code

Scan

Qt Operational Model

• QtOM is a simplified representation that considers the structure of
each Qt library and its associated classes, including attributes,
method signatures, and function prototypes.

Model
Checker

Property holds up to bound k

Property violation

Counterexample

Verification Successful

Qt/C++
Source Code

Scan

Standard model checkers could
not handle such programs due to
high complexity of Qt framework

Qt Operational Model

• QtOM is a simplified representation that considers the structure of
each Qt library and its associated classes, including attributes,
method signatures, and function prototypes
- QtOM also includes assertions, which ensure that specific Qt

related properties are formally checked

Model
Checker

Property holds up to bound k

Property violation

Counterexample

Verification Successful

Qt Operational
Model

Qt/C++
Source Code Scan

Scan

Adding
assertions

Extract/Identify
structure/properties

Qt
Documentation

Qt Operational Model

• QtOM is a simplified representation that considers the structure of
each Qt library and its associated classes, including attributes,
method signatures, and function prototypes
- QtOM also includes assertions, which ensure that specific Qt

related properties are formally checked

Model
Checker

Property holds up to bound k

Property violation

Counterexample

Verification Successful

Qt Operational
Model

Qt/C++
Source Code Scan

Scan

Adding
assertions

Extract/Identify
structure/properties

Qt
Documentation

QtOM is an additional
extension for the Efficient

SMT-based Context-Bounded
Model Checker (ESBMC)

Qt Operational Model

• QtOM is a simplified representation that considers the structure of
each Qt library and its associated classes, including attributes,
method signatures, and function prototypes
- QtOM also includes assertions, which ensure that specific Qt

related properties are formally checked

State
Analysis

Property holds up to bound k

Property violation

Counterexample

Verification Successful

CLang
Compiler

Qt/C++
Source Code

Replacing Qt
Standard Libraries

Qt Operational
Model

LLVM IR

ILR

LTL Safety
Properties

Solver

DiVinE

LLBMC

Qt Operational Model

• QtOM is a simplified representation that considers the structure of
each Qt library and its associated classes, including attributes,
method signatures, and function prototypes
- QtOM also includes assertions, which ensure that specific Qt

related properties are formally checked

State
Analysis

Property holds up to bound k

Property violation

Counterexample

Verification Successful

CLang
Compiler

Qt/C++
Source Code

Replacing Qt
Standard Libraries

Qt Operational
Model

LLVM IR

ILR

LTL Safety
Properties

Solver

DiVinE

LLBMC

Due to the QtOM
versatility, it is also possible

to connect it to the
verification processes of
LLBMC and DIVINE

Building Operational Models

• We base the development process of operational models in the
documentation of the target framework
- Identify the structure of the framework, focusing on portions (e.g.,

most used libraries and classes)

…

QtGUI

QtCore

Qt Documentation

class Q_CORE_EXPORT QFile : public
QFileDevice
{

...
QString fileName() const;
void setFileName(const QString &name);
...

};

Building Operational Models

• We base the development process of operational models in the
documentation of the target framework
- Identify each property to be verified and transcript them into

assertions (i.e., pre- and postconditions)

…

QtGUI

QtCore

Qt Documentation

class Q_CORE_EXPORT QFile : public
QFileDevice
{

...
QString fileName() const;
void setFileName(const QString &name);
...

};

• Extract/Identify
structure/properties

Building Operational Models

• We base the development process of operational models in the
documentation of the target framework
- QtOM is an abstract representation, which is used to identify

elements and verify specific properties related to such structures

…

QtGUI

QtCore

Qt Documentation

class Q_CORE_EXPORT QFile : public
QFileDevice
{

...
QString fileName() const;
void setFileName(const QString &name);
...

};

• Extract/Identify
structure/properties

…

QtGUI O. M.

