
Automated	Software		
Verification	and	Synthesis	in	
Unmanned	Aerial	Vehicles		

Lucas Cordeiro
School of Computer Science

lucas.cordeiro@manchester.ac.uk

Digital Trust & Security Guest Lecture Series
University of Manchester

Verification and Synthesis Overview

Vision for Future Research

Synergies and Potential
Collaboration

Outline

•  Unmanned Aerial Vehicles (UAVs) are systems-of-systems that
couple their cyber and physical components

HMI

real-time
computer
system
(RTCS)

sensor

actuator

network Machine
learning

Verifying Embedded Software in UAV is Hard

Increase in lines
of code

multi-core processors
with limited amount of energy

mass production safety-critical
applications

•  Security raises additional challenges
–  Vulnerability analysis (software connected with hardware)

–  Remote accessibility (device authentication, access control)

–  Patch management (vendors might be long gone)

–  Attacks from physical world (GPS spoofing and replay attack)

Security Challenges in UAVs
•  Security vulnerabilities can lead to drastic consequences

Attacked by rogue camera software
and by a virus delivered through a
compromised USB stick

Boeing Unmanned Little Bird H-6U

Security Vulnerabilities

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”SMT”);
}

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

Barrett et al., Problem Solving for the 21st Century, 2014.

•  What happens if the user enters “SMT”?

•  On a Linux x64 platform running GCC 4.8.2, an input consisting of 24

arbitrary characters followed by], <ctrl-f>, and @, will bypass the
“Access Denied” message

•  A longer input will run over into other parts of the computer memory

Bounded Model Checking (BMC)

Basic idea: check negation of given property up to given depth

•  Transition system M unrolled k times
–  for programs: loops, recursion, …

•  Translated into verification condition ψ such that
ψ  satisfiable iff ϕ has counterexample of max. depth k

. . .
M0 M1 M2 Mk-1 Mk

¬ϕ0 ¬ϕ1 ¬ϕ2 ¬ϕk-1

¬ϕk ∨ ∨ ∨ ∨
transition
system

property

bound counterexample trace

BMC has been applied successfully to
verify HW and SW

Ensure Software Security in UAVs

Application

Firmware

OS

Services

Communication

Software Requirements Definition
Availability services are

accessible if
requested by

authorized users
Integrity data completeness

and accuracy are
preserved

Confidentiality only authorized
users can get

access to the data

•  BMC techniques can be used to ensure software security

•  Null pointer dereference

Critical Software Vulnerabilities

int main() { !
 double *p = NULL;
 int n = 8;!
 for(int i = 0; i < n; ++i)
 *(p+i) = i*2;!
 return 0; !
}

Scope Impact
Availability Crash, exit and restart
Integrity
Confidentiality
Availability

Execute Unauthorized
Code or Commands

A NULL pointer dereference
occurs when the application
dereferences a pointer that it

expects to be valid, but is
NULL

•  Null pointer dereference
•  Double free

Critical Software Vulnerabilities

int main(){ !
 char* ptr = (char *)malloc(sizeof(char));!
 if(ptr==NULL) return -1;!
 *ptr = 'a’;!
 free(ptr);
 free(ptr);!
 return 0; !
}

The product calls free()
twice on the same
memory address,

leading to modification
of unexpected memory

locations

Scope Impact
Integrity
Confidentiality
Availability

Execute Unauthorized
Code or Commands

•  Null pointer dereference
•  Double free
•  Unchecked Return Value to NULL Pointer

Dereference

Critical Software Vulnerabilities

String username = getUserName(); !
if (username.equals(ADMIN_USER)) { !
... !
}

Scope Impact
Availability Crash, exit and restart

The product does
not check for an

error after calling a
function that can

return with a NULL
pointer if the function

fails

•  Null pointer dereference
•  Double free
•  Unchecked Return Value to NULL Pointer

Dereference
•  Division by zero
•  Missing free
•  Use after free
•  APIs rule based checking

Critical Software Vulnerabilities

Satisfiability Modulo Theories

 SMT decides the satisfiability of first-order logic formulae
using the combination of different background theories

Theory Example

Equality x1=x2 ∧ ¬ (x1=x3) ⇒ ¬(x1=x3)

