
An Exploration of Automated Software
Testing, Verification, and Repair using

ESBMC and ChatGPT

Lucas Cordeiro

lucas.cordeiro@manchester.ac.uk

https://ssvlab.github.io/lucasccordeiro/

Collaborators/funders:

Systems and Software Security / FM Research Group

ARM Centre of Excellence

PPGEE, PPGI – UFAM

Centre for Digital Trust and Society

UKRI, EPSRC, EU Horizon and industrial partners

mailto:lucas.cordeiro@cs.ox.ac.uk
mailto:lucas.cordeiro@cs.ox.ac.uk

How much could software errors cost your

business?

Poor software quality cost US companies $2.41 trillion in

2022, while the accumulated software Technical Debt (TD)

has grown to ~$1.52 trillion

TD relies on temporary easy-to-

implement solutions to achieve short-

term results at the expense of

efficiency in the long run

The cost of poor software quality

in the US: A 2022 Report

Objective of this talk

• Introduce a logic-based automated reasoning platform to find

and repair software vulnerabilities

• Explain testing, verification, and repair techniques to build secure

software systems

• Present recent advancements towards a hybrid approach to

protecting against memory safety and concurrency

vulnerabilities

Discuss automated testing, verification, and

repair techniques to establish a robust foundation

for building secure software systems

Can we leverage program analysis/synthesis

to discover and fix more software

vulnerabilities than existing state-of-the-art
approaches?

Research Questions

Given a program and a safety/security

specification, can we automatically verify that
the program performs as specified?

ESBMC: An Automated Reasoning Platform

Logic-based automated reasoning for

checking the safety and security of AI

and software systems

Combines BMC, k-induction, abstract interpretation, CP/SMT solving

towards correctness proof and bug hunting

www.esbmc.org

GOTO

Program

Verification

Conditions

Abstract Syntax

Tree (AST)

Scan

SMT

Solver

Symbolic

Execution

Engine

Property holds

Property violated

C/C++/

CUDA

Control-flow

Graph

Generator

clang

Memory

Model

External

Libraries

Correctness

Witness

Violation

Witness

Scan
Java/Kotlin Soot

Scan
Solidity Solidity

Scan
CHERI-C

clang-

cheri-c

Abstract

Interpretation

Code

Instrumentation
CP Solver

Large

Language

Models

Root Cause Analysis /

Program Repair

Source code

Models

Parallelization

Software

onnx2c /

keras2c

Tiny ML

APACHE

LICENSE

VERSION 2.0

Caching /

Slicing

The Bitter Lesson by Rich Sutton

March 13, 2019

“The biggest lesson that can be read from 70 years

of AI research is that general methods that

leverage computation are ultimately the most

effective, and by a large margin. The ultimate

reason for this is Moore's law, or rather its

generalization of continued exponentially falling

cost per unit of computation”

“The two methods that seem to scale arbitrarily in this way

are search and learning”

Agenda

• Towards Self-Healing Software via Large Language Models

and Formal Verification

• Software Verification and Testing with the ESBMC

framework

• Towards verification of C programs for CHERI platforms

with ESBMC

Deep learning and Automated
Program Repair

Buggy Original
code

Modified code
(Potentially fixed)

DL Model
[1, 2, 3]

[1] Jin M, Shahriar S, Tufano M, Shi X, Lu S, Sundaresan N, Svyatkovskiy A. InferFix: End-to-End Program Repair with LLMs. arXiv e-prints. 2023 Mar:arXiv-
2303.

[2] Li Y, Wang S, Nguyen TN. Dlfix: Context-based code transformation learning for automated program repair. InProceedings of the ACM/IEEE 42nd
International Conference on Software Engineering 2020 Jun 27 (pp. 602-614).

[3] Gupta R, Pal S, Kanade A, Shevade S. Deepfix: Fixing common c language errors by deep learning. In Proceedings of the aaai conference on artificial
intelligence 2017 Feb 12 (Vol. 31, No. 1).

