
tii.aeNicole Gervasoni

MISOFuzz

A Modular Infrastructure for Scalable Fuzzing

Orchestration

2TII – Technology Innovation Institute

Who Are we?

Nicole

Researcher

nicole.gervasoni@tii.ae

Mike

Senior Engineer

mikhail.lubinets@tii.ae

Norbert

Lead researcher

norbert.tihanyi@tii.ae

Lucas

Director

lucas.cordeiro@tii.ae

Ridhi

Researcher

ridhi.jain@tii.ae

mailto:nicole.gervasoni@tii.ae
mailto:mikhail.lubinets@tii.ae
mailto:norbert.tihanyi@tii.ae
mailto:lucas.cordeiro@tii.ae
mailto:ridhi.jain@tii.ae

3TII – Technology Innovation Institute

Motivation

• Plug And Play fuzzing

• Make model Checking and SW verification easily usable for security researchers

• Simplify the integration of fuzzing tools to support cooperative fuzzing (Modular approach)

4TII – Technology Innovation Institute

Motivation

• Fuzzer1 is very good at solving problem of type

problem1

• Fuzzer2 is very good at solving problem of type

problem2

Line

Strategy
2 3-4 5-6 8 9-10 11-12

Fuzzer1 ✓ ✓

Fuzzer2 ✓ ✓

Fuzzer1 +

Fuzzer2 ✓ ✓ ✓ ✓

Cooperative

Fuzzing ✓ ✓ ✓ ✓ ✓ ✓

5TII – Technology Innovation Institute

Motivation

2 AFL instances + symcc 3 AFL++ instances

6TII – Technology Innovation Institute

Motivation

2 AFL instances + symcc 3 AFL++ instances

Found 1 crash as soon as symcc start Still nothing after 20 min

7TII – Technology Innovation Institute

Architecture
High Level Design

MISOFuzz

Scheduler

Key features

Scalability

Flexibility

• A distributed cooperative fuzzing and software

analysis framework

• Easy to scale up and down

• Efficient hardware resource utilization

• Cloud-Native with support of Private Clouds

• Heuristic-based scheduling powered by FuSeBMC

8TII – Technology Innovation Institute

Architecture
Low Level Design

• VM-based isolation, via a hypervisor

• Built on top of a Kubernetes Cluster

• File sharing over NFS

• Intra-cluster communication via a distributed

message queue

9TII – Technology Innovation Institute

Architecture
Components

• Scheduler

• Schedule fuzzing and analysis job

• Aggregate the results

• Message Broker

• Facilitates data exchange between scheduler and workers

• Stores fuzzing metrics, artifacts and reports

• Provides an event-queue between systems

• Workers

• Analysis worker: perform static analysis of source code (ESBMC)
Retrieve tasks from Static Analysis Queue and push to Results Queue

• Fuzzing worker: fuzz compiled code (AFL, AFL+SymCC, AFL++, FuSeBMC)
Retrieve tasks from Fuzz Queue and push to Results Queue

• CodeCov

Scheduler

Message Broker
(RabbitMQ)

Workers

• ESBMC

• AFL

• CodeCov

• SymCC

• FuzzX

• FuSeBMC

R
e
s
u
lt
s

T
a
s
k
s

M
e
tric

sT
a
s
k
s

R
e
s
u
lt
s

10TII – Technology Innovation Institute

Architecture
Components

RabbitMQ

- Reliable communication system between different components of the

system

- Easily deployable

- Easily add or remove workers as needed, and to balance the workload

across them.

Scheduler

Message Broker
(RabbitMQ)

Workers

• ESBMC

• AFL

• CodeCov

• SymCC

• FuSeBMC

R
e
s
u
lt
s

T
a
s
k
s

M
e
tric

sT
a
s
k
s

R
e
s
u
lt
s

11TII – Technology Innovation Institute

Architecture
Fuzzers

• AFL employs genetic algorithms to efficiently increase code coverage of

the test cases. For many years after its release, AFL has been considered

a "state of the art" fuzzer. [11]

• SymCC is a compiler wrapper which embeds symbolic execution into the

program during compilation, and an associated run-time support library. In

essence, the compiler inserts code that computes symbolic expressions

for each value in the program. [10]

• AFL++ is a superior fork to Google's AFL - more speed, more and better

mutations, more and better instrumentation, custom module support, etc.

[9]

• FuseBMC is a test generator for finding security vulnerabilities in C

programs. It incrementally injected labels to guide BMC and Evolutionary

Fuzzing engines to produce test cases for code coverage and bug finding.

