Automated Formal Synthesis of Digital Controllers for State-Space Physical Plants CAV 2017

Alessandro Abate, Iury Bessa, Dario Cattaruzza, Lucas Cordeiro, **Cristina David**, Pascal Kesseli, Daniel Kroening and Elizabeth Polgreen

> Diffblue Ltd., University of Oxford, Federal University of Amazonas

Motivation

Motivation

Automatically synthesise feedback digital controllers that ensure stability and safety

State-feedback architecture

Continuous-discrete system

• Plant: $\dot{x}(t) = Ax(t) + Bu(t)$, $t \in \mathbb{R}^+_0$, x(0) = initial state

• State-feedback controller: $u_k = r_k - Cx_k$

State-feedback architecture

Continuous-discrete system

• Plant: $\dot{x}(t) = Ax(t) + Bu(t)$, $t \in \mathbb{R}^+_0$, x(0) = initial state

• State-feedback controller: $u_k = -Cx_k$

Our approach

Translate to a single digital domain

Evaluate sources of numerical error

Synthesise a controller *C* that makes the system stable and safe

State-feedback architecture

Continuous-discrete system

• Plant: $\dot{x}(t) = Ax(t) + Bu(t)$, $t \in \mathbb{R}^+_0$, x(0) = initial state

• State-feedback controller: $u_k = -Cx_k$

State-feedback architecture

Time and value domain discretization

- Plant: $x_{k+1} = Ax_k + Bu_k$, $k \in N$, $x_0 = initial state$
- State-feedback controller: $u_k = -Cx_k$
- Finite precision

Numerical errors

• Truncation and rounding on the plant

Numerical errors

- Truncation and rounding on the plant
- Truncation on the converters

Numerical errors

- Truncation and rounding on the plant
- Truncation on the converters
- Rounding on the controller

Stability and safety

- SYNTHESIZE
- 1: Input: x₀, k.
- 2: **Output: C**.
- 3: C=nondet;
- 4: assume(STABLE(A,B,C));
- 5: assume(SAFE(x₀));
- 6: *i* = 0;
- 7: while i < k do

8:
$$x_{i+1} = x_i(A - BC)$$

- 9: assume(**SAFE**(x_{i+1}));
- 10: i = i + 1;
- 11: end while
- 12: assert(false);

- SYNTHESIZE
 - 1: **Input:** *x*₀, *k*.
 - 2: **Output: C**.
- 3: C=nondet;
- 4: assume(STABLE(A,B,C));
- 5: assume(SAFE(x₀));
- 6: *i* = 0;
- 7: while *i* < *k* do

8:
$$x_{i+1} = x_i(A - BC)$$

- 9: assume(**SAFE**(x_{i+1}));
- 10: i = i + 1;
- 11: end while
- 12: assert(false);

- SYNTHESIZE
 - 1: Input: x₀, k.
- 2: **Output: C**.
- 3: C=nondet;
- 4: **assume**(**STABLE**(A,B,**C**));
- 5: assume(SAFE(x₀));
- 6: *i* = 0;
- 7: while *i* < *k* do

8:
$$x_{i+1} = x_i(A - BC)$$

- 9: assume(SAFE(x_{i+1}));
- 10: i = i + 1;
- 11: end while
- 12: assert(false);

- SYNTHESIZE
 - 1: Input: x₀, k.
- 2: **Output: C**.
- 3: C=nondet;
- 4: assume(STABLE(A,B,C));
- 5: $assume(SAFE(x_0));$
- 6: *i* = 0;
- 7: while i < k do

8:
$$x_{i+1} = x_i(A - BC)$$

- 9: $\operatorname{assume}(\mathsf{SAFE}(x_{i+1}));$
- 10: i = i + 1;
- 11: end while

- SYNTHESIZE
- 1: Input: x₀, k.
- 2: **Output: C**.
- 3: C=nondet;
- 4: assume(STABLE(A,B,C));
- 5: assume(SAFE(x₀));
- 6: *i* = 0;
- 7: while i < k do

8:
$$x_{i+1} = x_i(A - BC)$$

- 9: assume(**SAFE**(x_{i+1}));
- 10: i = i + 1;
- 11: end while
- 12: assert(false);

Check that the plant precision is sufficient

Check that k is sufficient

Controller found

8 of 11

Experimental results

#	Benchmark	Dimension	Completeness threshold			
			$\langle I_p, F_p \rangle$	Time		
1	Cruise Control	1	8,16	7.44 s		
2	DC Motor	2	8,16	7.76 s		
3	Helicopter	3	8,16	12.13 s		
4	Inverted Pendulum	4	8,16	8.82 s		
5	Magnetic Pointer	2	8,16	10.31 s		
6	Magnetic Suspension	2	12,20	21.55 s		
7	Pendulum	2	8,16	9.08 s		
8	Suspension	2	8,16	17.18 s		
9	Tape Driver	3	8,16	8.05 s		
10	Satellite	2	8,16	8.76 s		

Synthesis phases: SYNTHESIZE 52%, VERIFY 48%

Experimental results

#	Benchmark	Dimension	Completeness threshold				
			$\langle I_p, F_p \rangle$	Time			
1	Cruise Control	1	8,16	7.44 s			
2	DC Motor	2	8,16	7.76 s			
3	Helicopter	3	8,16	12.13 s			
4	Inverted Pendulum	4	8,16	8.82 s			
5	Magnetic Pointer	2	8,16	10.31 s			
6	Magnetic Suspension	2	12,20	21.55 s			
7	Pendulum	2	8,16	9.08 s			
8	Suspension	2	8,16	17.18 s			
9	Tape Driver	3	8,16	8.05 s			
10	Satellite	2	8,16	8.76 s			

Synthesis phases: SYNTHESIZE 52%, VERIFY 48%

Includes

Check abstract acceleration based approach in the paper!

9 of 11

Conclusions

- Automated synthesizer for digital state-feedback controllers that ensures stability and safety
- Evaluated the errors due to the controller's implementation and plant's modeling

Conclusions

- Automated synthesizer for digital state-feedback controllers that ensures stability and safety
- Evaluated the errors due to the controller's implementation and plant's modeling

DSSynth Matlab toolbox: www.cprover.org/DSSynth/dssynth-toolbox-1.0.0.zip