QtCore O. M.
Qt Operational Model

Building Operational Models

• We base the development process of operational models in the
documentation of the target framework
- QtOM is an abstract representation, which is used to identify

elements and verify specific properties related to such structures

…

QtGUI

QtCore

Qt Documentation

class Q_CORE_EXPORT QFile : public
QFileDevice
{

...
QString fileName() const;
void setFileName(const QString &name);
...

};

• Extract/Identify
structure/properties

…

QtGUI O. M.

QtCore O. M.
Qt Operational Model

class QFile {
...
void setFileName(const QString & name){

__ESBMC_assert(!name.isEmpty(),
"The string must not be empty");
__ESBMC_assert(!this->isOpen(),
"The file must be closed");

}
...

};

Building Operational Models

• We base the development process of operational models in the
documentation of the target framework
- QtOM is an abstract representation, which is used to identify

elements and verify specific properties related to such structures

…

QtGUI

QtCore

Qt Documentation

class Q_CORE_EXPORT QFile : public
QFileDevice
{

...
QString fileName() const;
void setFileName(const QString &name);
...

};

• Extract/Identify
structure/properties

…

QtGUI O. M.

QtCore O. M.
Qt Operational Model

class QFile {
...
void setFileName(const QString & name){

__ESBMC_assert(!name.isEmpty(),
"The string must not be empty");
__ESBMC_assert(!this->isOpen(),
"The file must be closed");

}
...

};

• Assertions additions
are of paramount
importance, given
that they ultimately
allow formal property
verification

Operational Models for Containers

"The Qt library provides a set of general purpose template-based
container classes. These classes can be used to store items of a
specified type. For example, if you need a resizable array of QStrings, use
QVector<QString>."

The Qt Company Ltd., 2018.

• Qt sequential containers are built
into a structure to store elements,
in a certain sequential order.

• Note that all methods, from those
libraries, can be expressed as
simplified variations of 3 main
operations:
- insertion C.insert (I, V, N)
- deletion C.erase (I)
- search C.search (V)

…

!"#"
#$%&' =)

Pointer

*+,$ = 3

Iterator

Memory

http://doc.qt.io/archives/qt-4.8/porting4.html#qstring
http://doc.qt.io/archives/qt-4.8/qvector.html
http://doc.qt.io/archives/qt-4.8/porting4.html#qstring

Operational Models for Containers

"The Qt library provides a set of general purpose template-based
container classes. These classes can be used to store items of a
specified type. For example, if you need a resizable array of QStrings, use
QVector<QString>."

The Qt Company Ltd., 2018.

• Qt associative containers connects
each key, of a certain type K, to a
value, of a certain type V, where
associated keys are stored in order.

• Note that all methods, from those
l ibraries, can be expressed as
simplified variations of three main
operations:

- insertion C.insert (I, V, N)
- deletion C.erase (I)
- search C.search (K)

…

!"#"
#$%&' =)

Pointer I

*+,$ = -.

Iterator I

Memory I

…
Memory II

!"#"
Pointer II Iterator II#$%&' =) *+,$ = -.

http://doc.qt.io/archives/qt-4.8/porting4.html#qstring
http://doc.qt.io/archives/qt-4.8/qvector.html
http://doc.qt.io/archives/qt-4.8/porting4.html#qstring

Experimental
Evaluation

Evaluate the soundness of
DSVerifier

Setup
• Our set of benchmarks contains 711 Qt/C++ programs (12,903 LOC).

- 353 out of the 711 benchmarks contain bugs (i.e., 49.65%) and
- 358 are flawless (i.e., 50.35%).

• The mentioned benchmarks are split into ten main suites: QHash, QLinkedList, QList,
QMap, QMultiHash, QMultiMap, QQueue, QSet, QStack, and QVector.

• ESBMC 1.25.4
- Z3 v4.0, Boolector v2.0.1, and Yices 2 v4.1

• LLBMC v2013.1

• DiVinE v3.3.2

• All experiments were conducted on an otherwise idle Intel Core i7-4790, with 3.60 GHz
clock and 24 GB (22 GB of RAM and 2 GB of swap space), running Fedora OS (64 bits)

• The time and memory limits, for each benchmark, were set to 600 seconds and 22 GB,
respectively.

