. . =

Technology . .0 P 0
TII Innovation = .
Institute ‘. .. =

® . o
® ...
oo o
Y R
.0 ®
MISOFuzz Y e oY
A Modular Infrastructure for Scalable Fuzzing - o®
Orchestration e
®

tii.ae

Who Are we?

Nicole
Researcher
nicole.gervasoni@tii.ae

Mike
Senior Engineer
mikhail.lubinets@tii.ae

Norbert
Lead researcher
norbert.tihanyi@tii.ae

TIl — Technology Innovation Institute

Lucas
Director
lucas.cordeiro@tii.ae

Ridhi
Researcher
ridhi.jain@tii.ae

mailto:nicole.gervasoni@tii.ae
mailto:mikhail.lubinets@tii.ae
mailto:norbert.tihanyi@tii.ae
mailto:lucas.cordeiro@tii.ae
mailto:ridhi.jain@tii.ae

Motivation

* Plug And Play fuzzing

+ Make model Checking and SW verification easily usable for security researchers

« Simplify the integration of fuzzing tools to support cooperative fuzzing (Modular approach)

Tl — Technology Innovation Institute

Motivation

1 void crash(char* A, char* B){ « Fuzzerlis very good at solving problem of type
2 if {.-':'. == "probleml") { probleml
3 1f (B == "problem2") {
4 # BUG * Fuzzer2is very good at solving problem of type
. el problem?2
6 # nothing
7 }
8 } else if (A == "problem2") { Line
; if (B = “"probleml”){ Strategy 2 3-4 5-6 8 9-10 | 11-12
1@ # BUG
11 } else { Fuzzerl \/ \/
12 # nothun
13 } ¢ Fuzzer2 \/ \/
i ¥ Fuzzerl +
15 } Fuzzer2 \/ \/ \/ \/
Cooperative
Fuzzing \/ \/ \/ \/ \/ \/

TIl — Technology Innovation Institute

Motivation

2 AFL instances + symcc 3 AFL++ instances

Tl — Technology Innovation Institute

Motivation

2 AFL instances + symcc 3 AFL++ instances

Found 1 crash as soon as symcc start Still nothing after 20 min

Tl — Technology Innovation Institute

Architecture
High Level Design

Key features
Fuzzers -
— Scalability
)4 _E E I:E AFL++ Flexibility
Fuzz Queue)
Scheduler — L FuzzX_|] * Adistributed cooperative fuzzing and software

analysis framework

+ Easyto scale up and down

ﬁ ESBMC \ . e
— — — — - Efficient hardware resource utilization
Static Analysis queue

* Cloud-Native with support of Private Clouds

Rabbit MQ Analyzer
* Heuristic-based scheduling powered by FuSeBMC

Tl — Technology Innovation Institute

Architecture
Low Level Design

* VM-based isolation, via a hypervisor Master

- A Master - i
Server Services WM Provisioning Server Services VM Provisioning

» Built on top of a Kubernetes Cluster

A A

* File sharing over NFS

h 4 h J

e |ntra-cluster communication via a distributed Hypervisor VM1
message gueue

VM 2
VM 1 Worker Pod @
Shared
Node
VM 2 !

o@o

Hypervisor

TIl — Technology Innovation Institute

Architecture
Components

» Scheduler
. Schedule fuzzing and analysis job

. Aggregate the results

* Message Broker
. Facilitates data exchange between scheduler and workers

. Stores fuzzing metrics, artifacts and reports
. Provides an event-queue between systems
* Workers

. Analysis worker: perform static analysis of source code (ESBMC)
Retrieve tasks from Static Analysis Queue and push to Results Queue

. Fuzzing worker: fuzz compiled code (AFL, AFL+SymCC, AFL++, FuSeBMC)
Retrieve tasks from Fuzz Queue and push to Results Queue

. CodeCov

Tl — Technology Innovation Institute

Scheduler

Tasks
SOBN

Message Broker
(RabbitMQ)

Tasks

Workers

+ ESBMC

* AFL

+ CodeCov
+ SymCC

* FuzzX

* FuSeBMC

Results

Results

Architecture
Components

RabbitMQ

Reliable communication system between different components of the
system

- Easily deployable
Easily add or remove workers as needed, and to balance the workload
across them.

