
Neural Network Verification is a Programming
Language Challenge

Lucas C. Cordeiro1 Matthew L. Daggitt2 Julien
Girard-Satabin3 Omri Isac4 Taylor T. Johnson5 Guy
Katz4 Ekaterina Komendantskaya6,7 Augustin Lemesle3

Edoardo Manino1 Artjoms Šinkarovs6 Haoze Wu8

1University of Manchester, UK
2University of Western Australia, Australia

3Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
4Hebrew University of Jerusalem, Israel

5Vanderbilt University, USA
6Southampton University, UK
7Heriot-Watt University, UK

8Amherst College, USA

ESOP - 7 May 2025

1 / 20

The textbook ML workflow

NN Property
(optimisation objective)

NN Training
Original NN

Implementation

Three ingredients

▶ Property. Expressed as a loss function

▶ Training. Empirical risk minimisation over finite data

▶ Implementation. ML frameworks, HW accelerators

2 / 20

The textbook ML workflow

NN Property
(optimisation objective)

NN Training
Original NN

Implementation

Three ingredients

▶ Property. Expressed as a loss function

▶ Training. Empirical risk minimisation over finite data

▶ Implementation. ML frameworks, HW accelerators

2 / 20

Adversarial attacks

3 / 20

Adversarial attacks

Vision
▶ “Please make the neural network safe”

3 / 20

Adversarial attacks

Local robustness property

▶ For each image x in the training set

▶ Define a small local set of perturbations ||x − x ′|| ≤ ε

▶ Ensure output class is argmax{f (x)} = argmax{f (x ′)}

3 / 20

Adversarial attacks

Programming languages interpretation

▶ Refinement type for f with predicate

▶ ∀x , ||x − x ′|| ≤ ε =⇒ ||f (x)− f (x ′)|| ≤ δ

3 / 20

Other “desirable” properties

A high-level taxonomy

▶ Geometric properties. Defined along the data manifold.
Examples: local robustness and equivalence, fairness.

▶ Hyper-properties. Must hold for any inputs.
Examples: global robustness and equivalence, monotonicity.

▶ Domain specific. Based on semantic of ML task.
Examples: arbitrary pre- and post-conditions.

4 / 20

Other “desirable” properties

A high-level taxonomy

▶ Geometric properties. Defined along the data manifold.
Examples: local robustness and equivalence, fairness.

▶ Hyper-properties. Must hold for any inputs.
Examples: global robustness and equivalence, monotonicity.

▶ Domain specific. Based on semantic of ML task.
Examples: arbitrary pre- and post-conditions.

4 / 20

Other “desirable” properties

A high-level taxonomy

▶ Geometric properties. Defined along the data manifold.
Examples: local robustness and equivalence, fairness.

▶ Hyper-properties. Must hold for any inputs.
Examples: global robustness and equivalence, monotonicity.

▶ Domain specific. Based on semantic of ML task.
Examples: arbitrary pre- and post-conditions.

4 / 20

Neural network verification

NN Property
(optimisation objective)

NN Training
Original NN

Implementation

Vision (v2)

▶ “Please check whether the neural network is safe”

Solution

▶ Property*. Define what “safe” means.

▶ Implementation*. Abstract away SW/HW details.

▶ Verification. Run a state-of-the-art verifier.

5 / 20

Neural network verification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training
Original NN

Implementation

Vision (v2)

▶ “Please check whether the neural network is safe”

Solution
▶ Property*. Define what “safe” means.

▶ Implementation*. Abstract away SW/HW details.

▶ Verification. Run a state-of-the-art verifier.

5 / 20

Neural network verification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training
Original NN

Implementation

Verifier friendly
Implementation∗

Vision (v2)

▶ “Please check whether the neural network is safe”

Solution
▶ Property*. Define what “safe” means.

▶ Implementation*. Abstract away SW/HW details.

▶ Verification. Run a state-of-the-art verifier.

5 / 20

Neural network verification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Vision (v2)

▶ “Please check whether the neural network is safe”

Solution
▶ Property*. Define what “safe” means.

▶ Implementation*. Abstract away SW/HW details.

▶ Verification. Run a state-of-the-art verifier.

5 / 20

6 / 20

Existing verification pipeline (1)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Objective

▶ Given a neural network f : Rn → R
m

▶ Prove that property Ξ(f) holds

State of the art
▶ f is expressed as ONNX or other exchange format

▶ Tools: Marabou, αβ-CROWN, PyRAT, NNV, ERAN. . .

▶ accept Ξ(f) as linear pre- and post-conditions on f

▶ usually expressed in VNN-LIB format1

1International competition: VNN-COMP (since 2020)
7 / 20

Existing verification pipeline (1)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Objective

▶ Given a neural network f : Rn → R
m

▶ Prove that property Ξ(f) holds

State of the art
▶ f is expressed as ONNX or other exchange format

▶ Tools: Marabou, αβ-CROWN, PyRAT, NNV, ERAN. . .