Bit-vectors (b >> i) & 1 = 1

Linear arithmetic (4y1 + 3y2 ≥ 4) ∨ (y2 – 3y3 ≤ 3)

Arrays (j = k ∧ a[k]=2) ⇒ a[j]=2

Combined theories (j ≤ k ∧ a[j]=2) ⇒ a[i] < 3

 Software BMC
•  program modelled as transition system

–  state: pc and program variables
–  derived from control-flow graph
–  added safety properties as extra nodes

•  program unfolded up to given bounds
•  unfolded program optimized to reduce blow-up

–  constant propagation
–  forward substitutions

crucial

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”ML”);
}

 Software BMC
•  program modelled as transition system

–  state: pc and program variables
–  derived from control-flow graph
–  added safety properties as extra nodes

•  program unfolded up to given bounds
•  unfolded program optimized to reduce blow-up

–  constant propagation
–  forward substitutions

•  front-end converts unrolled and
optimized program into SSA

g1 = x1 == 0
a1 = a0 WITH [i0:=0]
a2 = a0
a3 = a2 WITH [2+i0:=1]
a4 = g1 ? a1 : a3
t1 = a4 [1+i0] == 1

crucial

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”ML”);
}

 Software BMC
•  program modelled as transition system

–  state: pc and program variables
–  derived from control-flow graph
–  added safety properties as extra nodes

•  program unfolded up to given bounds
•  unfolded program optimized to reduce blow-up

–  constant propagation
–  forward substitutions

•  front-end converts unrolled and
optimized program into SSA

•  extraction of constraints C and properties P
–  specific to selected SMT solver, uses theories

•  satisfiability check of C ∧ ¬P

crucial
()

()

()
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∧

+=∧

=∧

=∧

==

=

),,(:
1,2,:

:
0,,:

0:

:

3114

023

02

001

11

aagitea
iastorea

aa
iastorea

xg

C

() ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=+∧

<+∧≥+∧

<+∧≥+∧

<∧≥

=

11,
2101
2202

20

:

04

00

00

00

iaselect
ii
ii

ii

P

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”ML”);
}

Software BMC Applied to Security

int getPassword() {
 char buf[4];
 gets(buf);
 return strcmp(buf, ”SMT”);
}

buffer	overflow	attack	

sp0,sp1,sp2:BITVECTOR(8);
ip:BITVECTOR(8);
m0,m1,m2,m3,m4,m5 : ARRAY BITVECTOR(8) OF BITVECTOR(8);
in : ARRAY INT OF BITVECTOR(8);
ASSERT sp1 = BVSUB(8,sp0,0bin100);
ASSERT m1 = m0 WITH [sp1] := in[1];
ASSERT m2 = m1 WITH [BVPLUS(8,sp1,0bin1)] := in[2];
ASSERT m3 = m2 WITH [BVPLUS(8,sp1,0bin10)] := in[3];
ASSERT m4 = m3 WITH [BVPLUS(8,sp1,0bin11)] := in[4];
ASSERT m5 = m4 WITH [BVPLUS(8,sp1,0bin100)] := in[5];
ASSERT sp2 = BVPLUS(8,sp1,0bin100);
ASSERT ip = m5[sp2];
ASSERT NOT ip = m0[sp0];
CHECKSAT;

void main(){
 int x=getPassword();
 if(x){
 printf(“Access Denied\n”);
 exit(0);
 }
 printf(“Access Granted\n”);
}

SSA	&	loop	unrolling	

4-character array buf

reclaim the memory occupied by buf
ip is loaded with the location pointed to by sp

We wish to determine
whether it is possible to
set ip to a value that we
choose instead of the
location of the if
statement

Verifying Multi-threaded Programs

Idea: iteratively generate all possible interleavings and call
the BMC procedure on each interleaving

•  symbolic model checking: on each individual interleaving

•  explicit state model checking: explore all interleavings

void *threadA(void *arg) {
 lock(&mutex);
 x++;
 if (x == 1) lock(&lock);
 unlock(&mutex);
 lock(&mutex);
 x--;
 if (x == 0) unlock(&lock);
 unlock(&mutex);
}

void *threadB(void *arg) {
 lock(&mutex);
 y++;
 if (y == 1) lock(&lock);
 unlock(&mutex);
 lock(&mutex);
 y--;
 if (y == 0) unlock(&lock);
 unlock(&mutex);
}

