Collaborators/funders:

Systems and Software Security / FM Research Group MANCH%SZ};ER
ARM Centre of Excellence —
PPGEE, PPGI — UFAM The University of Manchester

Centre for Digital Trust and Society
UKRI, EPSRC, EU Horizon and industrial partners

An Exploration of Automated Software
Testing, Verification, and Repair using
ESBMC and ChatGPT

@ Lucas Cordeiro

; lucas.cordeiro@manchester.ac.uk
% https://ssviab.qgithub.io/lucasccordeiro/

mailto:lucas.cordeiro@cs.ox.ac.uk
mailto:lucas.cordeiro@cs.ox.ac.uk

How much could software errors cost your
business?

Poor software quality cost US companies $2.41 trillion in
2022, while the accumulated software Technical Debt (TD)
has grown to ~$1.52 trillion

_ US GDP for 2022 was ~$23.3 T
~CPSQ-%$241T US IT labor base for 2022 was ~§1.51 T
//' T — D

TD relies on temporary easy-to-
Implement solutions to achieve short-

Technical Debt term results at the expense of
$1.527 | .. :
(principal only) efficiency in the long run

| Finding & fixing defegts |
: 20U £ A

/
/
|
|
\K
\ \
N
\

: y shifting
- : _ proportions The cost of poor software quality C I S D
i in the US: A 2022 Report

Objective of this talk

Discuss automated testing, verification, and
repair technigues to establish a robust foundation
for building secure software systems

* Introduce a logic-based automated reasoning platform to find
and repair software vulnerabilities

« EXplain testing, verification, and repair technigues to build secure
software systems

* Present recent advancements towards a hybrid approach to
protecting against memory safety and concurrency
vulnerabilities

Research Questions

Given a program and a safety/security
specification, can we automatically verify that
the program performs as specified?

Can we leverage program analysis/synthesis
to discover and fix more software
vulnerabilities than existing state-of-the-art
approaches?

ESBMC: An Automated Reasoning Platform

Logic-based automated reasoning for
checking the safety and security of Al

and software systems

Software
Tiny ML N
onnx2¢ / CIC++/ Scan clan
keras2c CUDA - g
) Scan
Java/Kotlin > Soot
. Scan .
Solidity > Solidity
Scan -
CHERI-C » clang
cheri-c

;l—/

Abstract Syntax

External Memory
Tree (AST) Libraries Model) .
Parallelization
v E—
Coglrrggﬂow .| GOTO L ES)B(/;?:E)‘EI(')?] Verification| SMT
R Program Endine Conditions| Solver
A A
\4
Code CP Solver Abstract Caqh_ing/
Instrumentation olve Interpretation Slicing

Source code

Correctness

Witness

Property holds
Models

Property violated

Violation
Witness

l

Large

Combines BMC, k-induction, abstract interpretation, CP/SMT solving
towards correctness proof and bug hunting

www.esbmc.orq

» Language
Models

l

Root Cause Analysis /
Program Repair

APACHE
LICENSE

VERSION 2.0

The Bitter Lesson by Rich Sutton
March 13, 2019

“The biggest lesson that can be read from 70 years
of Al research is that general methods that
leverage computation are ultimately the most
effective, and by a large margin. The ultimate
reason for this is Moore's law, or rather its
generalization of continued exponentially falling
cost per unit of computation”

“The two methods that seem to scale arbitrarily in this way
are search and learning”

Agenda

Towards Self-Healing Software via Large Language Models
and Formal Verification

|

Software Verification and Testing with the ESBMC
framework

Towards verification of C programs for CHERI platforms
with ESBMC

Deep learning and Automated
Program Repair

Modified code
(Potentially fixed)

Buggy Original
code

DL Model
[1,2,3]

[1] Jin M, Shahriar S, Tufano M, Shi X, Lu S, Sundaresan N, Svyatkovskiy A. InferFix: End-to-End Program Repair with LLMs. arXiv e-prints. 2023 Mar:arXiv-
2303.

[2] LiY, Wang S, Nguyen TN. DIfix: Context-based code transformation learning for automated program repair. InProceedings of the ACM/IEEE 42nd
International Conference on Software Engineering 2020 Jun 27 (pp. 602-614).

[3] Gupta R, Pal S, Kanade A, Shevade S. Deepfix: Fixing common c language errors by deep learning. In Proceedings of the aaai conference on artificial
intelligence 2017 Feb 12 (Vol. 31, No. 1).

Deep learning and Automated
Program Repair

v’
Fixed
code

Modified code

Buggy .
Original code (Potentially

DL Model fixed) I troduces new
errors

Large Language Models and
Automated Program Repair

v

Fixed

code
______________________ :
4 No effect :
Buggy Original Modified code i
code (Potentially fixed) !
Large Introduces new E
Language Model errors |
[4, 5] |
_____________________ |

T Feedback J

[4] Wang X, Wang Y, Wan Y, Mi F, Li Y, Zhou P, Liu J, Wu H, Jiang X, Liu Q. Compilable neural code generation with compiler feedback. arXiv preprint
arXiv:2203.05132. 2022 Mar 10.
[5] Xia CS, Zhang L. Conversational automated program repair. arXiv preprint arXiv:2301.13246. 2023 Jan 30.

Large Language Models and
Automated Program Repair

Buggy Original
code

Large

Language Model
(4, 5]

|

Modified code
(Potentially fixed)

1
Introduces new |
errors

Compile-time error feedback misses run-time errors.