▶ accept Ξ(f) as linear pre- and post-conditions on f

▶ usually expressed in VNN-LIB format1

1International competition: VNN-COMP (since 2020)
7 / 20

Existing verification pipeline (2)

Established specification language

▶ Given a neural network f : Rn → R
m in ONNX

▶ Prove that property Ξ(f), written in VNN-LIB, holds

Challenges

▶ Cannot write properties on two networks f1, f2
▶ Properties must list all I/O entries explicitly

▶ No formal semantics and syntax for VNN-LIB/ONNX

▶ Cannot automatically bind to dataset entries

▶ No probabilistic properties

Existing solutions

▶ CAISAR: WhyML-like specification language

▶ Vehicle: dependent-typed functional language

8 / 20

Existing verification pipeline (2)

Established specification language

▶ Given a neural network f : Rn → R
m in ONNX

▶ Prove that property Ξ(f), written in VNN-LIB, holds

Challenges

▶ Cannot write properties on two networks f1, f2
▶ Properties must list all I/O entries explicitly

▶ No formal semantics and syntax for VNN-LIB/ONNX

▶ Cannot automatically bind to dataset entries

▶ No probabilistic properties

Existing solutions

▶ CAISAR: WhyML-like specification language

▶ Vehicle: dependent-typed functional language

8 / 20

Existing verification pipeline (2)

Established specification language

▶ Given a neural network f : Rn → R
m in ONNX

▶ Prove that property Ξ(f), written in VNN-LIB, holds

Challenges

▶ Cannot write properties on two networks f1, f2
▶ Properties must list all I/O entries explicitly

▶ No formal semantics and syntax for VNN-LIB/ONNX

▶ Cannot automatically bind to dataset entries

▶ No probabilistic properties

Existing solutions

▶ CAISAR: WhyML-like specification language

▶ Vehicle: dependent-typed functional language

8 / 20

The embedding gap (1)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Objective

▶ We want to prove a system property Ψ(s(·))
▶ But the system s includes a neural network f

with (un-) embedding functions u ◦ f ◦ e

Strategy

▶ We decompose it as
Ξ(f) =⇒ Φ(u ◦ f ◦ e) =⇒ Ψ(s(u ◦ f ◦ e))

▶ where
Ξ(f) is a property of the neural network alone
Φ(u ◦ f ◦ e) maps it back to the problem space

9 / 20

The embedding gap (1)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Objective

▶ We want to prove a system property Ψ(s(·))
▶ But the system s includes a neural network f

with (un-) embedding functions u ◦ f ◦ e

Strategy

▶ We decompose it as
Ξ(f) =⇒ Φ(u ◦ f ◦ e) =⇒ Ψ(s(u ◦ f ◦ e))

▶ where
Ξ(f) is a property of the neural network alone
Φ(u ◦ f ◦ e) maps it back to the problem space

9 / 20

The embedding gap (2)

Objective

▶ We want to prove a system property Ψ

▶ We decompose it as
Ξ(f) =⇒ Φ(u ◦ f ◦ e) =⇒ Ψ(s(u ◦ f ◦ e))

Embedding
gap

Problem space Embedding space

Specification
of Φ, e, u

Specification
language

Training
with Ξ

Training platform
Tensorflow etc.

Verification
of Ξ

NN Verifiers
Marabou etc.

Integration
of Φ with Ψ

ITPs
Agda etc.

Figure: Outline of Vehicle compiler backends.

10 / 20

The implementation gap (1)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Mismatch in numerical types

▶ Original implementation → finite precision

▶ Verified implementation → real-valued arithmetic

Floating-point arithmetic

▶ Real-valued certificates do not hold anymore!

Quantised neural networks

▶ Require reasoning about integer arithmetic

11 / 20

The implementation gap (1)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Mismatch in numerical types

▶ Original implementation → finite precision

▶ Verified implementation → real-valued arithmetic

Floating-point arithmetic

▶ Real-valued certificates do not hold anymore!

Quantised neural networks

▶ Require reasoning about integer arithmetic

11 / 20

The implementation gap (1)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Mismatch in numerical types

▶ Original implementation → finite precision

▶ Verified implementation → real-valued arithmetic

Floating-point arithmetic

▶ Real-valued certificates do not hold anymore!

Quantised neural networks

▶ Require reasoning about integer arithmetic

11 / 20

The implementation gap (2)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Many sources of non determinism

▶ Non-associativity of floating point → e.g. additions

▶ Parallel execution → e.g. SIMD, GPUs

▶ Auto-selection of primitives → e.g. convolution algorithm

▶ Runtime optimisations → e.g. fused layers

▶ Mathematical libraries → e.g. rounding of TanH(x)

▶ Low-level implementation details → e.g. overflow bugs

▶ Training → e.g. initialisation, dropout layers

Access to software implementation is required!