(CS1)
(CS2)

(CS3)
Deadlock

execution paths

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

syntax-directed
expansion rules

CS2
interleaving completed, so
call single-threaded BMC

Lazy exploration of the Reachability Tree

execution paths
blocked execution paths (eliminated)

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

υ3: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

CS2

backtrack to last unexpanded node
and continue

Lazy exploration of the Reachability Tree

execution paths
blocked execution paths (eliminated)

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

υ3: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

CS2

backtrack to last unexpanded node
and continue

symbolic execution can statically
determine that path is blocked
(encoded in instrumented mutex-op)

Lazy exploration of the Reachability Tree

execution paths
blocked execution paths (eliminated)

υ0 : tmain,0,
val1=0, val2=0,
m1=0, m2=0,…

υ1: ttwoStage,1,
val1=0, val2=0,
m1=1, m2=0,…

υ4: treader,1,
val1=0, val2=0,
m1=1, m2=0,…

υ2: ttwoStage,2,
val1=1, val2=0,
m1=1, m2=0,…

υ3: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

υ5: ttwoStage,2,
val1=0, val2=0,
m1=1, m2=0,…

υ6: treader,2,
val1=0, val2=0,
m1=1, m2=0,…

initial state
global and local variables

active thread, context bound

CS1

CS2

Lazy exploration of the Reachability Tree

BMC / SE for Coverage Test Generation
•  Translate the program to an intermediate representation (IR)

•  Add goals indicating the coverage
–  location, branch, decision, condition and path

•  Symbolically execute IR to produce an SSA program

•  Translate the resulting SSA program into a logical formula

•  Solve the formula iteratively to cover different goals

•  Interpret the solution to figure out the input conditions

•  Spit those input conditions out as a test case

C	and	
Java	 IR	 Symex	

SMT	
Solver	

Cover	goals	

Goals	 SSA	

Coverage Test Generation for Security

x = input();
if (x >= 10)
{
 if (x < 100)
 vulnerable_code();
 else
 func_a();
}
else
 func_b();

Kruegel, C. Finding Vulnerabilities in Embedded Software, ISSTA 2017.

Coverage Test Generation for Security

x = input();
if (x >= 10)
{
 if (x < 100)
 vulnerable_code();
 else
 func_a();
}
else
 func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{
 if (x < 100)
 vulnerable_code();
 else
 func_a();
}
else
 func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{
 if (x < 100)
 vulnerable_code();
 else
 func_a();
}
else
 func_b();

Coverage Test Generation for Security

x = input();
if (x >= 10)
{
 if (x < 100)
 vulnerable_code();
 else
 func_a();
}
else
 func_b();

BMC / SE for Coverage Test Generation

•  Pros:
–  Precise

–  no false positive (with correct environment model)

–  produces directly-actionable inputs

•  Cons:
–  Not easily scalable

▹ constraint solving is NP-complete

▹ state and path explosion

•  Combining Approaches
–  Symbolic Execution, Fuzzing, and Sanitizers

Research Goals in
Program Analysis and Cyber-Security

leverage program analysis/synthesis to
improve coverage and reduce verification
time for finding vulnerabilities in software

leverage program analysis/synthesis to
achieve correct-by-construction software

systems considering security aspects

CE Reproducible

CE IrreproducibleTrajectory and Mission Planning
(Flight Control Software)

Communication

Position control

Velocity control Attitude control

Power Supply, Sensors and
Actuators

Specification

Implementation

Synthesis

Embedded
Software

Verification &
Validation

Security and Energy

Correct-by-construction

Behaviour Verification

Vision for Future Research

Automated Software Verification and
Synthesis for UAVs

Specification

Embedded Software

Microprocessor
model

Generate test
vectors with
constraints

assert data

(x>0) [1..7]

Synthesize

initial example
of a candidate
solution

Automated Software Verification and
Synthesis for UAVs

Specification

Embedded Software

Microprocessor
model

Generate test
vectors with
constraints

assert data

(x>0) [1..7]