Test-suite may not be available.

LLM + Formal Verification for Self-

Healing Software

Bounded Model Checker
(BMC)

—
Code + Property
violation

Original

code

Large
Language Model

Modified code

[6] Charalambous, Y., Tihanyi, N., Jain, R., Sun, Y., Ferrag, M. Cordeiro, L.: A New Era in Software
Security: Towards Self-Healing Software via Large Language Models and Formal Verification. Under

review at the ACM Transactions on Software Engineering and Methodology, 2023.

LLM + Formal Verification for Self-
Healing Software

—_ 0 —
—r> N
= -5 ESBMC > -1 =
_= Code + Property -
Original A violation

‘ Modified code
code

Large

’ Language Model

LLM to Find Software Vulnerabilities

C++ program example

int main() (While we were in the process of preparing
e this presentation, if we asked GPT-3.5 “Is
PR S PR there any problem with this code ?”, the
priner(iiesuit sdnt, 1 response was an incorrect answer:

}

GPT-3.5 turbo

“There is no problem with this code. The code cor-
rectly calculates the value of z as the square of y
and then calculates the value of r as z divided by
1000. Finally, the code prints the result of r to the
console. The calculations do not result in an integer
overflow or any other issues, and the program should
run correctly.”

LLM + Formal Verification for Self-
Healing Software

Corrected C++ program

C++ program example int main() {
int main() { int x = 77; _
Gl s=T77¢ long long int y = (long long int)
int y=x*x+x; 0 X * X * x;_
int z=y*y; — ESBMG—D > long long int z = y * y;
unsigned int r= z/1000; unsigned int r = z / 1000;
printf ("Result %d\n", r); Violated property: printf ("Result %d\n", r);
return 0; file test.c line 4
' function main return 0;
) ’ arithmetic J
overflow on mul GPT-3.5 turbo) ’
loverflow(”*”,y, y)

Experimental Evaluation

Set-up

Code Generation

Processor: AMD Ryzen
Threadripper PRO 3995WX
Cores: 16

RAM: 256 GB

Code Repair

Model: MacBook Pro (2017)
RAM: 16 GB RAM of LPDDR3 RAM
(2133 MHz)

Processor: 2.5 GHz Intel Core i7-
7660U

Benchmarks

Objectives

Code generation prompt

Generate a minimum of 10 and a maximum of 50 lines
of C code. Use at least two functions. Use strings,
arrays, bit manipulations, and string manipulations
inside the code. Be creative! Always include every
necessary header. Only give me the code without any
explanation. No comment in the code.

RQ1: (Code generation) Are the
state-of-the-art GPT models
capable of producing compilable,
semantically correct programs?

RQ2: (Code repair) Can external
feedback improve the bug
detection and patching ability of
the GPT models?

Experimental Results

10 to 50 lines of
compilable C code RQ1

l 99.9% compilable programs

=5 esamc—2 .

Code +
Property

Original violation
code

{

SN

80% of the generated code buffer overflow and dereference failures
could be fixed in a maximum of three iterations

Modified code

GPT-3.5 turbo

The FormAl Dataset: Generative Al In Software
Security through the Lens of Formal Verification

* The first Al-generated repository consisting of 112k independent and
compilable C programs

GPT-3.5-turbo Non-
type N X Compilable
EETR - EINEE
I template C code . Module
LLM
style Module N
\ J ESBMC-7.2 +/ Compilable
) i‘:l Vegfication _leslilt_ed} s N
— roperty vielater Each program
Eg}j) Veeston) | «— varies between 50
EormAl FormAl and 600 ||neS
csv ﬁ Un known} Dataset
., —

-/

It covers diverse programming tasks from network management and table
g am eS to Strl n g m an I p u I atl O n Tihanyi, N., Bisztray, T., Jain, R., Ferrag, M., Cordeiro, L., Mavroeidis,

V.: The FormAl Dataset: Generative Al in Software Security Through
the Lens of Formal Verification. Accepted at ACM PROMISE, 2023

Comparison of Various Datasets Based
on their Labeling Classifications

bt O s W fwm NG TG R oc e
Big-Vul b 4 Real-World 188,636 100% X X/Func. CVE/CVW 30 PATCH
Draper b 4 Syn.+Real-World 1,274,366 5.62% v X/Func. CWE 29 STAT
SARD b 4 Syn.+Real-World 100,883 100% b 4 v//Prog. CWE 114 BDV+STAT+MAN
Juliet X Synthetic 106,075 100% b 4 v//Prog. CWE 125 BDV
Devign X Real-World 27,544 46.05% b 4 X/Func. CVE 112 ML
REVEAL b 4 Real-World 22,734 9.85% X X /Func. CVE 32 PATCH
DiverseVul } 4 Real-World 379,241 7.02% b 4 X /Func. CWE 44 PATCH
FormAl v Al-gen. 112,000 51.24% v v//Prog. CWE 79 ESBMC
Legend:

PATCH: GitHub Commits Patching a Vuln. Man: Manual Verification, Stat: Static Analyser, ML: Machine Learning Based, BDV: By design vulnerable

spaomiay

int

If

char -
return -
for -

void -
struct -
else -
break -
case -
sizeof -
while -
double -
float -
unsigned -
typedef -
switch -
default -
const -
bool -
continue -
lang -

do -
short -
enum -
static -
goto -
union -
volatile -
signed -
register -
extern -

auto -

FormaAl (Per Million LOC) SARD (Per Million LOC) BigWul (Per Million LOC)
' |

36826
33599
29002
19734
19052
17178
15804
12831
10488
9845
1297
5733
is
3066
2488
2055
1902
1640
1562
1198

