Neural Network Verification is a Programming Language Challenge

Lucas C. Cordeiro¹ Matthew L. Daggitt² Julien Girard-Satabin³ Omri Isac⁴ Taylor T. Johnson⁵ Guy Katz⁴ Ekaterina Komendantskaya⁶,⁷ Augustin Lemesle³ **Edoardo Manino**¹ Artjoms Šinkarovs⁶ Haoze Wu⁸

¹University of Manchester, UK ²University of Western Australia, Australia ³Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France ⁴Hebrew University of Jerusalem, Israel ⁵Vanderbilt University, USA ⁶Southampton University, UK ⁷Heriot-Watt University, UK ⁸Amherst College, USA

ESOP - 7 May 2025

The textbook ML workflow

Three ingredients

- Property. Expressed as a loss function
- > Training. Empirical risk minimisation over finite data
- Implementation. ML frameworks, HW accelerators

The textbook ML workflow

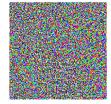


Three ingredients

- Property. Expressed as a loss function
- > Training. Empirical risk minimisation over finite data
- Implementation. ML frameworks, HW accelerators

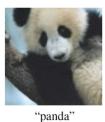
57.7% confidence

 $+.007 \times$



=

"gibbon" 99.3 % confidence



+ .007 \times

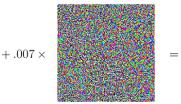
=

"gibbon" 99.3 % confidence

57.7% confidence

Vision

"Please make the neural network safe"



"panda" 57.7% confidence

"gibbon" 99.3 % confidence

Local robustness property

- For each image x in the training set
- ▶ Define a small local set of perturbations $||x x'|| \le \varepsilon$
- Ensure output class is arg max{f(x)} = arg max{f(x')}

 $+.007 \times$

=

"panda" 57.7% confidence

"gibbon" 99.3 % confidence

Programming languages interpretation

Refinement type for f with predicate

$$\blacktriangleright \quad \forall x, ||x - x'|| \le \varepsilon \implies ||f(x) - f(x')|| \le \delta$$

Other "desirable" properties

A high-level taxonomy

Geometric properties. Defined along the data manifold. Examples: local robustness and equivalence, fairness.

"panda" 57.7% confidence

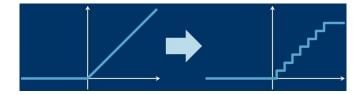
=

"gibbon" 99.3 % confidence

Other "desirable" properties

A high-level taxonomy

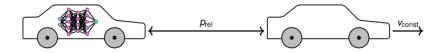
- Geometric properties. Defined along the data manifold. Examples: local robustness and equivalence, fairness.
- Hyper-properties. Must hold for any inputs.
 Examples: global robustness and equivalence, monotonicity.



Other "desirable" properties

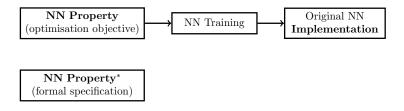
A high-level taxonomy

- Geometric properties. Defined along the data manifold. Examples: local robustness and equivalence, fairness.
- Hyper-properties. Must hold for any inputs.
 Examples: global robustness and equivalence, monotonicity.
- Domain specific. Based on semantic of ML task. Examples: arbitrary pre- and post-conditions.



Vision (v2)

"Please check whether the neural network is safe"

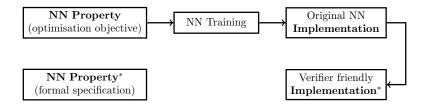


Vision (v2)

"Please check whether the neural network is safe"

Solution

Property*. Define what "safe" means.

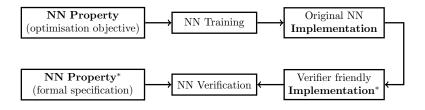


Vision (v2)

"Please check whether the neural network is safe"

Solution

- Property*. Define what "safe" means.
- Implementation*. Abstract away SW/HW details.