[2]

Scheduler

Message Broker
(RabbitMQ)

Workers

• ESBMC

• AFL

• CodeCov

• SymCC

• FuSeBMC

R
e
s
u
lt
s

T
a
s
k
s

M
e
tric

sT
a
s
k
s

R
e
s
u
lt
s

12TII – Technology Innovation Institute

Architecture
Seed Generation

• Strings from binary

Extract any string contained in the binary and leverage it as seed

Practical method used in vulnerability hunting

→ does not need source code, fast

• ESBMC

Leverages a BMC engine to generate relevant input for the source code

→ more precise seeds

Scheduler

Message Broker
(RabbitMQ)

Workers

• ESBMC

• AFL

• CodeCov

• SymCC

• FuSeBMC

R
e
s
u
lt
s

T
a
s
k
s

M
e
tric

sT
a
s
k
s

R
e
s
u
lt
s

13TII – Technology Innovation Institute

Current Workflow

Fuzzing Artifacts

Shared Filesystem
(NFS/Ceph/..)

d
a
t
a

User

Backend

Fuzzing Job Definition

R
e
s
u
lt
s

data Workers

RMQ

T
a
s
k
s

14TII – Technology Innovation Institute

32 instances AFL fuzzing campaign

15TII – Technology Innovation Institute

32 instances AFL+SymCC fuzzing campaign

16TII – Technology Innovation Institute

DEMO

17TII – Technology Innovation Institute

DEMO

18TII – Technology Innovation Institute

Further development
Components

• Implement a distributed fuzzing framework, with ease of integration and modularity as priority goals

• This approach can improve the performance of the fuzzing process and increase the likelihood of discovering

bugs [5].

• Workload is distributed across multiple instances and the discovered seeds are shared

• Different fuzzers can adopt various strategies to increase coverage and decrease computation time.

• GUI / WebUI

• Telemetry-driven scheduling

• Based on job performances

• On-Demand Scaling

• depending on the available hardware resources and the job backlog pressure.

19TII – Technology Innovation Institute

Further development
Tool comparison

MISOFuzz

• Cooperative fuzzing

• Distributed scheduler
leveraging FuSeBMC

• Communication over
RabbitMQ

• AFL, AFL++, SYMCC,
FuSeBMC, FUZZX,
extendable

• Leverages Bounded
Model Checking

EnFuzz [5]

• Ensamble fuzzing

• Distributed scheduler

• Custom protocol

• AFL, AFLFast,FairFuzz,
libFuzzer, Radamsa and
QSYM

CollabFuzz [1]

• Cooperative fuzzing

• Centralized scheduler

• Communication over
ZeroMQ

• AFL, AFLFast, FairFuzz,
QSYM, radamsa,
Honggfuzz, and
libFuzzer, extendable

20TII – Technology Innovation Institute

References

[1] S. ̈Osterlund et al. Collabfuzz: A framework for collaborative fuzzing. EuroSec 2021.

[2] K. Alshmrany et al. Fusebmc: A white-box fuzzer for finding security vulnerabilities in c programs. FASE 2021.

[3] G. Klees et al. Evaluating fuzz testing. CCS 2018.

[4] M. Bohme et al. Fuzzing: On the exponential cost of vulnerability discovery. ESEC/FSE 2020.

[5] Y. Chen et al. Enfuzz: Ensemble fuzzing with seed synchronization among diverse fuzzers. In USENIX, 2019.

[6] M. R. Gadelhaet al. Esbmc 5.0: An industrial-strength c model checker. ASE 2018.

[7] Y. Li et al. A large-scale parallel fuzzing system. ICAIP 2018.

[8] J. Liang et al. Pafl: Extend fuzzing optimizations of single mode to industrial parallel mode. ESEC/FSE 2018.

[9] A. Fioraldi et al. AFL++: Combining incremental steps of fuzzing research. USENIX (WOOT 20), 2020.

[10] S. Poeplau and A. Francillon. Symbolic execution with SymCC: Don’t interpret, compile! USENIX, 2020.

[11] M. Zalewski, American Fuzzy Lop whitepaper. https://lcamtuf.coredump.cx/afl/

tii.aetii.ae

	Slide 1: MISOFuzz A Modular Infrastructure for Scalable Fuzzing Orchestration
	Slide 2
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Architecture High Level Design
	Slide 8: Architecture Low Level Design
	Slide 9: Architecture Components
	Slide 10: Architecture Components
	Slide 11: Architecture Fuzzers
	Slide 12: Architecture Seed Generation
	Slide 13: Current Workflow
	Slide 14: 32 instances AFL fuzzing campaign
	Slide 15: 32 instances AFL+SymCC fuzzing campaign
	Slide 16: DEMO
	Slide 17: DEMO
	Slide 18: Further development Components
	Slide 19: Further development Tool comparison
	Slide 20: References
	Slide 21