Buggy
Original code

Modified code
(Potentially

fixed)DL Model

Fixed
code

No
effect

Introduces new
errors

Deep learning and Automated
Program Repair

Large Language Models and
Automated Program Repair

Buggy Original
code

Modified code
(Potentially fixed)

Large
Language Model

[4, 5]

Fixed
code

No effect

Introduces new
errors

Feedback

[4] Wang X, Wang Y, Wan Y, Mi F, Li Y, Zhou P, Liu J, Wu H, Jiang X, Liu Q. Compilable neural code generation with compiler feedback. arXiv preprint
arXiv:2203.05132. 2022 Mar 10.

[5] Xia CS, Zhang L. Conversational automated program repair. arXiv preprint arXiv:2301.13246. 2023 Jan 30.[]

Large Language Models and
Automated Program Repair

Buggy Original
code

Modified code
(Potentially fixed)

Large
Language Model

[4, 5]

Fixed
code

No effect

Introduces new
errors

Feedback

Compile-time error feedback misses run-time errors.

Test-suite may not be available.

LLM + Formal Verification for Self-
Healing Software

Original
code

Modified code

Large
Language Model

Bounded Model Checker
(BMC)

Verification
Successful

Code + Property
violation

[6] Charalambous, Y., Tihanyi, N., Jain, R., Sun, Y., Ferrag, M. Cordeiro, L.: A New Era in Software

Security: Towards Self-Healing Software via Large Language Models and Formal Verification. Under

review at the ACM Transactions on Software Engineering and Methodology, 2023.

LLM + Formal Verification for Self-
Healing Software

Original
code

Modified code

Large
Language Model

Verification
Successful

Code + Property
violation

LLM to Find Software Vulnerabilities

GPT-3.5 turbo

While we were in the process of preparing

this presentation, if we asked GPT-3.5 “Is

there any problem with this code?”, the

response was an incorrect answer:

LLM + Formal Verification for Self-
Healing Software

GPT-3.5 turbo

Verification
Successful

Violated property:
file test.c line 4
function main

arithmetic
overflow on mul

!overflow(”*”, y, y)

Experimental Evaluation

Set-up

• Processor: AMD Ryzen
Threadripper PRO 3995WX

• Cores: 16
• RAM: 256 GB

• Model: MacBook Pro (2017)
• RAM: 16 GB RAM of LPDDR3 RAM

(2133 MHz)
• Processor: 2.5 GHz Intel Core i7-

7660U

Code Generation

Code Repair

Benchmarks

Generate 1000 programs with
GPT-3.5 turbo with the following

prompt.

Objectives

To answer the following research
questions.

RQ1: (Code generation) Are the
state-of-the-art GPT models

capable of producing compilable,
semantically correct programs?

RQ2: (Code repair) Can external
feedback improve the bug

detection and patching ability of
the GPT models?

Experimental Results

Original
code

Modified code

GPT-3.5 turbo

Verification
Successful

Code +
Property
violation

10 to 50 lines of
compilable C code

99.9% compilable programs

80% of the generated code buffer overflow and dereference failures
could be fixed in a maximum of three iterations

RQ1

RQ2

The FormAI Dataset: Generative AI in Software

Security through the Lens of Formal Verification

• The first AI-generated repository consisting of 112k independent and

compilable C programs

Each program

varies between 50

and 600 lines

• It covers diverse programming tasks from network management and table

games to string manipulation

GPT-3.5-turbo

ESBMC-7.2

Tihanyi, N., Bisztray, T., Jain, R., Ferrag, M., Cordeiro, L., Mavroeidis,

V.: The FormAI Dataset: Generative AI in Software Security Through

the Lens of Formal Verification. Accepted at ACM PROMISE, 2023

Comparison of Various Datasets Based

on their Labeling Classifications

C Keyword Frequency and

Associated CWEs

WARNING: BE CAREFUL WHEN RUNNING THE

COMPILED PROGRAMS, SOME CAN CONNECT TO

THE WEB, SCAN YOUR LOCAL NETWORK, OR

DELETE A RANDOM FILE FROM YOUR FILE

SYSTEM. ALWAYS CHECK THE SOURCE CODE

AND THE COMMENTS IN THE FILE BEFORE

RUNNING IT!!!