Vision (v2)

"Please check whether the neural network is safe"

Solution

- Property*. Define what "safe" means.
- **Implementation*.** Abstract away SW/HW details.
- **Verification.** Run a state-of-the-art verifier.

Existing verification pipeline (1)

Objective

- Given a neural network $f : \mathbb{R}^n \to \mathbb{R}^m$
- Prove that property $\Xi(f)$ holds

¹International competition: VNN-COMP (since 2020)

Existing verification pipeline (1)

Objective

- Given a neural network $f : \mathbb{R}^n \to \mathbb{R}^m$
- Prove that property $\Xi(f)$ holds

State of the art

- f is expressed as ONNX or other exchange format
- ► Tools: Marabou, $\alpha\beta$ -CROWN, PyRAT, NNV, ERAN...
- accept $\Xi(f)$ as **linear** pre- and post-conditions on f
- usually expressed in VNN-LIB format¹

¹International competition: VNN-COMP (since 2020)

Existing verification pipeline (2)

Established specification language

- Given a neural network $f : \mathbb{R}^n \to \mathbb{R}^m$ in ONNX
- Prove that property $\Xi(f)$, written in VNN-LIB, holds

Existing verification pipeline (2)

Established specification language

- Given a neural network $f : \mathbb{R}^n \to \mathbb{R}^m$ in ONNX
- Prove that property $\Xi(f)$, written in VNN-LIB, holds

Challenges

- Cannot write properties on two networks f_1, f_2
- Properties must list all I/O entries explicitly
- No formal semantics and syntax for VNN-LIB/ONNX
- Cannot automatically bind to dataset entries
- No probabilistic properties

Existing verification pipeline (2)

Established specification language

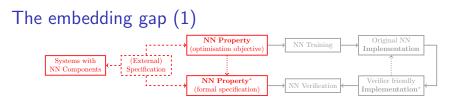
- Given a neural network $f : \mathbb{R}^n \to \mathbb{R}^m$ in ONNX
- Prove that property $\Xi(f)$, written in VNN-LIB, holds

Challenges

- Cannot write properties on two networks f_1, f_2
- Properties must list all I/O entries explicitly
- No formal semantics and syntax for VNN-LIB/ONNX
- Cannot automatically bind to dataset entries
- No probabilistic properties

Existing solutions

- CAISAR: WhyML-like specification language
- Vehicle: dependent-typed functional language



Objective

- We want to prove a **system** property $\Psi(s(\cdot))$
- But the system s includes a neural network f with (un-) embedding functions u o f o e

Objective

- We want to prove a **system** property $\Psi(s(\cdot))$
- But the system s includes a neural network f with (un-) embedding functions u o f o e

Strategy

• We decompose it as $\Xi(f) \implies \Phi(u \circ f \circ e) \implies \Psi(s(u \circ f \circ e))$

where Ξ(f) is a property of the neural network alone Φ(u ∘ f ∘ e) maps it back to the problem space

The embedding gap (2)

Objective

- We want to prove a system property Ψ
- We decompose it as $\Xi(f) \implies \Phi(u \circ f \circ e) \implies \Psi(s(u \circ f \circ e))$

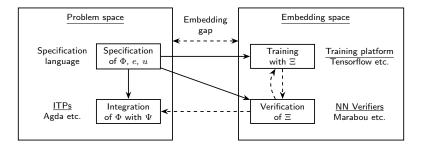
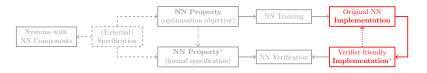
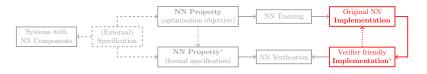


Figure: Outline of Vehicle compiler backends.