12 / 20

The implementation gap (2)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Many sources of non determinism

▶ Non-associativity of floating point → e.g. additions

▶ Parallel execution → e.g. SIMD, GPUs

▶ Auto-selection of primitives → e.g. convolution algorithm

▶ Runtime optimisations → e.g. fused layers

▶ Mathematical libraries → e.g. rounding of TanH(x)

▶ Low-level implementation details → e.g. overflow bugs

▶ Training → e.g. initialisation, dropout layers

Access to software implementation is required!

12 / 20

The implementation gap (2)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Many sources of non determinism

▶ Non-associativity of floating point → e.g. additions

▶ Parallel execution → e.g. SIMD, GPUs

▶ Auto-selection of primitives → e.g. convolution algorithm

▶ Runtime optimisations → e.g. fused layers

▶ Mathematical libraries → e.g. rounding of TanH(x)

▶ Low-level implementation details → e.g. overflow bugs

▶ Training → e.g. initialisation, dropout layers

Access to software implementation is required!

12 / 20

The implementation gap (2)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Many sources of non determinism

▶ Non-associativity of floating point → e.g. additions

▶ Parallel execution → e.g. SIMD, GPUs

▶ Auto-selection of primitives → e.g. convolution algorithm

▶ Runtime optimisations → e.g. fused layers

▶ Mathematical libraries → e.g. rounding of TanH(x)

▶ Low-level implementation details → e.g. overflow bugs

▶ Training → e.g. initialisation, dropout layers

Access to software implementation is required!

12 / 20

The implementation gap (2)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Many sources of non determinism

▶ Non-associativity of floating point → e.g. additions

▶ Parallel execution → e.g. SIMD, GPUs

▶ Auto-selection of primitives → e.g. convolution algorithm

▶ Runtime optimisations → e.g. fused layers

▶ Mathematical libraries → e.g. rounding of TanH(x)

▶ Low-level implementation details → e.g. overflow bugs

▶ Training → e.g. initialisation, dropout layers

Access to software implementation is required!

12 / 20

The implementation gap (2)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Many sources of non determinism

▶ Non-associativity of floating point → e.g. additions

▶ Parallel execution → e.g. SIMD, GPUs

▶ Auto-selection of primitives → e.g. convolution algorithm

▶ Runtime optimisations → e.g. fused layers

▶ Mathematical libraries → e.g. rounding of TanH(x)

▶ Low-level implementation details → e.g. overflow bugs

▶ Training → e.g. initialisation, dropout layers

Access to software implementation is required!

12 / 20

The implementation gap (2)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Many sources of non determinism

▶ Non-associativity of floating point → e.g. additions

▶ Parallel execution → e.g. SIMD, GPUs

▶ Auto-selection of primitives → e.g. convolution algorithm

▶ Runtime optimisations → e.g. fused layers

▶ Mathematical libraries → e.g. rounding of TanH(x)

▶ Low-level implementation details → e.g. overflow bugs

▶ Training → e.g. initialisation, dropout layers

Access to software implementation is required!

12 / 20

The implementation gap (2)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Many sources of non determinism

▶ Non-associativity of floating point → e.g. additions

▶ Parallel execution → e.g. SIMD, GPUs

▶ Auto-selection of primitives → e.g. convolution algorithm

▶ Runtime optimisations → e.g. fused layers

▶ Mathematical libraries → e.g. rounding of TanH(x)

▶ Low-level implementation details → e.g. overflow bugs

▶ Training → e.g. initialisation, dropout layers

Access to software implementation is required!