1057

'
o

'
20000

31966

29693

C Keyword Frequency and
Assoclated CWEs

34812 101101

31189

3141
36716
3444
5087
9528
iBa
10298
1953
517
271
6862
379
171

13025

1807
20895
28113
16550
14886
17404

B912

3274

1839

1
40000 60000 BOODO 100000

(2po2 Jo s3UM Uol|I J3d) dewiesH Aduanbald piomAay abelany pazieuloN

ARQO C VF : Arithmetic overflow

BOF C VF : Buffer overflow on scanf () /fscanf ()
ABY C VF : Array bounds violated

DFN C VF : Dereference failure : NULL pointer
DFF C V.F : Dereference failure : forgotten memory
DFL C VF : Dereference failure : invalid pointer
DFA C VF : Dereference failure : array bounds violated
DBZ C VF : Division by zero

OTYVY C V.F : Other vulnerabilities

#Vulns Vuln. Associated CWE-numbers

88,049 BOF CWE-20, CWE-120, CWE-121, CWE-125, CWE-
129, CWE-131, CWE-628, CWE-676, CWE-680,
CWE-754, CWE-787

31,829 DFN CWE-391, CWE-476, CWE-690

24,702 DFA CWE-119, CWE-125, CWE-129, CWE-131, CWE-
755, CWE-787

23,312 ARO CWE-190, CWE-191, CWE-754, CWE-680, CWE-
681, CWE-682

11,088 ABY CWE-119, CWE-125, CWE-129, CWE-131, CWE-
193, CWE-787, CWE-788

9823 DFL CWE-416, CWE-476, CWE-690, CWE-822, CWE-
824, CWE-825

5810 DFF CWE-401, CWE-404, CWE-459

1620 oTV CWE-119, CWE-125, CWE-158, CWE-362, CWE-
389, CWE-401, CWE-415, CWE-459, CWE-416,
CWE-469, CWE-590, CWE-617, CWE-664, CWE-
662, CWE-685, CWE-704, CWE-761, CWE-787,
CWE-823, CWE-825, CWE-843

1567 DBZ CWE-369

The FormAIl Dataset: Generative Al in Software
Security through the Lens of Formal Verification

FORMAI DATASET: A LARGE COLLECTION OF AI-GENERATED C PROGRAMS AND
THEIR VULNERABILITY CLASSIFICATIONS

Citation Author(s): Norbert Tihanyi (@ (Technology Innovation Institute) 165 Views
Tamas Bisztray (& (University of Oslo)

Categories: Artificial Intelligence
Ridhi Jain (2 (Technology Innovation Institute) Security
Mohamed Amine Ferrag () (Technology Innovation Institute) o o] B
Lucas C. Cordeiro @ (University of Manchester) Keywords: artificial intelligence, Software Vulnerability
Vasileios Mavroeidis () (University of Oslo) SHEsE
f o r m A I Submitted by: Norbert Tihanyi
@ATA S E ..“—.u Last updated: Mon, 06/19/2023 - 15:07
DOLI: 10.21227/vpon-wv96
Data Format: *.csv (zip);
WARNING: BE CAREFUL WHEN RUNNING THE DATASET FILES
COMPILED PROGRAMS’ SOME CAN CONNECT TO * FormAl dataset: Vulnerability Classification (No C source cod
THE WEB! SCAN YOUR LOCAL NETWORK1 OR included) FormAl_dataset_human_readable-V1.csv (15.95
DELETE A RANDOM FILE FROM YOUR FILE MB)

SYSTEM. ALWAYS CHECK THE SOURCE CODE
AND THE COMMENTS IN THE FILE BEFORE
RUNNING IT!!

* FormAl dataset: 112000 compilable Al-generated C code
FormAl_dataset_C_samples-V1.zip (97.61 MB)

* FormAl dataset: Vulnerability Classification (C source code
included in CSV) FormAl_dataset_classification-V1.zip (60.66

https://github.com/FormAl-Dataset MB)

https://github.com/FormAI-Dataset

FalconLLM

&

k.

—

[Fine-Tuning |

L

SecureFalconLLM

Preprocessing

Dataset Spliting |

Dataset |

@' -

Training dataset

—_— \
Training
SecureFalconlLM LT (A ‘

Y

Trained Model

C p]

{Testing dataset/

J Vulnerability Activity

{0

Vulnerability

Wulnerability Repair Step |

T

Prompt Design for
FalconLLM40b

A repaired code

SecureFalcon: The Next Cyber Reasoning System
for Cyber Security

Mohamed Amine Ferrag®, Ammar Battah*, Norbert Tihanyi*, Merouane Debbahf,
Thierry Lestable®, and Lucas C. Cordeirot
*Technology Innovation Institute, 9639 Masdar City, Abu Dhabi, UAE
*Email: firstname.lastname @tii.ae
TKhalifa University of Science and Technology, P O Box 127788, Abu Dhabi, UAE
TEmail: merouane.debbah@ku.ac.ae
iUniversity of Manchester, Manchester, UK
YEmail: lucas.cordeiro@manchester.ac.uk

Vulnrebality detected by SecureFalcon model

TABLE VII: Classification report of SecureFalcon 121M with

LR = 2e-5. The following C code is vulnerable to a buffer overflow vulnerability.
Please repair it.

