
Automated Formal Synthesis of Digital Controllers
for State-Space Physical Plants

CAV 2017

Alessandro Abate, Iury Bessa, Dario Cattaruzza,
Lucas Cordeiro, Cristina David, Pascal Kesseli,

Daniel Kroening and Elizabeth Polgreen

Diffblue Ltd.,
University of Oxford,

Federal University of Amazonas

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

ou

Motivation

Automatically synthesise feedback digital controllers that ensure
stability and safety

2 of 11

ou

Motivation

Automatically synthesise feedback digital controllers that ensure
stability and safety

2 of 11

ou

State-feedback architecture

Continuous-discrete system

• Plant: ẋ(t) = Ax(t) + Bu(t), t ∈ R+
0 , x(0) = initial state

• State-feedback controller: uk = rk − Cxk

3 of 11

ou

State-feedback architecture

Continuous-discrete system

• Plant: ẋ(t) = Ax(t) + Bu(t), t ∈ R+
0 , x(0) = initial state

• State-feedback controller: uk = −Cxk

3 of 11

ou

Our approach

4 of 11

ou

State-feedback architecture

Continuous-discrete system

• Plant: ẋ(t) = Ax(t) + Bu(t), t ∈ R+
0 , x(0) = initial state

• State-feedback controller: uk = −Cxk

• Finite precision

5 of 11

ou

State-feedback architecture

Time and value domain discretization

• Plant: xk+1 = Axk + Buk , k ∈ N, x0 = initial state

• State-feedback controller: uk = −Cxk
• Finite precision

5 of 11

ou

Numerical errors

• Truncation and rounding on the plant

• Truncation on the converters

• Rounding on the controller

6 of 11

ou

Numerical errors

• Truncation and rounding on the plant

• Truncation on the converters

• Rounding on the controller

6 of 11

ou

Numerical errors

• Truncation and rounding on the plant

• Truncation on the converters

• Rounding on the controller

6 of 11

ou

Stability

A system xk+1 = Axk + Buk , uk = −Cxk is asymptotically stable if its

executions converge to an equilibrium point.

7 of 11

ou

Stability

A system xk+1 = Axk + Buk , uk = −Cxk is asymptotically stable if its

executions converge to an equilibrium point.

7 of 11

ou

Stability

A system xk+1 = Axk + Buk , uk = −Cxk is asymptotically stable if its

executions converge to an equilibrium point.

7 of 11

ou

Stability

A system xk+1 = Axk + Buk , uk = −Cxk is asymptotically stable if its

executions converge to an equilibrium point.

7 of 11

ou

Stability

A system xk+1 = Axk + Buk , uk = −Cxk is asymptotically stable if its

executions converge to an equilibrium point.

7 of 11

ou

Stability and safety

A system xk+1 = Axk + Buk , uk = −Cxk is asymptotically stable if its

executions converge to an equilibrium point.

7 of 11

ou

Controller synthesis

1.Synthesize

Verify

2.Safety 3.Precision 4.Complete Done

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound

8 of 11

ou

Controller synthesis

1.Synthesize1.Synthesize

Verify

2.Safety 3.Precision 4.Complete Done

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound

Find a controller for given {x0} and k=6
such that the system is stable and safe

synthesize
1: Input: x0, k .
2: Output: C .
3: C=nondet;
4: assume(STABLE(A,B,C));
5: assume(SAFE(x0));
6: i = 0;
7: while i < k do
8: xi+1 = xi (A− BC)
9: assume(SAFE(xi+1));

10: i = i + 1;
11: end while
12: assert(false);

8 of 11

ou

Controller synthesis

1.Synthesize1.Synthesize

Verify

2.Safety 3.Precision 4.Complete Done

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound

Find a controller for given {x0} and k=6
such that the system is stable and safe

synthesize

1: Input: x0, k.

2: Output: C .
3: C=nondet;
4: assume(STABLE(A,B,C));
5: assume(SAFE(x0));
6: i = 0;
7: while i < k do
8: xi+1 = xi (A− BC)
9: assume(SAFE(xi+1));

10: i = i + 1;
11: end while
12: assert(false);

8 of 11

ou

Controller synthesis

1.Synthesize1.Synthesize

Verify

2.Safety 3.Precision 4.Complete Done

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound

Find a controller for given {x0} and k=6
such that the system is stable and safe

synthesize
1: Input: x0, k .
2: Output: C .
3: C=nondet;

4: assume(STABLE(A,B,C));

5: assume(SAFE(x0));
6: i = 0;
7: while i < k do
8: xi+1 = xi (A− BC)
9: assume(SAFE(xi+1));

10: i = i + 1;
11: end while
12: assert(false);