12 / 20

Proof production and checking

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

ONNX operator support

▶ Challenge: tool authors need to manually add operators

▶ E.g. abstract interpretation procedure for new activations

▶ Solution: great potential for automation here

Safety proof certificates

▶ Safety proofs are more difficult to find than counterexamples

▶ Format: usually some form of branch-and-bound tree

▶ Challenge 1: formalise under Farkas’ lemma

▶ Challenge 2: write verified proof checkers

13 / 20

Proof production and checking

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

ONNX operator support

▶ Challenge: tool authors need to manually add operators

▶ E.g. abstract interpretation procedure for new activations

▶ Solution: great potential for automation here

Safety proof certificates

▶ Safety proofs are more difficult to find than counterexamples

▶ Format: usually some form of branch-and-bound tree

▶ Challenge 1: formalise under Farkas’ lemma

▶ Challenge 2: write verified proof checkers

13 / 20

Property-guided training

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

ML-like approaches

▶ Data augmentation: (generalised) adversarial training

▶ Differentiable logic: property → loss function

Certified approaches

▶ Interval Bound Propagation (IBP) for robustness training

▶ Lipschitz-bounded, monotonic & convex neural networks

▶ Certified training on a limited number of other properties

14 / 20

Property-guided training

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

ML-like approaches

▶ Data augmentation: (generalised) adversarial training

▶ Differentiable logic: property → loss function

Certified approaches

▶ Interval Bound Propagation (IBP) for robustness training

▶ Lipschitz-bounded, monotonic & convex neural networks

▶ Certified training on a limited number of other properties

14 / 20

Verification of cyber-physical systems

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

CPS
▶ Feedback controller for plant model (ODEs)

▶ Requires hybrid description (discrete + continuous)

▶ International competition: AINNCS category @ ARCH-COMP

▶ Tools: CORA, JuliaReach, NNV, OVERT, POLAR. . .

▶ Challenges: property specification, scalability, software. . .

15 / 20

Neural network verification today

Existing Solutions High-level Low-level Quantised Software Future

PL Challenges

V
eh

icle

C
A
IS
A
R

α
β
-C

R
O
W

N

M
ara

b
o
u

Q
E
B
V
erif

A
ster

C
B
M
C

E
S
B
M
C

U
n
ifi
ed

L
a
n
g
u
a
g
e

F
orm

a
l
In
terfa

ces

Rigorous Semantics ✓ ✓ ✓ ✓ ✓ ✓
Embedding Gap ✓ ✓ ✓
Implementation Gap ✓ ✓ ✓ ✓ ✓ ✓ ✓
Proof Certificates ✓ ✓∗ ✓∗ ✓ ✓
Supports Training ✓ ✓ ✓

Five desirable PL features
▶ Current tools → partial support

▶ We need a more principled solution

16 / 20

17 / 20

The future roadmap (1)

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Option 1: a unified language

▶ Rigorous semantics. Use dependent types. All components
are implemented in a signle language.

▶ Embedding gap. Becomes a type conversion problem.

▶ Implementation gap. Enforce explicit types. No external
libraries, unless formally verified.

▶ Proof certificates. The type checker is the proof checker.

▶ Training support. Requires re-implementation or code
synthesis in the new language.

18 / 20

The future roadmap (2)

Option 2: formal interfaces

▶ More flexible: can accommodate existing frameworks.

▶ More scalable: avoids complex type checking

Modular design

▶ Keep a maximally-expressive specification language.

▶ Design a compiler that can use existing tools.

▶ Each tool solves a specific verification/synthesis sub-goal.

▶ Requires formal interfaces and proof certificates.

Our inspiration

▶ Behavioural interface specification languages (BISL)
such as JML, Why3, SPARK

19 / 20

The future roadmap (2)

Option 2: formal interfaces

▶ More flexible: can accommodate existing frameworks.

▶ More scalable: avoids complex type checking

Modular design

▶ Keep a maximally-expressive specification language.

▶ Design a compiler that can use existing tools.

▶ Each tool solves a specific verification/synthesis sub-goal.

▶ Requires formal interfaces and proof certificates.

Our inspiration

▶ Behavioural interface specification languages (BISL)
such as JML, Why3, SPARK

19 / 20

The future roadmap (2)

Option 2: formal interfaces

▶ More flexible: can accommodate existing frameworks.

▶ More scalable: avoids complex type checking

Modular design

▶ Keep a maximally-expressive specification language.

▶ Design a compiler that can use existing tools.

▶ Each tool solves a specific verification/synthesis sub-goal.

▶ Requires formal interfaces and proof certificates.

Our inspiration

▶ Behavioural interface specification languages (BISL)
such as JML, Why3, SPARK

19 / 20

A diagrammatic summary

Systems with
NN Components

(External)
Specification

NN Property
(optimisation objective)

NN Property∗

(formal specification)

NN Training

NN Verification

Original NN
Implementation

Verifier friendly
Implementation∗

Existing Solutions High-level Low-level Quantised Software Future

PL Challenges

V
eh

icle

C
A
IS
A
R

α
β
-C

R
O
W

N

M
ara

b
o
u

Q
E
B
V
erif

A
ster

C
B
M
C

E
S
B
M
C

U
n
ifi
ed

L
a
n
g
u
a
g
e

F
orm

a
l
In
terfa

ces

Rigorous Semantics ✓ ✓ ✓ ✓ ✓ ✓
Embedding Gap ✓ ✓ ✓
Implementation Gap ✓ ✓ ✓ ✓ ✓ ✓ ✓
Proof Certificates ✓ ✓∗ ✓∗ ✓ ✓
Supports Training ✓ ✓ ✓

Any questions?

20 / 20