Precision Recall Fl-Score Support tinclude <stdio.h>

0 0.89 0.84 0.86 4528 LT T

1 0.95 0.97 0.96 15533 #include <string.h>

Accuracy 0.94 i .

Macro avg 0.92 0.90 0.91 20061 void secretFunction() {

Weighted avg 0.94 0.94 0.94 20061 printf ("Congratulations!\n");

0: NOT VULNERABLE, 1: VULNERABLE }

void vulnerableFunction (char+ str) {
char buffer[30];

TABLE VIII: Classification report of SecureFalcon 121M with } FECETD EmEED. Eoms
LR = 2e-2. int main(int argc, char*+ argv) {
Precision Recall Fl-Score Support if (arge != 2) . {
0 0.67 0.80 0.73 4528 printf ("Please supply one argument.\n");
| 0.94 0.88 091 15533 return 1;
Accuracy 0.87 }
Macro avg 0.80 0.84 0.82 200601 vulnerableFunction(argv[1l]);
Weighted avg 0.88 0.87 0.87 20061

printf ("Executed normally.\n");
return 0;

0: NOT VULNERABLE., 1: VULNERABLE

Agenda

Towards Self-Healing Software via Large Language Models
and Formal Verification

Software Verification and Testing with the ESBMC
framework

Towards verification of C programs for CHERI platforms
with ESBMC

SAT solving as enabling technology

SAT/SMT Solver Research Story
A 1000x Improvement

* Solverdated programesing inguaget
* Compier opumizations using sohvers

1,000,000 Constraints * Bo & Ogcimization

* Program Analysis
* Equivalence Checking
100,000 Constraints PAN S oApETIn
* Bounded MC . . .
okt unit propagation,
10,000 Constraints

conflict clauses and
non-chronological
backtracking

[,000 Constraints
1998 2001 2004 2007 2010

CPU Time (s)

SAT Competition

¢

SATzilla2012 APP
SATZilla2012 ALL ¢
Industrial SAT Solver ’
lingeling (SC11 Bronze) ;
interactSAT

!

+

800 —

oY e
%~ glucose
600 —#—- SINN ’,

—4— ZENN

—&— Lingeling ,
~#- linge_dyphase
% simpsat
—#— glueminisat (SC11 Silver)
&- glucose (SC11 Gold)
-
=8

CryptoMiniSat (REF.)
minisat (REF.)

400 ~

200 -

0 100 200 300 400 500

number of solved instances

http://www.satcompetition.org/

http://www.satcompetition.org/

Bounded Model Checking (BMC)

“‘never’ happens
In practice

BIMC: reessres e %(/

k+1 still tractable COmp|eteneSS .
p Tl_JI,ERE n|o threshold reachedé S Ok
M, S N ANY k+1 intractable >bound
E ERROR . fall
: IN k ‘."
. STEPS? 4

Software BMC

« program modelled as transition system
— state: pc and program variables
— derived from control-flow graph

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

¥

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);

| 1-intaf2], i, x; |

v

| 2. if 1(x==0) then goto 7 }—l
¥

i»= | | T-assert2 +1>=0 |
v v

| 4 asserti<2 | ‘ 8 assert2+i<2 ‘
¥ ¥

| 5:ali] = 0; | | 9 afi+2] = 1; |
v v

| 6: goto 10 |_9| 10:assert 1 +i>=0 |
]

‘ 1:assert1+i<2 |
v

‘ 12: assert a[i+1] == 1 |
¥

|

Software BMC

« program modelled as transition system
— state: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

¥

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);

¥

| 1-intaf2], i, x; |

v

2. if 1(x==0) then goto 7 I—l
W
a

| 3rassert1>=0

| 5 ali] = 0:

| 6: goto 10 |_‘)| 10: assert 1 +1>=0

Software BMC

« program modelled as transition system
— state: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

» program unfolded up to given bounds

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

¥

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);
b

| 1:intaf2], 1, x; |
¥
2 if I(x==0) then goto 7 I—l
¥
T assert

| 3rassert1>=0

Software BMC

« program modelled as transition system

— state: pc and program variables
— derived from control-flow graph

— added safety properties as extra nodes
« program unfolded up to given bounds

 unfolded program optimized to reduce blow-up

— constant propagation/slicing
— forward substitutions/caching

— unreachable code/pointer analysis J

> crucial

int getPassword() {

char buf[2];

gets(buf);

return strcmp(buf, "ML");
b

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);

¥

| 1:intaf2], 1, x; |
¥
| 2 if I(x==0) then goto 7 }—l
¥
= T assert2 +i

2

8 assert2 +1<2

v

| 9[2]1

| 6: goto 10 H 10: assert 1 +

11 assert1+1<2

v

‘ 12: assert a[i+1] == 1

¥

| 13: return nondet(int)

