
Automated	Software		
Verification	and	Synthesis	in	
Unmanned	Aerial	Vehicles		

Lucas Cordeiro 
School of Computer Science 

lucas.cordeiro@manchester.ac.uk 

Digital Trust & Security Guest Lecture Series 
University of Manchester 



Verification and Synthesis Overview 
 

Vision for Future Research 
 

Synergies and Potential  
Collaboration 

Outline 



•  Unmanned Aerial Vehicles (UAVs) are systems-of-systems that 
couple their cyber and physical components 

HMI 

real-time 
computer 
system 
(RTCS) 

sensor 

actuator 

network Machine 
learning 

Verifying Embedded Software in UAV is Hard 

Increase in lines 
of code 

multi-core processors 
with limited amount of energy 

mass production safety-critical 
applications 



 

•  Security raises additional challenges 
–  Vulnerability analysis (software connected with hardware) 

–  Remote accessibility (device authentication, access control) 

–  Patch management (vendors might be long gone) 

–  Attacks from physical world (GPS spoofing and replay attack) 

Security Challenges in UAVs 
•  Security vulnerabilities can lead to drastic consequences 

Attacked by rogue camera software 
and by a virus delivered through a 
compromised USB stick 

Boeing Unmanned Little Bird H-6U 



Security Vulnerabilities 

int getPassword() { 
  char buf[4]; 
  gets(buf); 
  return strcmp(buf, ”SMT”); 
} 

void main(){ 
  int x=getPassword(); 
  if(x){ 
    printf(“Access Denied\n”); 
    exit(0); 
  } 
  printf(“Access Granted\n”);  
}  

Barrett et al., Problem Solving for the 21st Century, 2014. 

•  What happens if the user enters “SMT”? 
 
•  On a Linux x64 platform running GCC 4.8.2, an input consisting of 24 

arbitrary characters followed by ], <ctrl-f>, and @, will bypass the 
“Access Denied” message 

•  A longer input will run over into other parts of the computer memory 



Bounded Model Checking (BMC) 

Basic idea: check negation of given property up to given depth 

•  Transition system M unrolled k times 
–  for programs: loops, recursion, … 

•  Translated into verification condition ψ such that 
ψ  satisfiable iff ϕ has counterexample of max. depth k  

. . . 
M0 M1 M2 Mk-1 Mk 

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1 
 

¬ϕk ∨ ∨ ∨ ∨ 
transition  
system 

property 

bound counterexample trace 

BMC has been applied successfully to 
verify HW and SW 



Ensure Software Security in UAVs 

Application

Firmware

OS

Services

Communication

Software Requirements Definition
Availability services are 

accessible if 
requested by 

authorized users
Integrity data completeness 

and accuracy are 
preserved

Confidentiality only authorized 
users can get 

access to the data

•  BMC techniques can be used to ensure software security 



•  Null pointer dereference 

Critical Software Vulnerabilities 

int main() { !
 double *p = NULL; 
  int n = 8;!
 for(int i = 0; i < n; ++i ) 
    *(p+i) = i*2;!
 return 0; !
} 

Scope Impact 
Availability Crash, exit and restart 
Integrity 
Confidentiality 
Availability 

Execute Unauthorized 
Code or Commands 

A NULL pointer dereference 
occurs when the application 
dereferences a pointer that it 

expects to be valid, but is 
NULL 



•  Null pointer dereference 
•  Double free 

Critical Software Vulnerabilities 

int main(){ !
 char* ptr = (char *)malloc(sizeof(char));!
 if(ptr==NULL) return -1;!
 *ptr = 'a’;!
 free(ptr); 
  free(ptr);!
 return 0; !
} 

The product calls free() 
twice on the same 
memory address, 

leading to modification 
of unexpected memory 

locations 

Scope Impact 
Integrity 
Confidentiality 
Availability 

Execute Unauthorized 
Code or Commands 



•  Null pointer dereference 
•  Double free 
•  Unchecked Return Value to NULL Pointer 

Dereference 

Critical Software Vulnerabilities 

String username = getUserName(); !
if (username.equals(ADMIN_USER)) { !
... !
} 

Scope Impact 
Availability Crash, exit and restart 

The product does 
not check for an 

error after calling a 
function that can 

return with a NULL 
pointer if the function 

fails 



•  Null pointer dereference 
•  Double free 
•  Unchecked Return Value to NULL Pointer 

Dereference 
•  Division by zero 
•  Missing free 
•  Use after free 
•  APIs rule based checking  

Critical Software Vulnerabilities 



Satisfiability Modulo Theories 

 SMT decides the satisfiability of first-order logic formulae 
using the combination of different background theories 

