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Motivation

• Plug And Play fuzzing

• Make model Checking and SW verification easily usable for security researchers

• Simplify the integration of fuzzing tools to support cooperative fuzzing (Modular approach)
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Motivation

• Fuzzer1 is very good at solving problem of type 

problem1

• Fuzzer2 is very good at solving problem of type 

problem2

Line           

Strategy
2 3-4 5-6 8 9-10 11-12

Fuzzer1 ✓ ✓

Fuzzer2 ✓ ✓

Fuzzer1 + 

Fuzzer2 ✓ ✓ ✓ ✓

Cooperative 

Fuzzing ✓ ✓ ✓ ✓ ✓ ✓
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Motivation

2 AFL instances + symcc 3 AFL++ instances
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Motivation

2 AFL instances + symcc 3 AFL++ instances

Found 1 crash as soon as symcc start Still nothing after 20 min
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Architecture
High Level Design

MISOFuzz

Scheduler

Key features

Scalability

Flexibility

• A distributed cooperative fuzzing and software 

analysis framework

• Easy to scale up and down

• Efficient hardware resource utilization

• Cloud-Native with support of Private Clouds

• Heuristic-based scheduling powered by FuSeBMC
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Architecture
Low Level Design

• VM-based isolation, via a hypervisor

• Built on top of a Kubernetes Cluster

• File sharing over NFS

• Intra-cluster communication via a distributed 

message queue
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Architecture
Components

• Scheduler

• Schedule fuzzing and analysis job

• Aggregate the results

• Message Broker

• Facilitates data exchange between scheduler and workers

• Stores fuzzing metrics, artifacts and reports

• Provides an event-queue between systems

• Workers

• Analysis worker: perform static analysis of source code (ESBMC)
Retrieve tasks from Static Analysis Queue and push to Results Queue

• Fuzzing worker: fuzz compiled code (AFL, AFL+SymCC, AFL++, FuSeBMC)
Retrieve tasks from Fuzz Queue and push to Results Queue

• CodeCov

Scheduler

Message Broker
(RabbitMQ)

Workers

• ESBMC

• AFL

• CodeCov

• SymCC

• FuzzX

• FuSeBMC
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Architecture
Components

RabbitMQ

- Reliable communication system between different components of the 

system

- Easily deployable

- Easily add or remove workers as needed, and to balance the workload 

across them.

Scheduler

Message Broker
(RabbitMQ)

Workers

• ESBMC

• AFL

• CodeCov

• SymCC

• FuSeBMC
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Architecture
Fuzzers

• AFL employs genetic algorithms to efficiently increase code coverage of 

the test cases. For many years after its release, AFL has been considered 

a "state of the art" fuzzer. [11]

• SymCC is a compiler wrapper which embeds symbolic execution into the 

program during compilation, and an associated run-time support library. In 

essence, the compiler inserts code that computes symbolic expressions 

for each value in the program. [10]

• AFL++ is a superior fork to Google's AFL - more speed, more and better 

mutations, more and better instrumentation, custom module support, etc. 

[9]

• FuseBMC is a test generator for finding security vulnerabilities in C 

programs. It incrementally injected labels to guide BMC and Evolutionary 

Fuzzing engines to produce test cases for code coverage and bug finding. 

[2]

Scheduler

Message Broker
(RabbitMQ)

Workers

• ESBMC

• AFL

• CodeCov

• SymCC

• FuSeBMC
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Architecture
Seed Generation

• Strings from binary

Extract any string contained in the binary and leverage it as seed

Practical method used in vulnerability hunting

→ does not need source code, fast 

• ESBMC

Leverages a BMC engine to generate relevant input for the source code

→ more precise seeds

Scheduler

Message Broker
(RabbitMQ)

Workers

• ESBMC

• AFL

• CodeCov

• SymCC

• FuSeBMC
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Current Workflow

Fuzzing Artifacts

Shared Filesystem
(NFS/Ceph/..)

d
a
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a

User

Backend

Fuzzing Job Definition
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32 instances AFL fuzzing campaign
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32 instances AFL+SymCC fuzzing campaign
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DEMO
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DEMO
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Further development
Components

• Implement a distributed fuzzing framework, with ease of integration and modularity as priority goals

• This approach can improve the performance of the fuzzing process and increase the likelihood of discovering 

bugs [5].

• Workload is distributed across multiple instances and the discovered seeds are shared

• Different fuzzers can adopt various strategies to increase coverage and decrease computation time.

• GUI / WebUI

• Telemetry-driven scheduling

• Based on job performances

• On-Demand Scaling

• depending on the available hardware resources and the job backlog pressure.
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Further development
Tool comparison

MISOFuzz

• Cooperative fuzzing

• Distributed scheduler 
leveraging FuSeBMC

• Communication over 
RabbitMQ

• AFL, AFL++, SYMCC, 
FuSeBMC, FUZZX, 
extendable

• Leverages Bounded 
Model Checking

EnFuzz [5]

• Ensamble fuzzing

• Distributed scheduler 

• Custom protocol

• AFL, AFLFast,FairFuzz, 
libFuzzer, Radamsa and 
QSYM

CollabFuzz [1]

• Cooperative fuzzing

• Centralized scheduler

• Communication over 
ZeroMQ

• AFL, AFLFast, FairFuzz, 
QSYM, radamsa, 
Honggfuzz, and 
libFuzzer, extendable
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