https://github.com/FormAI-Dataset

The FormAI Dataset: Generative AI in Software

Security through the Lens of Formal Verification

https://github.com/FormAI-Dataset

Agenda

• Towards Self-Healing Software via Large Language Models

and Formal Verification

• Software Verification and Testing with the ESBMC

framework

• Towards verification of C programs for CHERI platforms

with ESBMC

SAT solving as enabling technology

unit propagation,

conflict clauses and

non-chronological

backtracking

SAT Competition

http://www.satcompetition.org/

http://www.satcompetition.org/

Bounded Model Checking (BMC)

IS THERE

ANY

ERROR?

IS THERE

ANY

ERROR

IN k

STEPS?

no

yes

completeness

threshold reached

k+1 still tractable

k+1 intractable

no

yes

M, S

M, S

ok

ok

fail

fail

bound

MC:

BMC:

“never” happens

in practice

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

g1 = x1 == 0
a1 = a0 WITH [i0:=0]
a2 = a0

a3 = a2 WITH [2+i0:=1]
a4 = g1 ? a1 : a3

t1 = a4 [1+i0] == 1

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

()

()

()






















=

+=

=

=

==

=

),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

()


















=+

++

++



=

11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

– specific to selected SMT solver, uses theories

()

()

()






















=

+=

=

=

==

=

),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

()


















=+

++

++



=

11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Software BMC

• program modelled as transition system

– state: pc and program variables

– derived from control-flow graph

– added safety properties as extra nodes

• program unfolded up to given bounds

• unfolded program optimized to reduce blow-up

– constant propagation/slicing

– forward substitutions/caching

– unreachable code/pointer analysis

• front-end converts unrolled and

optimized program into SSA

• extraction of constraints C and properties P

– specific to selected SMT solver, uses theories

• satisfiability check of C ∧ ¬P

()

()

()






















=

+=

=

=

==

=

),,(:

1,2,:

:

0,,:

0:

:

3114

023

02

001

11

aagitea

iastorea

aa

iastorea

xg

C

()


















=+

++

++



=

11,

2101

2202

20

:

04

00

00

00

iaselect

ii

ii

ii

P

void main(){
int x=getPassword();
if(x){
printf(“Access Denied\n”);
exit(0);

}
printf(“Access Granted\n”);

}

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, ”ML”);

}

crucial

Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Checking for

Embedded ANSI-C Software. IEEE Trans. Software Eng. 38(4): 957-974 (2012)

Induction-Based Verification for Software

k-induction checks loop-free programs...

• base case (basek): find a counter-example with up to k loop unwindings

(plain BMC)

• forward condition (fwdk): check that P holds in all states reachable

within k unwindings

• inductive step (stepk): check that whenever P holds for k unwindings, it

also holds after next unwinding

– havoc variables

– assume loop condition

– run loop body (k times)

– assume loop termination

⇒ iterative deepening if inconclusive Gadelha, M., Ismail, H., Cordeiro, L.: Handling loops in bounded

model checking of C programs via k-induction. Int. J. Softw. Tools

Technol. Transf. 19(1): 97-114 (2017)

unsigned int x=*;
while(x>0) x--;
assume(x<=0);
assert(x==0);

k=1

while k<=max_iterations do

if baseP,,k then

return trace s[0..k]

else

k=k+1

if fwdP,,k then

return true

else if stepP’,,k then

return true

end if

end

return unknown

unsigned int x=*;
while(x>0) x--;
assert(x<=0);
assert(x==0);

unsigned int x=*;
assume(x>0);
while(x>0) x--;
assume(x<=0);
assert(x==0);

Induction-Based Verification for Software

• Infer invariants based on intervals as abstract domain via

a dependence graph

– E.g., a ≤ x ≤ b (integer and floating-point)