Theory Example 

Equality x1=x2 ∧ ¬ (x1=x3) ⇒ ¬(x1=x3) 

Bit-vectors (b >> i) & 1 = 1 

Linear arithmetic (4y1 + 3y2 ≥ 4) ∨ (y2 – 3y3 ≤ 3) 

Arrays (j = k ∧ a[k]=2) ⇒ a[j]=2 

Combined theories (j ≤ k ∧ a[j]=2) ⇒ a[i] < 3 



 

 
 

 
 

 Software BMC 
•  program modelled as transition system 

–  state: pc and program variables 
–  derived from control-flow graph 
–  added safety properties as extra nodes 

•  program unfolded up to given bounds 
•  unfolded program optimized to reduce blow-up 

–  constant propagation 
–  forward substitutions 

crucial 

void main(){ 
  int x=getPassword(); 
  if(x){ 
    printf(“Access Denied\n”); 
    exit(0); 
  } 
  printf(“Access Granted\n”);  
}  

int getPassword() { 
  char buf[4]; 
  gets(buf); 
  return strcmp(buf, ”ML”); 
} 



 

 
 

 
 

 Software BMC 
•  program modelled as transition system 

–  state: pc and program variables 
–  derived from control-flow graph 
–  added safety properties as extra nodes 

•  program unfolded up to given bounds 
•  unfolded program optimized to reduce blow-up 

–  constant propagation 
–  forward substitutions 

•  front-end converts unrolled and 
optimized program into SSA 

g1 = x1 == 0 
a1 = a0 WITH [i0:=0] 
a2 = a0 
a3 = a2 WITH [2+i0:=1] 
a4 = g1 ? a1 : a3 
t1  = a4 [1+i0] == 1 

crucial 

void main(){ 
  int x=getPassword(); 
  if(x){ 
    printf(“Access Denied\n”); 
    exit(0); 
  } 
  printf(“Access Granted\n”);  
}  

int getPassword() { 
  char buf[4]; 
  gets(buf); 
  return strcmp(buf, ”ML”); 
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 Software BMC 
•  program modelled as transition system 

–  state: pc and program variables 
–  derived from control-flow graph 
–  added safety properties as extra nodes 

•  program unfolded up to given bounds 
•  unfolded program optimized to reduce blow-up 

–  constant propagation 
–  forward substitutions 

•  front-end converts unrolled and 
optimized program into SSA 

•  extraction of constraints C and properties P 
–  specific to selected SMT solver, uses theories 

•  satisfiability check of C ∧ ¬P  

crucial 
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void main(){ 
  int x=getPassword(); 
  if(x){ 
    printf(“Access Denied\n”); 
    exit(0); 
  } 
  printf(“Access Granted\n”);  
}  

int getPassword() { 
  char buf[4]; 
  gets(buf); 
  return strcmp(buf, ”ML”); 
} 



Software BMC Applied to Security 

int getPassword() { 
  char buf[4]; 
  gets(buf); 
  return strcmp(buf, ”SMT”); 
} 

buffer	overflow	attack	

sp0,sp1,sp2:BITVECTOR(8); 
ip:BITVECTOR(8); 
m0,m1,m2,m3,m4,m5 : ARRAY BITVECTOR(8) OF BITVECTOR(8); 
in : ARRAY INT OF BITVECTOR(8); 
ASSERT sp1 = BVSUB(8,sp0,0bin100); 
ASSERT m1 = m0 WITH [sp1] := in[1]; 
ASSERT m2 = m1 WITH [BVPLUS(8,sp1,0bin1)] := in[2]; 
ASSERT m3 = m2 WITH [BVPLUS(8,sp1,0bin10)] := in[3]; 
ASSERT m4 = m3 WITH [BVPLUS(8,sp1,0bin11)] := in[4]; 
ASSERT m5 = m4 WITH [BVPLUS(8,sp1,0bin100)] := in[5]; 
ASSERT sp2 = BVPLUS(8,sp1,0bin100); 
ASSERT ip = m5[sp2]; 
ASSERT NOT ip = m0[sp0]; 
CHECKSAT; 

void main(){ 
  int x=getPassword(); 
  if(x){ 
    printf(“Access Denied\n”); 
    exit(0); 
  } 
  printf(“Access Granted\n”);  
}  

SSA	&	loop	unrolling	

4-character array buf 

reclaim the memory occupied by buf 
ip is loaded with the location pointed to by sp 

We wish to determine 
whether it is possible to 
set ip to a value that we 
choose instead of the 
location of the if 
statement 



Verifying Multi-threaded Programs 

Idea: iteratively generate all possible interleavings and call 
the BMC procedure on each interleaving 