Conformance Testing
• the basic idea is to compare the behaviour of standard Qt libraries to QtOM, with the goal of

measuring their similarity

• they all contain pre- and postconditions, with the goal to ensure that a (given) predicate holds
before and after the execution of a (given) function

94.67%

91.92%

100.00% 100.00%

97.87%

97.38%

98.85%

97.58%

100.00% 100.00%

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

QHash QMap QMultiHash QMultiMap QSet QVector QLinkedList QList QQueue QStack

Associative Containers Sequential Containers

Qt Standard Libraries v5.2.1 Qt Operational Model

Conformance Testing
• the basic idea is to compare the behaviour of standard Qt libraries to QtOM, with the goal of

measuring their similarity

• they all contain pre- and postconditions, with the goal to ensure that a (given) predicate holds
before and after the execution of a (given) function

94.67%

91.92%

100.00% 100.00%

97.87%

97.38%

98.85%

97.58%

100.00% 100.00%

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

QHash QMap QMultiHash QMultiMap QSet QVector QLinkedList QList QQueue QStack

Associative Containers Sequential Containers

Qt Standard Libraries v5.2.1 Qt Operational Model

Pedro de la Cámara and J. Raúl Castro and María-del-Mar Gallardo and Pedro Merino.
Verification support for ARINC-653-based avionics software. Softw. Test., Verif. Reliab.
2011; 21(4):267–298, doi:10.1002/stvr.422.

SMT Solver Evaluation
• It is widely known that different SMT solvers can heavily affect the verification process, therefore,

verification using the three mentioned SMT solvers were performed: Z3, Boolector, and Yices

• The results are evaluated by means of coverage (i.e., percentage of correct verifications) and
verification time

Comparison Against Model Checkers
• A comparison regarding the performance of LLBMC and ESBMC, which are SMT-based BMC

model checkers, and DIVINE, which employs explicit-state model checking, was carried out

• LLBMC detected 95% (in 2513.5 seconds) and DiVinE found 92% (in 14722.4 seconds) of the
existing bugs, overcoming ESBMC that detects 89.2% (in 1760 seconds)

0

500

1000

1500

2000

2500

3000

3500

QHash QMap QMultiHash QMultiMap QSet QLinkedList QList QVector QQueue QStack

Associative Containers Sequential Containers

ESBMC

LLBMC

DIVINEC
PU

 T
im

e
(in

 s
ec

on
ds

)

Comparison Against Model Checkers

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

QHash QMap QMultiHash QMultiMap QSet QVector QLinkedList QList QQueue QStack

Associative Containers Sequential Containers

ESBMC

LLBMC

DIVINE

• A comparison regarding the performance of LLBMC and ESBMC, which are SMT-based BMC
model checkers, and DIVINE, which employs explicit-state model checking, was carried out

• LLBMC detected 95% (in 2513.5 seconds) and DiVinE found 92% (in 14722.4 seconds) of the
existing bugs, overcoming ESBMC that detects 89.2% (in 1760 seconds)

Contributions

QtOM was expanded, in order to
include new features from the main
Qt modules: Qt GUI and QtCore.

Contributions

• the support for sequential and associative template-based
containers

• the integration of QtOM into the verification process of the
state-of-the-art C++ verifies DIVINE and LLBMC

• the verification of two Qt-based applications known as
Locomaps and GeoMessage

• As future work, the developed QtOM will be extended, in
order to fully support the verification of
i.multi-threaded Qt software
ii.Qt Event System

–E. M. Clarke et al., Handbook of Model Checking, 2018.

“The main challenge is scalability:
real-world software systems not only

include complex control and data
structure, but depend on much
"context" such as libraries and

interfaces to other code, including
lower-level systems code. As a result,

proving a software system correct
requires much more effort,

knowledge, training, and ingenuity
than writing the software in trial-and-

error style.”