– Inject intervals as assumptions and contract them via CSP

– Remove unreachable states

Automatic Invariant Generation

k-Induction can prove the correctness of more

programs when the invariant generation is enabled

Line Interval for “a” Restriction

4 (−∞,+∞) None

6 (−∞, 100] 𝑎 ≤ 100

7 (100, +∞) 𝑎 > 100

k-Induction proof rule

“hijacks” loop conditions

to nondeterministic

values, thus computing

intervals become

essential

Gadelha, M., Monteiro, F., Cordeiro, L.,

Nicole, D.: ESBMC v6.0: Verifying C

Programs Using k-Induction and Invariant

Inference - (Competition Contribution).

TACAS (3) 2019: 209-213

BMC of Software Using Interval

Methods via Contractors

Apply
Contractor

Domain:

Constraint:

1) Analyze intervals and properties
– Static Analysis / Abstract

Interpretation

2) Convert the problem into a CSP
– Variables, Domains and Constraints

3) Apply contractor to CSP
– Forward-Backward Contractor

4) Apply reduced intervals back to

the program

__ESBMC_assume(y <= 30 && y >= 20);

This assumption prunes our

search space to the orange area

Intl. Software Verification Competition (SV-Comp 2023)

• SV-COMP 2023, 23805 verification tasks, max. score: 38644

• ESBMC solved most verification tasks in  10 seconds

Verification of the Overall Category

ESBMC

CBMC
2LS

UAutomizer

White-box Fuzzing:

Bug Finding and Code Coverage

• Translate the program to an intermediate representation (IR)

• Add properties to check errors or goals to check coverage

• Symbolically execute IR to produce an SSA program

• Translate the resulting SSA program into a logical formula

• Solve the formula iteratively to cover errors and goals

• Interpret the solution to figure out the input conditions

• Spit those input conditions out as a test case

C and
Java

IR Symex
SMT

Solver

Cover errors
or goals

Properties
and goals

SSA

Gadelha, M., Menezes, R., Cordeiro, L.: ESBMC 6.1: automated test

case generation using bounded model checking. Int. J. Softw. Tools

Technol. Transf. 23(6): 857-861 (2021).

FuSeBMC v4
Framework

• Use Clang tooling infrastructure

• Employ three engines in its reachability
analysis: one BMC and two fuzzing engines

• Use a tracer to coordinate the various engines

Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation
for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

Interval Analysis and Methods for

Automated Test Case Generation

This combined method

can reduce CPU time,

memory usage, and

energy consumption

We advocate that

combining cooperative

verification and

constraint programming

is essential to leverage a

modular cooperative

cloud-native testing

platform

Aldughaim, M., Alshmrany, K., Gadelha, M., de Freitas, R., Cordeiro, L.: FuSeBMC_IA: Interval Analysis and Methods
for Test Case Generation - (Competition Contribution). FASE 2023: 324-329

Competition on Software Testing 2023:
Results of the Overall Category

FuSeBMC achieved 3 awards: 1st place in Cover-Error, 1st place in

Cover-Branches, and 1st place in Overall

https://test-comp.sosy-lab.org/2023/
Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation

for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

https://test-comp.sosy-lab.org/2023/

EBF: Black-Box Cooperative

Verification for Concurrent Programs

Aljaafari, F., Shmarov, F., Manino, E.,
Menezes, R., Cordeiro, L.: EBF 4.2: Black-Box
Cooperative Verification for Concurrent
Programs - (Competition Contribution).
TACAS (2) 2023: 541-546

EBF 4.0 with different BMC tools

• BMC 6 min + OpenGBF 5 min + results Aggregation 4 min = 15 min

• RAM limit is 15 GB per Benchexec run

• ConcurrencySafety main from SV-COMP 2022

- Witness validation switched off

• Ubuntu 20.04.4 LTS with 160 GB RAM and 25 cores

• EBF4.0 increases the number of detected bugs for BMC tools

• EBF4.0 provides a better trade-off between bug finding and safety

proving than each BMC engine

• wolfMQTT library is a client implementation of the MQTT protocol written

in C for IoT devices

Int main(){

Pthread_t th1, th2;

static MQTTCtx mqttCtx;

pthread_create(&th1, subscribe_task, &mqttCtx))

pthread_create(&th2, waitMessage_task, &mqttCtx))}

static void *subscribe_task(void *client){

.....