Synthesize Verify

initial example
of a candidate
solution

candidate
solution	

counter-
example	

INPUTS	
counter-
example	

Automated Software Verification and
Synthesis for UAVs

Specification

Embedded Software

Microprocessor
model

Generate test
vectors with
constraints

assert data

(x>0) [1..7]

Synthesize Verify

initial example
of a candidate
solution

candidate
solution	

counter-
example	

verification
successful	

INPUTS	
counter-
example	

Automated Software Verification and
Synthesis for UAVs

Specification

Embedded Software

Microprocessor
model

Generate test
vectors with
constraints

assert data

(x>0) [1..7]

Synthesize Verify

initial example
of a candidate
solution

candidate
solution	

counter-
example	

verification
successful	

synthesis failed	

INPUTS	
counter-
example	

Automated Software Verification and
Synthesis for UAVs

Specification

Embedded Software

Microprocessor
model

Generate test
vectors with
constraints

assert data

(x>0) [1..7]

Synthesize Verify

initial example
of a candidate
solution

candidate
solution	

counter-
example	

verification
successful	

synthesis failed	

INPUTS	
counter-
example	

machine learning for achieving a
correct-by-construction
implementation (program repair)

GA	and	SAT	

Synthesizing Control Software in UAVs	

Input
specification

Synthesize Verify

initial example
of a candidate
solution

candidate
solution

counter-
example

verification
successful

synthesis
failed

INPUTS

•  Counterexample guided induction synthesis automates
the controller	design	that	is correct-by-construction

finite-precision
arithmetic and
related rounding
errors

	

	

	

	

stability,	safety,	performance	
specifications	

Synthesizing Stable Controllers in UAVs	
•  Step responses for a closed-loop control system with

FWL effects and for each synthesize iteration

0 50 100 150 200 250 300 350
−1

−0.5

0

0.5

1

1.5
x 10

28
Step Response

Time (seconds)

A
m

p
lit

u
d

e

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Step Response

Time (seconds)

A
m

p
lit

u
d
e

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (seconds)

A
m

p
lit

u
d
e

iteration 1
iteration 2

iteration 3

A digital system is
stable iff all of its
poles are inside the
z-plane unitary circle

l  What is the shortest trajectory for this UAV?

Obstacle
4

Obstacle
1

Obstacle
2

Obstacle
3

Goal

Trajectory Planning for UAVs	

Obstacle
4

Obstacle
1

Obstacle
2

Obstacle
3

Goal

Trajectory Planning for UAVs	

l  What is the shortest trajectory for this UAV?
system’s dynamics

Obstacle
4

Obstacle
1

Obstacle
2

Obstacle
3

Goal

Trajectory Planning for UAVs	

l  How to find a solution that satisfies the
constraints and minimizes the path length?

Path Optimization Problem	

•  The search space is
delimited by a rectangle

•  Obstacles are modeled
by circles

no intersection between the path and
obstacles

What are the real life attacks to UAVs?	

•  GPS spoofing

Civilian GPS signals without
encrypted signals

What are the real life attacks to UAVs?	

•  GPS spoofing

•  No encryption

Encryption is extra implementation
cost for performance and energy

What are the real life attacks to UAVs?	

•  GPS spoofing

•  No encryption

•  No authentication

Vulnerability:	“Insufficient	
connection	protection”	

What are the real life attacks to UAVs?	

•  GPS spoofing

•  No encryption

•  No authentication

•  Large packets causing stack overflow

cause	the	program	to	
crash	or	operate	

incorrectly	

What are the real life attacks to UAVs?	

•  GPS spoofing

•  No encryption

•  No authentication

•  Large packets causing stack overflow

•  Replay attack

valid data transmission is
maliciously or fraudulently

repeated or delayed

What are the real life attacks to UAVs?	

•  GPS spoofing

•  No encryption

•  No authentication

•  Large packets causing stack overflow

•  Replay attack

•  Etc

Methods, algorithms, and
tools to write software
with respect to security

Research Mission

Automated verification and synthesis to ensure the
software security in UAVs