Tl — Technology Innovation Institute

Scheduler

Tasks
SOBN
Results

Message Broker
(RabbitMQ)

Tasks
Results

Workers

+ ESBMC

« AFL

+ CodeCov
« SymCC

» FuSeBMC

10

Architecture
Fuzzers

AFL employs genetic algorithms to efficiently increase code coverage of
the test cases. For many years after its release, AFL has been considered
a "state of the art" fuzzer. [11]

SymCC is a compiler wrapper which embeds symbolic execution into the
program during compilation, and an associated run-time support library. In
essence, the compiler inserts code that computes symbolic expressions
for each value in the program. [10]

AFL++ is a superior fork to Google's AFL - more speed, more and better
mutations, more and better instrumentation, custom module support, etc.

[9]

FuseBMC is a test generator for finding security vulnerabilities in C
programs. It incrementally injected labels to guide BMC and Evolutionary
Fuzzing engines to produce test cases for code coverage and bug finding.

2]

Tl — Technology Innovation Institute

Scheduler

Tasks
SOBN

Message Broker
(RabbitMQ)

Tasks

Workers

+ ESBMC

« AFL

+ CodeCov
« SymCC

» FuSeBMC

Results

Results

11

Architecture
Seed Generation

» Strings from binary
Extract any string contained in the binary and leverage it as seed

Practical method used in vulnerability hunting
— does not need source code, fast

« ESBMC
Leverages a BMC engine to generate relevant input for the source code

— more precise seeds

Tl — Technology Innovation Institute

Scheduler

Tasks
SOBN
Results

Message Broker
(RabbitMQ)

Tasks
Results

Workers

+ ESBMC
« AFL

+ CodeCov
« SymCC

» FuSeBMC

12

Current Workflow

Fuzzing Artifacts Fuzzing Job Definition

g"Backend

Shared Filesystem Workers
ST

TIl — Technology Innovation Institute

13

32 instances AFL fuzzing campaign

Stacked lines

00 18:44:00 1 18:50:00 18:51:00
X62 = WOTKers-2xznx we w e workers-Shtlq
workers-8r97f worke t
workers workers-hmtrw
workers-nntbf

d654s w= workers-d88x| == worke
workers-nnmws

- wor
= workers{xdcg == workerskbsh9 == workers-kkdmd
thme work workef wor Khrr ==
Shzb == workers-x7x8z == workers-xf7dp == workers-x|zIS == workers-xmmzv == workers:

Tl — Technology Innovation Institute

32 instances AFL+SymCC fuzzing campaign

19:21:30 19:22:00 19:22:30 19:23:00 19:23:30 19:24:00 19:24:30 19:25:00 19:25:30 19:26:00 19:26:30 19:27:00 19:27:30 19:28:00
== workers-2kh4m == workers-2wx6z == workers-2xznx == workers-4c7v6 workers-4jwcj workers-4tplm == workers-54d8w workers-5htlq workers-617mw == workers-7xw8r
workers-8fgoh workers-8pbs7 workers-8r97f workers-8s9bt workers-8tgm7 workers-9tmn4 == workers-9zvgl == workers-cdhm5 == workers-cdxs6 == workers-cpzd7
== workers-cqwl2 == workers-cwpwl == workers-d654s == workers-d88xj workers-dfj4b == workers-gnp79 == workers-gqz74 workers-h5d69 workers-hmtrw workers-j7w2r workers-jbflw
workers-jkbm6é == workers-jx8vc == workers-jxdcg == workers-kbsh9 == workers-kkdmd workers-m25sq workers-m2kvz == workers-nnmws workers-nntbf workers-nwp9f
workers-p7tqq workers-plvkl workers-gtnmc workers-r2jj9 workers-rbgn7 workers-rr99b workers-rvzvh == workers-rxSmh == workers-skhrr == workers-vI28] == workers-wj8kg