Mismatch in numerical types

- Original implementation \rightarrow **finite** precision
- $\blacktriangleright \text{ Verified implementation} \rightarrow \textbf{real-valued} \text{ arithmetic}$

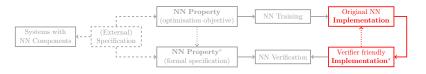


Mismatch in numerical types

- Original implementation \rightarrow **finite** precision
- $\blacktriangleright \text{ Verified implementation} \rightarrow \textbf{real-valued} \text{ arithmetic}$

Floating-point arithmetic

Real-valued certificates do not hold anymore!



Mismatch in numerical types

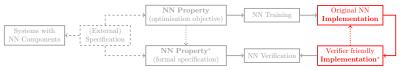
- Original implementation \rightarrow **finite** precision
- $\blacktriangleright \text{ Verified implementation} \rightarrow \textbf{real-valued} \text{ arithmetic}$

Floating-point arithmetic

Real-valued certificates do not hold anymore!

Quantised neural networks

Require reasoning about integer arithmetic



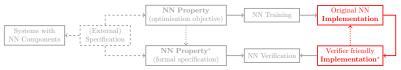
Many sources of non determinism

▶ Non-associativity of floating point \rightarrow e.g. additions

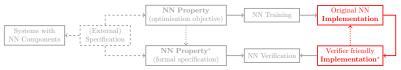
- ▶ Non-associativity of floating point → e.g. additions
- ▶ Parallel execution \rightarrow e.g. SIMD, GPUs

- ▶ Non-associativity of floating point → e.g. additions
- ▶ Parallel execution \rightarrow e.g. SIMD, GPUs
- ▶ Auto-selection of primitives \rightarrow e.g. convolution algorithm

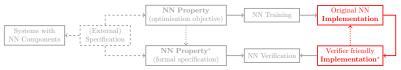
- ▶ Non-associativity of floating point \rightarrow e.g. additions
- ▶ Parallel execution \rightarrow e.g. SIMD, GPUs
- ▶ Auto-selection of primitives \rightarrow e.g. convolution algorithm
- Runtime optimisations \rightarrow e.g. fused layers



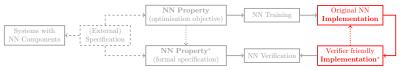
- ▶ Non-associativity of floating point → e.g. additions
- ▶ Parallel execution \rightarrow e.g. SIMD, GPUs
- ▶ Auto-selection of primitives \rightarrow e.g. convolution algorithm
- ▶ Runtime optimisations → e.g. fused layers
- Mathematical libraries \rightarrow e.g. rounding of TanH(x)



- ▶ Non-associativity of floating point → e.g. additions
- ▶ Parallel execution \rightarrow e.g. SIMD, GPUs
- Auto-selection of primitives \rightarrow e.g. convolution algorithm
- ▶ Runtime optimisations → e.g. fused layers
- Mathematical libraries \rightarrow e.g. rounding of TanH(x)
- Low-level implementation details \rightarrow e.g. overflow bugs



- ▶ Non-associativity of floating point → e.g. additions
- ▶ Parallel execution \rightarrow e.g. SIMD, GPUs
- Auto-selection of primitives \rightarrow e.g. convolution algorithm
- ► Runtime optimisations → e.g. fused layers
- Mathematical libraries \rightarrow e.g. rounding of TanH(x)
- Low-level implementation details \rightarrow e.g. overflow bugs
- Training \rightarrow e.g. initialisation, dropout layers



Many sources of non determinism

- ▶ Non-associativity of floating point → e.g. additions
- ▶ Parallel execution \rightarrow e.g. SIMD, GPUs
- Auto-selection of primitives \rightarrow e.g. convolution algorithm
- ▶ Runtime optimisations → e.g. fused layers
- Mathematical libraries \rightarrow e.g. rounding of TanH(x)
- Low-level implementation details \rightarrow e.g. overflow bugs
- Training \rightarrow e.g. initialisation, dropout layers

Access to software implementation is required!