MqttClient_WaitType(client,msg,MQTT_PACKET_TYPE_ANY,

0,timeout_ms);

.....}

static void *waitMessage_task(void *client){

…

MqttClient_WaitType(client, msg, MQTT_PACKET_TYPE_ANY,

0,timeout_ms);

.....}

static int MqttClient_WaitType(MqttClient *client,

void *packet_obj,

byte wait_type, word16 wait_packet_id, int timeout_ms)

{

.....

rc = wm_SemLock(&client->lockClient);

if (rc == 0) {

if (MqttClient_RespList_Find(client,

(MqttPacketType)wait_type,

wait_packet_id, &pendResp)) {

if (pendResp->packetDone) {

rc = pendResp->packet_ret;
.....}

subscribe_task

and waitMessage_task are

called through different threads
accessing packet_ret,

causing a data race in
MqttClient_WaitType

Here is where the

data race might

happen! Unprotected

pointer

WolfMQTT Verification

WolfMQTT Verification

Buffer
ACK

ACK

1

2

3

4

Sharing buffer

between clients

Unprotected

pointer for the

status code

Data race might

happen if the broker

sends the status code

Buffer ACK

ACK

1

2

3

4
Buffer

To solve it they copied
the code status into
different buffers

After fixing the

concurrency

vulnerability

Bug Report

https://github.com/wolfSSL/wolfMQTT

https://github.com/wolfSSL/wolfMQTT

Agenda

• Towards Self-Healing Software via Large Language Models

and Formal Verification

• Software Verification and Testing with the ESBMC

framework

• Towards verification of C programs for CHERI platforms

with ESBMC

Capability Hardware Enhanced
RISC Instructions (CHERI)

CheriBSD2 - adaptation of FreeBSD to
support CHERI ISAs

CHERI Clang/LLVM and LLD1 - compiler
and linker for CHERI ISAs

pointer address (64 bits)

063

permissions (15 bits) reserved base and bounds (41 bits)

CHERI 128-bit capability

CHERI instruction-set extensions

1https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-llvm.html

2https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheribsd.html

ARM Morello3 - SoC development board
with a CHERI-extended ARMv8-A
processor
3https://www.arm.com/architecture/cpu/morello

#include <stdlib.h>
#include <string.h>
#include <cheri/cheric.h>

void main() {
int n = nondet_uint() % 1024; /* models arbitrary user input */
char a[n+1], *__capability b = cheri_ptr(a, n+1);
b[n] = 17; /* succeeds */
char *__capability c = cheri_setbounds(b-1, n); /* fails: not the same object */
/* ... */ /* more CHERI-C API checks */
memset_c(c, 42, n); /* setting memory through a capability */

}

CHERI-C program

CHERI-C API

New capability types

#include <stdlib.h>
#include <string.h>
#include <cheri/cheric.h>

void main() {
int n = nondet_uint() % 1024;
char a[n+1], *__capability b = cheri_ptr(a, n+1);
b[n] = 17;
char *__capability c = cheri_setbounds(b-1, n);
/* ... */
memset_c(c, 42, n);

}

#include <string.h>
#include <stdio.h>

void main(void) {
int n = nondet_uint() % 1024;
char a[n+1], *b = a;
b[n] = 17;
char *c = b-1;
memset(c, 42, n);

}

All pointers are automatically replaced with capabilities by the CHERI Clang/LLVM
compiler