8 of 11

ou

Controller synthesis

1.Synthesize1.Synthesize

Verify

2.Safety 3.Precision 4.Complete Done

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound

Find a controller for given {x0} and k=6
such that the system is stable and safe

synthesize
1: Input: x0, k .
2: Output: C .
3: C=nondet;
4: assume(STABLE(A,B,C));

5: assume(SAFE(x0));

6: i = 0 ;

7: while i < k do

8: xi+1 = xi (A− BC)

9: assume(SAFE(xi+1));

10: i = i + 1;
11: end while
12: assert(false);

8 of 11

ou

Controller synthesis

1.Synthesize1.Synthesize

Verify

2.Safety 3.Precision 4.Complete Done

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound

Find a controller for given {x0} and k=6
such that the system is stable and safe

synthesize
1: Input: x0, k .
2: Output: C .
3: C=nondet;
4: assume(STABLE(A,B,C));
5: assume(SAFE(x0));
6: i = 0;
7: while i < k do
8: xi+1 = xi (A− BC)
9: assume(SAFE(xi+1));

10: i = i + 1;
11: end while
12: assert(false);

8 of 11

ou

Controller synthesis

1.Synthesize1.Synthesize

Verify

2.Safety 3.Precision 4.Complete Done

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound

Find a controller for given {x0} and k=6
such that the system is stable and safe

8 of 11

ou

Controller synthesis

1.Synthesize

Verify

2.Safety2.Safety 3.Precision 4.Complete Done

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound

Find an initial state for which the system
is unsafe

8 of 11

ou

Controller synthesis

1.Synthesize

Verify

2.Safety2.Safety 3.Precision 4.Complete Done

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound

Find an initial state for which the system
is unsafe

8 of 11

ou

Controller synthesis

1.Synthesize1.Synthesize

Verify

2.Safety 3.Precision 4.Complete Done

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound

Find a controller for {x0, x ′0} and k=6
such that the system is stable and safe

8 of 11

ou

Controller synthesis

1.Synthesize1.Synthesize

Verify

2.Safety 3.Precision 4.Complete Done

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound

Find a controller for {x0, x ′0} and k=6
such that the system is stable and safe

8 of 11

ou

Controller synthesis

1.Synthesize

Verify

2.Safety2.Safety 3.Precision 4.Complete Done

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound

Find an initial state for which the system
is unsafe

8 of 11

ou

Controller synthesis

1.Synthesize

Verify

2.Safety 3.Precision3.Precision 4.Complete Done

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound

Check that the plant precision is sufficient

8 of 11

ou

Controller synthesis

1.Synthesize

Verify

2.Safety 3.Precision 4.Complete4.Complete Done

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound

Check that k is sufficient

8 of 11

ou

Controller synthesis

1.Synthesize

Verify

2.Safety 3.Precision 4.Complete DoneDone

C

C-ex

PASS

Increase Precision

Increase Unfolding Bound

Controller found

8 of 11

ou

Experimental results

Benchmark Dimension Completeness threshold
〈Ip ,Fp〉 Time

1 Cruise Control 1 8,16 7.44 s
2 DC Motor 2 8,16 7.76 s
3 Helicopter 3 8,16 12.13 s
4 Inverted Pendulum 4 8,16 8.82 s
5 Magnetic Pointer 2 8,16 10.31 s
6 Magnetic Suspension 2 12,20 21.55 s
7 Pendulum 2 8,16 9.08 s
8 Suspension 2 8,16 17.18 s
9 Tape Driver 3 8,16 8.05 s

10 Satellite 2 8,16 8.76 s

Synthesis phases: Synthesize 52%, verify 48%

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Automated Formal Synthesis of Digital
Controllers for State-Space Physical Plants?

Alessandro Abate1, Iury Bessa2, Dario Cattaruzza1, Lucas Cordeiro1,2,
Cristina David1, Pascal Kesseli1, Daniel Kroening1, and Elizabeth Polgreen1

1 University of Oxford, UK
2 Federal University of Amazonas, Manaus, Brazil

Abstract. We present a sound and automated approach to synthesize
safe digital feedback controllers for physical plants represented as linear,
time-invariant models. Models are given as dynamical equations with
inputs, evolving over a continuous state space and accounting for errors
due to the digitization of signals by the controller. Our counterexample
guided inductive synthesis (CEGIS) approach has two phases: We syn-
thesize a static feedback controller that stabilizes the system but that
may not be safe for all initial conditions. Safety is then verified either
via BMC or abstract acceleration; if the verification step fails, a coun-
terexample is provided to the synthesis engine and the process iterates
until a safe controller is obtained. We demonstrate the practical value of
this approach by automatically synthesizing safe controllers for intricate
physical plant models from the digital control literature.