•  symbolic model checking: on each individual interleaving 

•  explicit state model checking: explore all interleavings 

void *threadA(void *arg) { 
  lock(&mutex); 
  x++; 
  if (x == 1) lock(&lock); 
  unlock(&mutex); 
  lock(&mutex); 
  x--; 
  if (x == 0) unlock(&lock); 
  unlock(&mutex); 
} 

void *threadB(void *arg) { 
  lock(&mutex); 
  y++; 
  if (y == 1) lock(&lock); 
  unlock(&mutex); 
  lock(&mutex); 
  y--; 
  if (y == 0) unlock(&lock); 
  unlock(&mutex); 
} 

(CS1) 
(CS2) 

(CS3) 
Deadlock 



execution paths 

υ0 : tmain,0, 
val1=0, val2=0,  
m1=0, m2=0,…  

υ1: ttwoStage,1, 
val1=0, val2=0,  
m1=1, m2=0,…  

υ2: ttwoStage,2, 
val1=1, val2=0,  
m1=1, m2=0,…  

initial state 
global and local variables 

active thread, context bound 

CS1 

syntax-directed 
expansion rules 

CS2 
interleaving completed, so 
call single-threaded BMC 

Lazy exploration of the Reachability Tree 



execution paths 
blocked execution paths (eliminated) 

υ0 : tmain,0, 
val1=0, val2=0,  
m1=0, m2=0,…  

υ1: ttwoStage,1, 
val1=0, val2=0,  
m1=1, m2=0,…  

υ2: ttwoStage,2, 
val1=1, val2=0,  
m1=1, m2=0,…  

υ3: treader,2, 
val1=0, val2=0,  
m1=1, m2=0,…  

initial state 
global and local variables 

active thread, context bound 

CS1 

CS2 

backtrack to last unexpanded node 
and continue 

Lazy exploration of the Reachability Tree 



execution paths 
blocked execution paths (eliminated) 

υ0 : tmain,0, 
val1=0, val2=0,  
m1=0, m2=0,…  

υ1: ttwoStage,1, 
val1=0, val2=0,  
m1=1, m2=0,…  

υ2: ttwoStage,2, 
val1=1, val2=0,  
m1=1, m2=0,…  

υ3: treader,2, 
val1=0, val2=0,  
m1=1, m2=0,…  

initial state 
global and local variables 

active thread, context bound 

CS1 

CS2 

backtrack to last unexpanded node 
and continue 

symbolic execution can statically 
determine that path is blocked 
(encoded in instrumented mutex-op) 

Lazy exploration of the Reachability Tree 



execution paths 
blocked execution paths (eliminated) 

υ0 : tmain,0, 
val1=0, val2=0,  
m1=0, m2=0,…  

υ1: ttwoStage,1, 
val1=0, val2=0,  
m1=1, m2=0,…  

υ4: treader,1, 
val1=0, val2=0,  
m1=1, m2=0,…  

υ2: ttwoStage,2, 
val1=1, val2=0,  
m1=1, m2=0,…  

υ3: treader,2, 
val1=0, val2=0,  
m1=1, m2=0,…  

υ5: ttwoStage,2, 
val1=0, val2=0,  
m1=1, m2=0,…  

υ6: treader,2, 
val1=0, val2=0,  
m1=1, m2=0,…  

initial state 
global and local variables 

active thread, context bound 

CS1 

CS2 

Lazy exploration of the Reachability Tree 



BMC / SE for Coverage Test Generation 
•  Translate the program to an intermediate representation (IR) 

•  Add goals indicating the coverage 
–  location, branch, decision, condition and path 

•  Symbolically execute IR to produce an SSA program  

•  Translate the resulting SSA program into a logical formula  

•  Solve the formula iteratively to cover different goals  

•  Interpret the solution to figure out the input conditions  

•  Spit those input conditions out as a test case 

C	and	
Java	 IR	 Symex	

SMT	
Solver	

Cover	goals	

Goals	 SSA	



Coverage Test Generation for Security 

x = input(); 
if (x >= 10) 
{ 
  if (x < 100) 
    vulnerable_code(); 
  else 
    func_a(); 
} 
else 
  func_b(); 

Kruegel, C. Finding Vulnerabilities in Embedded Software, ISSTA 2017. 