Pure-capability CHERI-C model

ESBMC-CHERI

GOTO

Program

SMT

formula

ASTScan

SMT

Solver

Symbolic

Execution

Engine

Property holds

Property is violated

C Program
Control-flow

Graph

Generator

clang

CHERI-

Clang
Scan AST

Memory

Model

CHERI

Memory

Model

External

Libraries

CHERI-C

API

Correctness

Proof

Violation

Witness

Implement computational

model for CHERI-C API

functions inside ESBMC

(e.g., cheri_setbounds)

• New capability types

• Tagged memory

• Capability dereferencing

CHERI Clang/LLVM
compiler

Brauße et al.: ESBMC-CHERI: towards verification of C programs for CHERI
platforms with ESBMC. ISSTA 2022: 773-776

Hybrid Verification Framework Vision

• Accentuate post-deployment safety

• Reduce performance overheads by
using “cheaper” hardware level
protection

• Reuse the information from static
analysis to ensure only necessary
more “expensive” safety checks are
introduced

• Enhance pre-deployment analysis

• Combine complementary techniques

• Avoid producing a monolithic hybrid
solution (e.g., concolic execution)

Research Mission:
Automated Reasoning System
for Safe & Secure SW and AI

Source

code

Binary

code

AI code

Automated

Reasoning System

(ARS): Searching,

learning, memory

and parallelization

Vulnerability

classification

Properties

Severity

Likelihood

Remediation cost

Explainable

Behavior Correctness

Robustness

Detection Correction

Code inspection

Static Analysis

Dynamic Analysis Fault Localization

Fault Repair

Impact: Awards and Industrial Deployment

• Distinguished Paper Award at ICSE’11

• Best Paper Award at SBESC’15

• Most Influential Paper Award at ASE’23

• 39 awards from the international competitions on software verification (SV-

COMP) and testing (Test-Comp) 2012-2023 at TACAS/FASE

• Bug Finding and Code Coverage

• Intel deploys ESBMC in production as one of its verification engines for

verifying firmware in C

• Nokia and ARM have found security vulnerabilities in software written in C/C++

• Funded by EPSRC, Intel, Motorola, Samsung, Nokia, CNPq, FAPEAM,

British Council, and Royal Society

🥇

	Slide 1
	Slide 2: How much could software errors cost your business?
	Slide 3: Objective of this talk
	Slide 4: Research Questions
	Slide 5: ESBMC: An Automated Reasoning Platform
	Slide 6: The Bitter Lesson by Rich Sutton March 13, 2019
	Slide 7: Agenda
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Agenda
	Slide 24: SAT solving as enabling technology
	Slide 25: SAT Competition
	Slide 26: Bounded Model Checking (BMC)
	Slide 27: Software BMC
	Slide 28: Software BMC
	Slide 29: Software BMC
	Slide 30: Software BMC
	Slide 31: Software BMC
	Slide 32: Software BMC
	Slide 33: Software BMC
	Slide 34: Software BMC
	Slide 35: Induction-Based Verification for Software
	Slide 36: Induction-Based Verification for Software
	Slide 37: Automatic Invariant Generation
	Slide 38: BMC of Software Using Interval Methods via Contractors
	Slide 39: Intl. Software Verification Competition (SV-Comp 2023)
	Slide 40: White-box Fuzzing: Bug Finding and Code Coverage
	Slide 41: FuSeBMC v4 Framework
	Slide 42: Interval Analysis and Methods for Automated Test Case Generation
	Slide 43: Competition on Software Testing 2023: Results of the Overall Category
	Slide 44: EBF: Black-Box Cooperative Verification for Concurrent Programs
	Slide 45: EBF 4.0 with different BMC tools
	Slide 46: WolfMQTT Verification
	Slide 47: WolfMQTT Verification
	Slide 48: Bug Report
	Slide 49
	Slide 50: Agenda
	Slide 51: Capability Hardware Enhanced RISC Instructions (CHERI)
	Slide 52: CHERI-C program
	Slide 53
	Slide 54: ESBMC-CHERI
	Slide 55: Hybrid Verification Framework Vision
	Slide 56: Research Mission: Automated Reasoning System for Safe & Secure SW and AI
	Slide 57: Impact: Awards and Industrial Deployment

