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Motivation

Automatically synthesise feedback digital controllers that ensure
stability and safety

2 of 11



ou

Motivation

Automatically synthesise feedback digital controllers that ensure
stability and safety

2 of 11



ou

State-feedback architecture

Continuous-discrete system

• Plant: ẋ(t) = Ax(t) + Bu(t), t ∈ R+
0 , x(0) = initial state

• State-feedback controller: uk = rk − Cxk
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Our approach
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State-feedback architecture

Time and value domain discretization

• Plant: xk+1 = Axk + Buk , k ∈ N, x0 = initial state

• State-feedback controller: uk = −Cxk
• Finite precision
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Numerical errors

• Truncation and rounding on the plant

• Truncation on the converters

• Rounding on the controller
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Stability

A system xk+1 = Axk + Buk , uk = −Cxk is asymptotically stable if its

executions converge to an equilibrium point.

7 of 11



ou

Stability

A system xk+1 = Axk + Buk , uk = −Cxk is asymptotically stable if its

executions converge to an equilibrium point.

7 of 11



ou

Stability

A system xk+1 = Axk + Buk , uk = −Cxk is asymptotically stable if its

executions converge to an equilibrium point.

7 of 11



ou

Stability

A system xk+1 = Axk + Buk , uk = −Cxk is asymptotically stable if its

executions converge to an equilibrium point.

7 of 11



ou

Stability

A system xk+1 = Axk + Buk , uk = −Cxk is asymptotically stable if its

executions converge to an equilibrium point.

7 of 11



ou

Stability and safety

A system xk+1 = Axk + Buk , uk = −Cxk is asymptotically stable if its

executions converge to an equilibrium point.
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Controller synthesis

1.Synthesize

Verify

2.Safety 3.Precision 4.Complete Done

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound
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2.Safety 3.Precision 4.Complete Done

C

C-ex

PASS

Increase Precision
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Find a controller for given {x0} and k=6
such that the system is stable and safe

synthesize
1: Input: x0, k .
2: Output: C .
3: C=nondet;
4: assume(STABLE(A,B,C ));
5: assume(SAFE(x0));
6: i = 0;
7: while i < k do
8: xi+1 = xi (A− BC )
9: assume(SAFE(xi+1));

10: i = i + 1;
11: end while
12: assert(false);
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Experimental results

# Benchmark Dimension Completeness threshold
〈Ip ,Fp〉 Time

1 Cruise Control 1 8,16 7.44 s
2 DC Motor 2 8,16 7.76 s
3 Helicopter 3 8,16 12.13 s
4 Inverted Pendulum 4 8,16 8.82 s
5 Magnetic Pointer 2 8,16 10.31 s
6 Magnetic Suspension 2 12,20 21.55 s
7 Pendulum 2 8,16 9.08 s
8 Suspension 2 8,16 17.18 s
9 Tape Driver 3 8,16 8.05 s

10 Satellite 2 8,16 8.76 s

Synthesis phases: Synthesize 52%, verify 48%

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Automated Formal Synthesis of Digital
Controllers for State-Space Physical Plants?

Alessandro Abate1, Iury Bessa2, Dario Cattaruzza1, Lucas Cordeiro1,2,
Cristina David1, Pascal Kesseli1, Daniel Kroening1, and Elizabeth Polgreen1

1 University of Oxford, UK
2 Federal University of Amazonas, Manaus, Brazil

Abstract. We present a sound and automated approach to synthesize
safe digital feedback controllers for physical plants represented as linear,
time-invariant models. Models are given as dynamical equations with
inputs, evolving over a continuous state space and accounting for errors
due to the digitization of signals by the controller. Our counterexample
guided inductive synthesis (CEGIS) approach has two phases: We syn-
thesize a static feedback controller that stabilizes the system but that
may not be safe for all initial conditions. Safety is then verified either
via BMC or abstract acceleration; if the verification step fails, a coun-
terexample is provided to the synthesis engine and the process iterates
until a safe controller is obtained. We demonstrate the practical value of
this approach by automatically synthesizing safe controllers for intricate
physical plant models from the digital control literature.

1 Introduction

Linear Time Invariant (LTI) models represent a broad class of dynamical sys-
tems with significant impact in numerous application areas such as life sciences,
robotics, and engineering [2, 11]. The synthesis of controllers for LTI models
is well understood, however the use of digital control architectures adds new
challenges due to the effects of finite-precision arithmetic, time discretization,
and quantization noise, which is typically introduced by Analogue-to-Digital
(ADC) and Digital-to-Analogue (DAC) conversion. While research on digital
control is well developed [2], automated and sound control synthesis is challenging,
particularly when the synthesis objective goes beyond classical stability. There
are recent methods for verifying reachability properties of a given controller [13].
However, these methods have not been generalized to control synthesis. Note
that a synthesis algorithm that guarantees stability does not ensure safety: the
system might transitively visit an unsafe state resulting in unrecoverable failure.

We propose a novel algorithm for the synthesis of control algorithms for
LTI models that are guaranteed to be safe, considering both the continuous
dynamics of the plant and the finite-precision discrete dynamics of the controller,

? Supported by EPSRC grant EP/J012564/1, ERC project 280053 (CPROVER) and
the H2020 FET OPEN 712689 SC2.

Check abstract acceleration based approach in the paper!
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Conclusions

• Automated synthesizer for digital state-feedback controllers
that ensures stability and safety

• Evaluated the errors due to the controller’s implementation
and plant’s modeling

DSSynth Matlab toolbox:
www.cprover.org/DSSynth/dssynth-toolbox-1.0.0.zip
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