Proof production and checking

ONNX operator support

- Challenge: tool authors need to manually add operators
- E.g. abstract interpretation procedure for new activations
- Solution: great potential for automation here

Proof production and checking

ONNX operator support

- Challenge: tool authors need to manually add operators
- E.g. abstract interpretation procedure for new activations
- Solution: great potential for automation here

Safety proof certificates

- Safety proofs are more difficult to find than counterexamples
- Format: usually some form of branch-and-bound tree
- Challenge 1: formalise under Farkas' lemma
- Challenge 2: write verified proof checkers

Property-guided training

ML-like approaches

- Data augmentation: (generalised) adversarial training
- ▶ Differentiable logic: property \rightarrow loss function

Property-guided training

ML-like approaches

- Data augmentation: (generalised) adversarial training
- ▶ Differentiable logic: property \rightarrow loss function

Certified approaches

- Interval Bound Propagation (IBP) for robustness training
- Lipschitz-bounded, monotonic & convex neural networks
- Certified training on a limited number of other properties

Verification of cyber-physical systems

CPS

- Feedback controller for plant model (ODEs)
- Requires hybrid description (discrete + continuous)
- International competition: AINNCS category @ ARCH-COMP
- Tools: CORA, JuliaReach, NNV, OVERT, POLAR...
- Challenges: property specification, scalability, software...

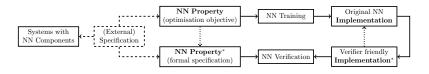
Neural network verification today

Existing Solutions	High-level		Low-level		Quantised		Software		Future	
PL Challenges	Vehicle	CAISAR	lphaeta-CROWN	Marabou	QEBVerif	Aster	CBMC	ESBMC	Unified Language	Formal Interfaces
Rigorous Semantics	\checkmark	\checkmark					\checkmark	\checkmark	✓	\checkmark
Embedding Gap Implementation Gap Proof Certificates Supports Training	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	√ √*	√ √*		√ √ √

Five desirable PL features

- Current tools \rightarrow **partial** support
- ▶ We need a more principled solution

The future roadmap (1)



Option 1: a unified language

- Rigorous semantics. Use dependent types. All components are implemented in a signle language.
- **Embedding gap.** Becomes a type conversion problem.
- Implementation gap. Enforce explicit types. No external libraries, unless formally verified.
- **Proof certificates.** The type checker is the proof checker.
- Training support. Requires re-implementation or code synthesis in the new language.

The future roadmap (2)

Option 2: formal interfaces

- More **flexible**: can accommodate existing frameworks.
- More scalable: avoids complex type checking

The future roadmap (2)

Option 2: formal interfaces

- More **flexible**: can accommodate existing frameworks.
- More scalable: avoids complex type checking

Modular design

- Keep a maximally-expressive specification language.
- Design a compiler that can use existing tools.
- Each tool solves a specific verification/synthesis sub-goal.
- Requires formal interfaces and proof certificates.

The future roadmap (2)

Option 2: formal interfaces

- More **flexible**: can accommodate existing frameworks.
- More scalable: avoids complex type checking

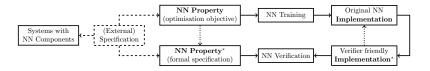
Modular design

- Keep a maximally-expressive specification language.
- Design a compiler that can use existing tools.
- Each tool solves a specific verification/synthesis sub-goal.
- Requires formal interfaces and proof certificates.

Our inspiration

 Behavioural interface specification languages (BISL) such as JML, Why3, SPARK

A diagrammatic summary



Existing Solutions	kisting Solutions High-level		Low-level		Qua	Quantised		Software		Future	
PL Challenges	Vehicle	CAISAR	lphaeta-CROWN	Marabou	QEBVerif	Aster	CBMC	ESBMC	Unified Language	Formal Interfaces	
Rigorous Semantics Embedding Gap	√ √	√					√	~	√ ✓	√ √	
Implementation Gap Proof Certificates Supports Training	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	√ √*	√ √*		√ √	

Any questions?