== workers-wsr6q == workers-wvxb5 == workers-xShzb == workers-x7x8z == workers-xf7dp == workers-x|zI5 == workers-xmmzv == workers-xvfvw workers-zbvtp workers-zvI8p == workers-zzcf5

Tl — Technology Innovation Institute

DEMO

Tl — Technology Innovation Institute

16

DEMO

Tl — Technology Innovation Institute

17

Further development
Components

* Implement a distributed fuzzing framework, with ease of integration and modularity as priority goals

» This approach can improve the performance of the fuzzing process and increase the likelihood of discovering
bugs [5].

» Workload is distributed across multiple instances and the discovered seeds are shared

 Different fuzzers can adopt various strategies to increase coverage and decrease computation time.

GUI / WebUI

Telemetry-driven scheduling
+ Based on job performances

+ On-Demand Scaling
. depending on the available hardware resources and the job backlog pressure.

TIl - Technology Innovation Institute 18

Further development
Tool comparison

MISOFuzz

Cooperative fuzzing

Distributed scheduler
leveraging FuSeBMC

Communication over
RabbitMQ

AFL, AFL++, SYMCC,
FuSeBMC, FUZZX,
extendable

Leverages Bounded
Model Checking

Tl — Technology Innovation Institute

I

EnFuzz [5]

Ensamble fuzzing

Distributed scheduler

Custom protocol

AFL, AFLFast,FairFuzz,
libFuzzer, Radamsa and
QSYM

CollabFuzz [1]

Cooperative fuzzing

Centralized scheduler

Communication over
ZeroMQ

AFL, AFLFast, FairFuzz,
QSYM, radamsa,
Honggfuzz, and
libFuzzer, extendable

19

References

[1] S. Osterlund et al. Collabfuzz: A framework for collaborative fuzzing. EuroSec 2021.

[2] K. Alshmrany et al. Fusebmc: A white-box fuzzer for finding security vulnerabilities in ¢ programs. FASE 2021.
[3] G. Klees et al. Evaluating fuzz testing. CCS 2018.

[4] M. Bohme et al. Fuzzing: On the exponential cost of vulnerability discovery. ESEC/FSE 2020.

[5] Y. Chen et al. Enfuzz: Ensemble fuzzing with seed synchronization among diverse fuzzers. In USENIX, 2019.
[6] M. R. Gadelhaet al. Esbmc 5.0: An industrial-strength ¢ model checker. ASE 2018.

[7]1Y. Li et al. A large-scale parallel fuzzing system. ICAIP 2018.

[8] J. Liang et al. Pafl: Extend fuzzing optimizations of single mode to industrial parallel mode. ESEC/FSE 2018.
[9] A. Fioraldi et al. AFL++: Combining incremental steps of fuzzing research. USENIX (WOOT 20), 2020.

[10] S. Poeplau and A. Francillon. Symbolic execution with SymCC: Don’t interpret, compile! USENIX, 2020.

[11] M. Zalewski, American Fuzzy Lop whitepaper. https://Icamtuf.coredump.cx/afl/

TIl - Technology Innovation Institute 20

Technology -, ©
TI I Innovation = 2
Institute ® ®

tii.ae

	Slide 1: MISOFuzz A Modular Infrastructure for Scalable Fuzzing Orchestration
	Slide 2
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Architecture High Level Design
	Slide 8: Architecture Low Level Design
	Slide 9: Architecture Components
	Slide 10: Architecture Components
	Slide 11: Architecture Fuzzers
	Slide 12: Architecture Seed Generation
	Slide 13: Current Workflow
	Slide 14: 32 instances AFL fuzzing campaign
	Slide 15: 32 instances AFL+SymCC fuzzing campaign
	Slide 16: DEMO
	Slide 17: DEMO
	Slide 18: Further development Components
	Slide 19: Further development Tool comparison
	Slide 20: References
	Slide 21