Coverage Test Generation for Security 

x = input(); 
if (x >= 10) 
{ 
  if (x < 100) 
    vulnerable_code(); 
  else 
    func_a(); 
} 
else 
  func_b(); 
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Coverage Test Generation for Security 

x = input(); 
if (x >= 10) 
{ 
  if (x < 100) 
    vulnerable_code(); 
  else 
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else 
  func_b(); 



Coverage Test Generation for Security 

x = input(); 
if (x >= 10) 
{ 
  if (x < 100) 
    vulnerable_code(); 
  else 
    func_a(); 
} 
else 
  func_b(); 



BMC / SE for Coverage Test Generation 

•  Pros: 
–  Precise 

–  no false positive (with correct environment model) 

–  produces directly-actionable inputs  

•  Cons: 
–   Not easily scalable 

▹ constraint solving is NP-complete 

▹ state and path explosion 

•  Combining Approaches 
–   Symbolic Execution, Fuzzing, and Sanitizers 



Research Goals in  
Program Analysis and Cyber-Security 

leverage program analysis/synthesis to 
improve coverage and reduce verification 
time for finding vulnerabilities in software 

leverage program analysis/synthesis to 
achieve correct-by-construction software 

systems considering security aspects 



CE Reproducible

CE IrreproducibleTrajectory and Mission Planning 
(Flight Control Software) 

 
Communication 

 
Position control 

Velocity control Attitude control 

Power Supply, Sensors and 
Actuators 

Specification

Implementation

Synthesis 

Embedded 
Software

Verification & 
Validation 

Security and Energy

Correct-by-construction

Behaviour Verification

Vision for Future Research 



Automated Software Verification and 
Synthesis for UAVs 

Specification 

Embedded Software 

Microprocessor  
model 

Generate test 
vectors with 
constraints 

assert data 

(x>0) [1..7] 

Synthesize 

initial example  
of a candidate  
solution 
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Automated Software Verification and 
Synthesis for UAVs 

Specification 

Embedded Software 

Microprocessor  
model 

Generate test 
vectors with 
constraints 

assert data 

(x>0) [1..7] 

Synthesize Verify 

initial example  
of a candidate  
solution 

candidate  
solution	

counter- 
example	

verification 
successful	

synthesis failed	

INPUTS	
counter- 
example	

machine learning for achieving a 
correct-by-construction 
implementation (program repair) 

GA	and	SAT	



Synthesizing Control Software in UAVs	

Input 
specification 

Synthesize Verify 

initial example  
of a candidate  
solution 

candidate  
solution 

counter- 
example 

verification 
successful 

synthesis 
failed 

INPUTS 

•  Counterexample guided induction synthesis automates 
the controller	design	that	is correct-by-construction 

finite-precision 
arithmetic and 
related rounding 
errors 

	 

	 

	 

	 

stability,	safety,	performance	
specifications	



Synthesizing Stable Controllers in UAVs	
•  Step responses for a closed-loop control system with 

FWL effects and for each synthesize iteration 
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A digital system is 
stable iff all of its 
poles are inside the 
z-plane unitary circle 



l  What is the shortest trajectory for this UAV?  

Obstacle 
4 

Obstacle 
1 

Obstacle 
2 

Obstacle 
3 

Goal 

Trajectory Planning for UAVs	



Obstacle 
4 

Obstacle 
1 

Obstacle 
2 

Obstacle 
3 

Goal 

Trajectory Planning for UAVs	

l  What is the shortest trajectory for this UAV?  
system’s dynamics 



Obstacle 
4 

Obstacle 
1 

Obstacle 
2 

Obstacle 
3 

Goal 

Trajectory Planning for UAVs	

l  How to find a solution that satisfies the 
constraints and minimizes the path length?   



Path Optimization Problem	

•  The search space is 
delimited by a rectangle 

•  Obstacles are modeled 
by circles 

no intersection between the path and 
obstacles     



What are the real life attacks to UAVs?	

•  GPS spoofing 

Civilian GPS signals without 
encrypted signals 



What are the real life attacks to UAVs?	

•  GPS spoofing 

•  No encryption  

Encryption is extra implementation 
cost for performance and energy 



What are the real life attacks to UAVs?	

•  GPS spoofing 

•  No encryption  

•  No authentication  

Vulnerability:	“Insufficient	
connection	protection”	



What are the real life attacks to UAVs?	

•  GPS spoofing 

•  No encryption  

•  No authentication  

•  Large packets causing stack overflow 

cause	the	program	to	
crash	or	operate	

incorrectly	



What are the real life attacks to UAVs?	

•  GPS spoofing 

•  No encryption  

•  No authentication  

•  Large packets causing stack overflow 

•  Replay attack  

valid data transmission is 
maliciously or fraudulently 

repeated or delayed 



What are the real life attacks to UAVs?	

•  GPS spoofing 

•  No encryption  

•  No authentication  

•  Large packets causing stack overflow 

•  Replay attack 

•  Etc   



Methods, algorithms, and 
tools to write software 
with respect to security 

Research Mission 

Automated verification and synthesis to ensure the 
software security in UAVs 