¥

| 14: end function

int getPassword() {

char buf[2];
Software BMC gets(bun);
return strcmp(buf, "ML");
« program modelled as transition system R
_ void main(){
— state: pc and program variables ?Pt x=getPassword();
— derived from control-flow graph | |(3)|(’?|Etf(“Access Denied\n”);
— added safety properties as extra nodes }ex't(o);
« program unfolded up to given bounds , PrintifAccess Grantedin®);
 unfolded program optimized to reduce blow-up
— constant propagation/slicing \ ﬂ
— forward substitutions/caching ~ crucial . .
. . = X4 ==
— unreachable code/pointer analysis 2, = ap WITH [i:=0]
. front—e_nd converts un_rolled and Ziz Zg WITH [2+ig:=1]
optimized program into SSA 8, =0, ?a; :a;

ty = a,[1+ip] ==

Software BMC

program modelled as transition system
— state: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

» program unfolded up to given bounds

 unfolded program optimized to reduce blow-up
— constant propagation/slicing \
— forward substitutions/caching ~ crucial
— unreachable code/pointer analysis _

* front-end converts unrolled and
optimized program into SSA

 extraction of constraints C and properties P

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

¥

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);

)
_gl = (Xl = O)

Aa, = store(ay, i,,0)
C=|ra, =4,

Aa, = store(a,,2 +i,,1)
|~a, =ite(g;,a,,8,)

[i, >0 iy <2

A2+, 20A2+i,<2
Al+iy, 20A1+i, <2
 Aselect(ay,iy +1)=1

Software BMC

program modelled as transition system
— state: pc and program variables
— derived from control-flow graph
— added safety properties as extra nodes

» program unfolded up to given bounds

 unfolded program optimized to reduce blow-up
— constant propagation/slicing \
— forward substitutions/caching ~ crucial
— unreachable code/pointer analysis _

* front-end converts unrolled and
optimized program into SSA

 extraction of constraints C and properties P
— specific to selected SMT solver, uses theories

int getPassword() {
char buf[2];
gets(buf);
return strcmp(buf, "ML");

¥

void main(){
int x=getPassword();
if(x){
printf("Access Denied\n”);
exit(0);
b
printf("Access Granted\n”);

)
_gl = (Xl = O)

Aa, = store(ay, i,,0)
C=|ra, =4,

Aa, = store(a,,2 +i,,1)
|~a, =ite(g;,a,,8,)

[i, >0 iy <2

A2+, 20A2+i,<2
Al+iy, 20A1+i, <2
 Aselect(ay,iy +1)=1

int getPassword() {

char buf[2];
Software BMC gets(buf);
return strcmp(buf, "ML");

¥

void main(){

program modelled as transition system

— state: pc and program variables int x=getPassword();
— derived from control-flow graph if|(3)|(’?|§tf(“Access Denied\n");
— added safety properties as extra nodes }eXit(O);
« program unfolded up to given bounds , PrintifAccess Grantedin®);
« unfolded program optimized to reduce blow-up
— constant propagation/slicing \ ﬂ
— forward substitutions/caching - crucial "0, = (%, =0)
— unreachable code/pointer analysis _ .. i:;jfre(a“”o)
« front-end converts unrolled and N jtt:(rgeff‘;fa;‘o*l)
optimized program into SSA jiOZOAM ‘
 extraction of constraints C and properties P P ﬁffilfgff:if:;
— specific to selected SMT solver, uses theories | Aselect(a, iy +1)=1
. Satisfiability check of C A =P Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Checking for

Embedded ANSI-C Software. IEEE Trans. Software Eng. 38(4): 957-974 (2012)

Induction-Based Verification for Software

kK-induction checks loop-free programs...

* base case (base)): find a counter-example with up to k loop unwindings
(plain BMC)

» forward condition (fwd,): check that P holds in all states reachable
within k unwindings

* Inductive step (step,): check that whenever P holds for k unwindings, it
also holds after next unwinding

— havoc variables
— assume loop condition
— run loop body (k times)

— assume loop termination

= |terat|ve deeper"ng |f |nC0nC|US|Ve Gadelha, M., Ismail, H., Cordeiro, L.: Handling loops in bounded

model checking of C programs via k-induction. Int. J. Softw. Tools
Technol. Transf. 19(1): 97-114 (2017)

Induction-Based Verification for Software

k=1
- _ : : unsigned int x=%;
wh_|Ie kK<=max_iterations do while(x>0) x--;
if base, ,, then assume(x<=0);
return trace s/0..k] assert(x==0);
else unsigned int x=%*
X=%;
k=K+1 while(x>0) x--;
if fwd, ,, then assert(x<=0);

return true assert(x==0);

else if StepP’,¢,k then unsigned int x=%*;

return true assume(x>0);
end if while(x>0) x--;
assume(x<=0);

end assert(x==0);

return unknown

Automatic Invariant Generation

e Infer invariants based on intervals as abstract domain via

a dependence graph
— E.qg., a < x < b (integer and floating-point)

— Inject intervals as assumptions and contract them via CSP

— Remove unreachable states

int main()
{
int a = *;
& (=00, +0) RLIE while(a <= 100)
6 (—o0,100] a <100 at+;
assert(a>10);
7 (100, +o0) a> 100 return 0;

k-Induction can prove the correctness of more
programs when the invariant generation is enabled

K-Induction proof rule
“hijacks” loop conditions
to nondeterministic
values, thus computing
Intervals become
essential

Gadelha, M., Monteiro, F., Cordeiro, L.,
Nicole, D.: ESBMC v6.0: Verifying C
Programs Using k-Induction and Invariant
Inference - (Competition Contribution).
TACAS (3) 2019: 209-213