1 Introduction

Linear Time Invariant (LTI) models represent a broad class of dynamical sys-
tems with significant impact in numerous application areas such as life sciences,
robotics, and engineering [2, 11]. The synthesis of controllers for LTI models
is well understood, however the use of digital control architectures adds new
challenges due to the effects of finite-precision arithmetic, time discretization,
and quantization noise, which is typically introduced by Analogue-to-Digital
(ADC) and Digital-to-Analogue (DAC) conversion. While research on digital
control is well developed [2], automated and sound control synthesis is challenging,
particularly when the synthesis objective goes beyond classical stability. There
are recent methods for verifying reachability properties of a given controller [13].
However, these methods have not been generalized to control synthesis. Note
that a synthesis algorithm that guarantees stability does not ensure safety: the
system might transitively visit an unsafe state resulting in unrecoverable failure.

We propose a novel algorithm for the synthesis of control algorithms for
LTI models that are guaranteed to be safe, considering both the continuous
dynamics of the plant and the finite-precision discrete dynamics of the controller,

? Supported by EPSRC grant EP/J012564/1, ERC project 280053 (CPROVER) and
the H2020 FET OPEN 712689 SC2.

Check abstract acceleration based approach in the paper!

9 of 11

ou

Experimental results

Benchmark Dimension Completeness threshold
〈Ip ,Fp〉 Time

1 Cruise Control 1 8,16 7.44 s
2 DC Motor 2 8,16 7.76 s
3 Helicopter 3 8,16 12.13 s
4 Inverted Pendulum 4 8,16 8.82 s
5 Magnetic Pointer 2 8,16 10.31 s
6 Magnetic Suspension 2 12,20 21.55 s
7 Pendulum 2 8,16 9.08 s
8 Suspension 2 8,16 17.18 s
9 Tape Driver 3 8,16 8.05 s

10 Satellite 2 8,16 8.76 s

Synthesis phases: Synthesize 52%, verify 48%

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Automated Formal Synthesis of Digital
Controllers for State-Space Physical Plants?

Alessandro Abate1, Iury Bessa2, Dario Cattaruzza1, Lucas Cordeiro1,2,
Cristina David1, Pascal Kesseli1, Daniel Kroening1, and Elizabeth Polgreen1

1 University of Oxford, UK
2 Federal University of Amazonas, Manaus, Brazil

Abstract. We present a sound and automated approach to synthesize
safe digital feedback controllers for physical plants represented as linear,
time-invariant models. Models are given as dynamical equations with
inputs, evolving over a continuous state space and accounting for errors
due to the digitization of signals by the controller. Our counterexample
guided inductive synthesis (CEGIS) approach has two phases: We syn-
thesize a static feedback controller that stabilizes the system but that
may not be safe for all initial conditions. Safety is then verified either
via BMC or abstract acceleration; if the verification step fails, a coun-
terexample is provided to the synthesis engine and the process iterates
until a safe controller is obtained. We demonstrate the practical value of
this approach by automatically synthesizing safe controllers for intricate
physical plant models from the digital control literature.

1 Introduction

Linear Time Invariant (LTI) models represent a broad class of dynamical sys-
tems with significant impact in numerous application areas such as life sciences,
robotics, and engineering [2, 11]. The synthesis of controllers for LTI models
is well understood, however the use of digital control architectures adds new
challenges due to the effects of finite-precision arithmetic, time discretization,
and quantization noise, which is typically introduced by Analogue-to-Digital
(ADC) and Digital-to-Analogue (DAC) conversion. While research on digital
control is well developed [2], automated and sound control synthesis is challenging,
particularly when the synthesis objective goes beyond classical stability. There
are recent methods for verifying reachability properties of a given controller [13].
However, these methods have not been generalized to control synthesis. Note
that a synthesis algorithm that guarantees stability does not ensure safety: the
system might transitively visit an unsafe state resulting in unrecoverable failure.

We propose a novel algorithm for the synthesis of control algorithms for
LTI models that are guaranteed to be safe, considering both the continuous
dynamics of the plant and the finite-precision discrete dynamics of the controller,

? Supported by EPSRC grant EP/J012564/1, ERC project 280053 (CPROVER) and
the H2020 FET OPEN 712689 SC2.

Check abstract acceleration based approach in the paper!

9 of 11

ou

Conclusions

• Automated synthesizer for digital state-feedback controllers
that ensures stability and safety

• Evaluated the errors due to the controller’s implementation
and plant’s modeling

DSSynth Matlab toolbox:
www.cprover.org/DSSynth/dssynth-toolbox-1.0.0.zip

10 of 11

ou

Conclusions

• Automated synthesizer for digital state-feedback controllers
that ensures stability and safety

• Evaluated the errors due to the controller’s implementation
and plant’s modeling

DSSynth Matlab toolbox:
www.cprover.org/DSSynth/dssynth-toolbox-1.0.0.zip

10 of 11

