
ESBMC v7.7：Automating Branch
Coverage Analysis Using CFG-

Based Instrumentation and SMT Solving
Author: Chenfeng Wei

Chenfeng.wei@machester.ac.uk

Co-Authors: Tong Wu, Rafael Sa Menezes, Fedor Shmarov, Fatimah Aljaafari,

Sangharatna Godboley, Kaled Alshmrany,

Rosiane de Freitas, Lucas C. Cordeiro

Contributors

Mr. Chenfeng Wei Mr. Tong Wu Mr. Rafael Menezes Dr. Fedor Shmarov Dr. Fatimah Aljaafari

Dr.
Sangharatna Godboley

Dr.
Kaled Alshmrany

Dr.
Rosiane de Freitas

Dr.
Lucas C. Cordeiro

ESBMC Team

Motivation

ESBMC, a bounded model checking (BMC) verifier based on SMT solving, has

proven its effectiveness in bug detection in recent competitions.

However, it has never participated in the evaluation of the Cover-Branches

category due to the lack of:

• Branch coverage analysis

• Automated test suite generation

Contribution

To bridge this gap, we present ESBMC v7.7 with the following key contributions:

• Branch Coverage Instrumentation

– Instrumentation & Isolation

• Incremental Multiple Property Verification
– Property Splitting & Incremental Reasoning

– Re-verification & Termination

– Test Generation

Framework

Stage 1

Simplification

We apply our algorithm upon GOTO program, i.e., Control

Flow Graph (CFG).

Simplification: In the Goto program, control-flow

constructs such as if-else statements, while loops, for loops,

and switch-case statements are normalized into if-goto

structures.

esbmc exp.c --goto2c &> exp2.c

Instrumentation
Instrumentation: to entry a branch guarded by condition

like if(cond), there must exist an assignment that satisfies

cond. This is equivalent to checking if a counterexample

satisfies assert(!cond)

• True Branch: the body executes

• False Branch: the body is skipped

if(cond) => True branch: assert(!cond)
 => False branch: assert(!(!cond))

Instrumentation

Isolation

Isolation: Potential interferences are excluded to isolate the

analysis of instrumented coverage properties from others.

• User-defined properties, i.e. assertions, are converted into

tautologies

• Internal safety checks within ESBMC are disabled

assert(a[i]>0) => assert(True)

/* assert(y!=0) */
Double z = x / y

Isolation

Stage 2

SymEx & Splitting

• The CFG get symbolic executed within defined bounds

(e.g., through loop unrolling) and is eventually encoded

as a verification condition (VC).

• In ESBMC, the VC is an SMT formula incorporating:

– Constraints (execution conditions, C)

– Properties (expected behaviours, P)

• To let ESBMC verify multiple properties, we split the

property P into a set of unit properties 𝑷𝒊

Incremental Reasoning

https://ssvlab.github.io/esbmc/documentation.html#k-induction

Issue:

• Normally, BMC verifies system behavior only up to a fixed bound k, once this

threshold is reached, it terminates. The verification result becomes unknown.

• As a consequence, some branch paths may be missed.

How about we set a relatively large k (e.g. 100)?

• No guarantee of soundness: Larger k increases depth but doesn't ensure that all

paths are covered or that unreachability is proved.

• Inefficiency: Large bounds might lead to state-space explosion

https://ssvlab.github.io/esbmc/documentation.html#k-induction

Incremental Reasoning

https://ssvlab.github.io/esbmc/documentation.html#k-induction

Aid: Use incremental reasoning (e.g. k-induction) to automatically extend

verification beyond bound k

➢ It checks that a property holds up to a bound (𝑘)

➢ It proves that if it holds at (𝑘), it also holds at (𝑘 + 1)

In ESBMC, this can be summaries as three steps:

• Base Case: Check if the program is correct up to (𝑘) steps (normal BMC).

• Forward Reasoning: prove that all loops in the program were fully unrolled.

• Inductive Step: If it is good up to (𝑘), prove it's still good for (𝑘 + 1).

https://ssvlab.github.io/esbmc/documentation.html#k-induction

Recall: Instrumentation

Incremental Reasoning

!(!return_value$___VERIFIER_nondet_bool$1)

!return_value$___VERIFIER_nondet_bool$1

!(!(!(_Bool)x))

!(!(_Bool)x)

!(!(x == 1))

!(x == 1)

K=1

!(!(!(_Bool)x))

!(!(x == 1))

!(x == 1)

K=2 !(!(x == 1))

K=3

K=4 Terminate
Termination:

a) all remaining coverage properties are proven during

forward reasoning

b) all properties are reduced to tautologies and removed

through slicing, leaving no properties for further verification

Re-verification: if any property 𝑷𝒊 remains unknown, a

verification re-run is initiated

Result

Test Generation

• Test Generation: whenever a property 𝑷𝒊 violation is reported.

Assignments with nondeterministic initial values are extracted

from the traces and transformed into corresponding test suites.

Result

ESBMC ranked around 7th–8th among all participants in Cover-Branches

category at Test-Comp 2025.

Here, ESBMC-incr performs slightly better, mostly due to different unwinding configuration.

Software Project

ESBMC is open-source under the Apache License 2.0, and its C++ source code is

publicly available on GitHub: https://github.com/esbmc/esbmc/

The official website is available at: https://esbmc.org

https://github.com/esbmc/esbmc/
https://esbmc.org/

Software Project

Thank you!

	Slide 1
	Slide 2: Contributors
	Slide 3: Motivation
	Slide 4: Contribution
	Slide 5: Framework
	Slide 6: Stage 1
	Slide 7: Simplification
	Slide 8
	Slide 9: Instrumentation
	Slide 10: Instrumentation
	Slide 11: Isolation
	Slide 12: Isolation
	Slide 13: Stage 2
	Slide 14: SymEx & Splitting
	Slide 15: Incremental Reasoning
	Slide 16: Incremental Reasoning
	Slide 17: Recall: Instrumentation
	Slide 18: Incremental Reasoning
	Slide 19: Result
	Slide 20: Test Generation
	Slide 21: Result
	Slide 22: Software Project
	Slide 23: Software Project