1) Analyze intervals and properties

BMC of Software Using Interval
Methods via Contractors

— Static Analysis / Abstract
Interpretation

2) Convert the problem into a CSP

— Variables, Domains and Constraints

3) Apply contractor to CSP

— Forward-Backward Contractor

4) Apply reduced intervals back to

the program

1 unsigned int x=nondet_uint ();

2> unsigned int y=nondet_uint ();

3 _ _ESBMC_assume (x >= 20 && x <= 30);
4 _ ESBMC_assume (y <= 30);

5 assert(x >= vy);

1 unsigned int x=nondet_uint ();

2 unsigned int y=nondet_uint();

3 _ ESBMC_assume (x >= 20 && x <= 30);
4 _ ESBMC_assume (y <= 30);

5 assert (x >= V)

o
’

Domain: [z] = [20,30] and [y] = [0, 30]
Constraint: ¥y —+ < 0

___ESBMC_assume(y <= 30 && y >= 20);

This assumption prunes our
search space to the

Apply e
Contractor /l
[z] = [20,30] and [y] = [0, 30]] = [20,30] and [y = [20,30]
f(z) >0 I=10,00)
flx)=y—=x [f(z)1] = I Nyo] — [xo] Forward-step

r=y—f(x) [x]=I[ro]N[yo] = [f(x)1] Backward-step
y=1rF(@)+z (o] =yl N [f(x)] +[z1] Backward-step

Intl. Software Verification Competition (SV-Comp 2023)

« SV-COMP 2023, 23805 verification tasks, max. score: 38644

« ESBMC solved most verification tasks in < 10 seconds CBMC

tive score

Verification of the Overall Category

White-box Fuzzing:
Bug Finding and Code Coverage

« Translate the program to an intermediate representation (IR)
« Add properties to check errors or goals to check coverage

« Symbolically execute IR to produce an SSA program

« Translate the resulting SSA program into a logical formula

« Solve the formula iteratively to cover errors and goals

 Interpret the solution to figure out the input conditions

« Spit those input conditions out as a test case

SSA
C and | | | SMT

Properties
and goals

Cover errors
or goals

Gadelha, M., Menezes, R., Cordeiro, L.; ESBMC 6.1: automated test
case generation using bounded model checking. Int. J. Softw. Tools
Technol. Transf. 23(6): 857-861 (2021).

* Use Clang tooling infrastructure
Fuse BM C V4 * Employ three engines in its reachability

analysis: one BMC and two fuzzing engines
Framework

* Use a tracer to coordinate the various engines

Analysis and Injection Test-Generation

AFL Selgclive BMC
: Goal’s Graph concolic fuzzer
Analyze & Inject p

Instrumented | C Code

BMC/AFL

Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation
for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

‘ C Code ‘H
Property \

Test-cases

Tracer

Import seeds
Goals Covered Array

Seeds K New seeds

Interval Analysis and Methods for
Automated Test Case Generation

ﬁSeB.\I(‘_IA: Interval Analysis and Methods for Test Case Genem

This combined method
can reduce CPU time,
memory usage, and
energy consumption

We advocate that
combining cooperative
verification and
constraint programming
IS essential to leverage a
modular cooperative
cloud-native testing
platform

Interval Analysis & Methods

Parse conditions & S : : o8
[Create CSP/CP }—* Domains reduction —-[Apply Contractors
= i

................. g

- -
-
-

1! (Frama-C eva)

[o= o= o= - -
_ ’:. Static Analyser '

Intervals files J_ 3

/FuSeBM(‘ v4

FuSeBMC analysis

Seed Generation

BMC/AFL

P

J
Test-Generation \

{

Selective]{ = }
B Engines
fuzzer :

b [y

8

C Code II

Y

Property

Aldughaim, M., Alshmrany, K., Gadelha, M., de Freitas, R., Cordeiro, L.: FuSeBMC_IA: Interval Analysis and Methods
for Test Case Generation - (Competition Contribution). FASE 2023: 324-329

Competition on Software Testing 2023:
Results of the Overall Category

0 WeriTest i—
uSeEMC —f—
~HIAC-1A
_— bridTiper ———
- FLEE wfi
Legian
USymMCC e—
000 P Test
P TTIDANC
TracerX
B VerFues
NASP-C ol
200
1500
1000
i
oy
0] :
L i
P _ e — __ﬂ_,_.—--'-"
N —

FuSeBMC achieved 3 awards: 1st place in Cover-Error, 1st place in
Cover-Branches, and 1st place in Overall

Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation
for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340 https://test-comp.sosy-lab.org/2023/

https://test-comp.sosy-lab.org/2023/

EBF: Black-Box Cooperative
Verification for Concurrent Programs

Safety Proving Stage Seed Generation Stage Falsification Stage
C program | i !
+ 3 3 Controlled 3 LLVM
Safety 3 L 1 Errors Injection ~ |Instrumentations

= | I (; v

Sanitizers

Verdict Bug LR %

Fuzzer

Fuzz Inputs

Y Fuzz Delays
B - Counter-
Results Aggregation Stage
example
OpenGBF ‘
Bug | Unknown | f
| Safe Conflict Safe Bug
! E Bug Unsafe | Unsafe ‘
| Unknown | Unsafe | Unknown . Verdict

Aljaafari, F., Shmarov, F., Manino, E.,
Menezes, R., Cordeiro, L.: EBF 4.2: Black-Box
Cooperative Verification for Concurrent
Programs - (Competition Contribution).
TACAS (2) 2023: 541-546

EBF 4.0 with different BMC tools

BMC 6 min + OpenGBF 5 min + results Aggregation 4 min = 15 min

RAM limit is 15 GB per Benchexec run
ConcurrencySafety main from SV-COMP 2022

- Witness validation switched off
Ubuntu 20.04.4 LTS with 160 GB RAM and 25 cores

Verification
outcome

EBF

Deagle

| EBF

Cseq

’l_’ool
EBF

ESBMC |

EBF

CBMC

Correct True
Correct False
Incorrect True
Incorrect False
Unknown

240

240

172

177

65

70

139

146

336

319

333

313

308

268

320

303

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

3

187

204

258

273

390

424

304

311

EBFA4.0 increases the number of detected bugs for BMC tools

EBFA4.0 provides a better trade-off between bug finding and safety
proving than each BMC engine

WolfMQTT Verification

« wWoIfMQTT library is a client implementation of the MQTT protocol written
In C for IoT devices

Ft’w%c«ﬂit thl, th2;
static MQTTCtx mgttCtx;

S ub S C r ibe t a S k TM»:L~W~ (&t:ﬂﬁ, suk?scribeitask, smgttCtx))

pthread create(&th2, waitMessage task, &mqttCtX))}

and wa l tMe SS age_t as]{ are static void *subscribe task(xclient) {

called through different threads
accessing packet ret, L i waitMessage_task it cciin
causing a data race Iin
MgttCl ient_WaitType static int MqttClient WaitType “client,

*packet obj,

wailt type wait packet id timeout ms
{
Here is where the rc :(rct__ﬂ([);{ sclient->lockClient
data race might MqttClient_Resplist_Find(client,

(MgttPacketType) walt _type,

happen! Unprotected , ;gigagggﬁigggi&ggjgﬁRTSm> {
pOIﬂter rc = pendresp- packet ret;

Unprotected
pointer for the
status code

WolfMQTT Verification

MQTT Client

MQTT Client

After fixing the

concurrency
vulnerability

P
A

Sharing buffer
between clients

ACK

3

A

Buffer ACK

4

Data race might
happen if the broker
sends the status code

MQTT Broker

& MQTT Client

MQTT Client

To solve it they copied
the code status into
different buffers

D ACK 3

Butter |2~ =—

ACK

Ter

4

MQTT Broker

Bug Report

Fixes for multi-threading issues #209

bSOl embhorn me rorm 7= 3 Juifi 2021
) Conversation 2 -o- Commits 1 FLC Files changed 4
o dgarske commer ntrioutor |) +++ Reviewers
lygstate
1. The client lock is needed earlier to protect the "reset the packet state”.
; ; : bh
2. The subscribe ack was using an unprotected pointer to response code list. Now it makes a copy of those codes. 0 sanm
3. Add protection to multi-thread example "stop" variable.
Thanks to Fatimah Aljaafari (@fatimahkj) for the report. Assignees
ZD 12379 and PR () Data race at function MqttClient_WaitType #198 0 embhorn
Fixes for three multi-thread issues: X 7 ed
-0 0 Labels

Projects

ed embhorn on 2 Jun 2021

A/ @ dgarske as

Milestone

https://qithub.com/wolfSSL/wolfMOQTT

¢> Code ~

+74 -48 mEEN

https://github.com/wolfSSL/wolfMQTT

Agenda

Towards Self-Healing Software via Large Language Models
and Formal Verification

Software Verification and Testing with the ESBMC
framework

Towards verification of C programs for CHERI platforms
with ESBMC

Capability Hardware Enhanced
RISC Instructions (CHERI)

63

permissions (15 bits)

reserved

base and bounds (41 bits)

pointer address (64 bits)

CHERI 128-bit capability

CHERI Clang/LLVM and LLD?! - compiler

and linker for CHERI ISAs

Ihttps://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-llvm.html

CheriBSD? - adaptation of FreeBSD to
support CHERI ISAs

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheribsd.html

ARM Morello?3 - SoC development board

with a CHERI-extended ARMv8-A

processor

Shttps://www.arm.com/architecture/cpu/morello

Mnemonic Description

CGetBase Move base to a GPR

CGetLen Move length to a GPR

CGetTag Move tag bit to a GPR

CGetPerm Move permissions to a GPR

CGetPCC Move the PCC and PC to GPRs

ClIncBase Increase base and decrease length

CSetLen Set (reduce) length

CClearTag Invalidate a capability register

CAndPerm Restrict permissions

CToPtr Generate C0-based integer pointer from
a capability

CFromPtr ClncBase with support for NULL casts

CBTU Branch if capability tag is unset

CBTS

Branch if capability tag is set

[N

CHERI-C program

#include <stdlib.h>
#include <string.h>

#include <cheri/cheric.h>}€—

CHERI-C API

void main() {

int n = nondet uint() % 1024;
char a[n+1])*__capability|b 5 cheri_ptr|a

b[n] = 17; T

/* models arbitrary user input */

/* succeeds */

char *__capabilityjc 4 cheri_setboundg(b-1, n); /* fails: not the same object */
/¥ . %/ /* more CHERI-C API checks */
memset_c(c, 42, n|; /* setting memory through a capability */

New capability types

Pure-capability CHERI-C model

#include <stdlib.h> #include <string.h>
#include <string.h> #include <stdio.h>

#include <cheri/cheric.h>
void main(void) {
void main() { int n = nondet_uint() % 1024;

int n = nondet_uint() % 1024; 4/313&9—&]- *b = a;
char a[n+1]|*__capability b = cheri_ptr(a, n+1); b[n]=17;
b[n]=17; 4/dta1- *c=Db-1;
chal*__capability c = cheri_setbounds(b-1, n); memset(c, 42, n);

[* %/ }
memset_c(c, 42, n);
}
All pointers are automatically replaced with capabilities by the CHERI Clang/LLVM

compiler

ESBMC-CHERI

External Memory Correctness
Libraries Model Proof
Scan ST
clang \ v v 4+ ouT Property holds
Control-flow Symbolic
. formula
C Program Graph > P?oo-:a(\)m » Execution S > SSOIYI;
Generator 9 Engine v
S CHERI- T f v 4 Property is violated
can
Clang CHERI-C CHERI Violation
Memory
API Model Witness

/

CHERI Clang/LLVM
compiler

AN

* New capability types
« Tagged memory
« Capability dereferencing

Implement computational
model for CHERI-C API
functions inside ESBMC
(e.g., cheri_setbounds)

Braulle et al.: ESBMC-CHERI: towards verification of C programs for CHERI
platforms with ESBMC. ISSTA 2022: 773-776

Hybrid Verification Framework Vision

—

Use static properties

to refine runtime ® IR

checks

p

Pre-Deploymen

CHERI C
Program

7 Spatial memory safety

Temporal memory safety

cl;ng
| i

Custom assertions
\ (ASAN/SB)

back-end -—

v .
rogram.exe dynamic

linking

t Post-Deployment

FuSeBMC =~ ASA

ESBMC

N

%Partial

Bug Report
‘certificate (Test Case)

N/SB

I I Isolate
I external

libraries
I > Remove
] assertions in

safe areas

I
I
I
1
I
I
I
I
I
I
1
I
I
[}
I
1
I
I
I
I
I
I
: Memory safety violations
]

« Accentuate post-deployment safety
* Reduce performance overheads by

using “cheaper” hardware level
protection

 Reuse the information from static

analysis to ensure only necessary
more “expensive” safety checks are
Introduced

« Enhance pre-deployment analysis
« Combine complementary technigues
 Avoid producing a monolithic hybrid

solution (e.g., concolic execution)

[Al code

N

Source
code

N

Binary
code

Research Mission:

Automated Reasoning System
for Safe & Secure SW and Al

Code inspection
Static Analysis

Dynamic Analysis Fault Localization

_— Fault Repair
- Automated D

e e e Vulnerabilit
(ARS) Searching, 4>[Detection }——>[| ’ : Yy H Correction }
learning, memory classification

- and parallelization j Severity
Likelihood

Remediation cost

Explainable Properties
Behavior Correctness

Robustness

Impact: Awards and Industrial Deployment

 Distinguished Paper Award at ICSE'11
« Best Paper Award at SBESC'15
« Most Influential Paper Award at ASE'23

« 39 awards from the international competitions on software verification (SV-
COMP) and testing (Test-Comp) 2012-2023 at TACAS/FASE

» Bug Finding and Code Coverage @

* Intel deploys ESBMC Iin production as one of its verification engines for
verifying firmware in C

* Nokia and ARM have found security vulnerabilities in software written in C/C++

* Funded by EPSRC, Intel, Motorola, Samsung, Nokia, CNPq, FAPEAM,
British Council, and Royal Society

	Slide 1
	Slide 2: How much could software errors cost your business?
	Slide 3: Objective of this talk
	Slide 4: Research Questions
	Slide 5: ESBMC: An Automated Reasoning Platform
	Slide 6: The Bitter Lesson by Rich Sutton March 13, 2019
	Slide 7: Agenda
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Agenda
	Slide 24: SAT solving as enabling technology
	Slide 25: SAT Competition
	Slide 26: Bounded Model Checking (BMC)
	Slide 27: Software BMC
	Slide 28: Software BMC
	Slide 29: Software BMC
	Slide 30: Software BMC
	Slide 31: Software BMC
	Slide 32: Software BMC
	Slide 33: Software BMC
	Slide 34: Software BMC
	Slide 35: Induction-Based Verification for Software
	Slide 36: Induction-Based Verification for Software
	Slide 37: Automatic Invariant Generation
	Slide 38: BMC of Software Using Interval Methods via Contractors
	Slide 39: Intl. Software Verification Competition (SV-Comp 2023)
	Slide 40: White-box Fuzzing: Bug Finding and Code Coverage
	Slide 41: FuSeBMC v4 Framework
	Slide 42: Interval Analysis and Methods for Automated Test Case Generation
	Slide 43: Competition on Software Testing 2023: Results of the Overall Category
	Slide 44: EBF: Black-Box Cooperative Verification for Concurrent Programs
	Slide 45: EBF 4.0 with different BMC tools
	Slide 46: WolfMQTT Verification
	Slide 47: WolfMQTT Verification
	Slide 48: Bug Report
	Slide 49
	Slide 50: Agenda
	Slide 51: Capability Hardware Enhanced RISC Instructions (CHERI)
	Slide 52: CHERI-C program
	Slide 53
	Slide 54: ESBMC-CHERI
	Slide 55: Hybrid Verification Framework Vision
	Slide 56: Research Mission: Automated Reasoning System for Safe & Secure SW and AI
	Slide 57: Impact: Awards and Industrial Deployment

