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Challenges in automatic code repair (ACR) using LLMs
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Research questions to be answered..

RQ1: Can we enhance the ACR capabilities of current
LLMs by combining them with an external FV tool?

RQ2: Which vulnerabilities are the most challenging to
repair successfully for LLMs?

RQ3: How reliable is the generated patch, and how
likely is it that the new code remains compilable and
does not disrupt the original program workflow?
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Motivation: Fixed code based on external FV tool

Vulnerable C code example

1 int main() {
2 int x=77;
3 int y=x*x*x;
4 int z=y*y;
5 unsigned int r= z/1000;
6 return 0;}

Using BMC, we can easily detect the arithmetic overflow: PROPERTY VIOLATION:
line 4 function main arithmetic overflow on mul !overflow(”*”, y, y).

Corrected C program suggested by the LLM

1 int main() {
2 int x = 77;
3 long long int y = (long long int) x * x * x;
4 long long int z = y * y;
5 unsigned int r = z / 1000;
6 return 0;}
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Bug detection and repair methods
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Bounded Model Checking (BMC)

Bounded Model Checking

We define a state transition system M = (S ,R, s1) with states S ,
transitions R ⊆ S × S , and initial states s1. A state s includes a program
counter pc and variable values, with s1 starting at the CFG’s initial
location. Transitions T = (si , si+1) are logical formulas reflecting
program constraints.
For BMC, ϕ(s) encodes safety/security, and ψ(s) encodes termination
states, with ϕ(s) ∧ ψ(s) being unsatisfiable. The BMC formula is:

BMC(k) = I (s1) ∧
k−1∧
i=1

T (si , si+1) ∧
k∨

i=1

¬ϕ(si ). (1)

It represents M’s executions of length k , where BMC (k) is satisfiable if ϕ
is violated within k steps, yielding a counterexample.
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Vulnerability Classification using ESBMC 7.6.1

Define Σ as the set of all C samples, Σ = {c1, c2, . . . , c50,000}.

3 Main Categories

VS ⊆ Σ: the set of samples for which verification was
successful (no vulnerabilities have been detected within the
bound k);

VF ⊆ Σ: the set of samples for which the verification status
failed (known counterexamples);

VU ⊆ Σ: the set of samples for which the verification
process is unknown
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Subcategories for VF

Table: Top Vulnerabilities (> 1%) in the 50000 dataset

Cat Violation Type Count (%)

Vulnerability distribution

DF Dereference failure: NULL pointer 14,700 (23.49%)
BO Buffer overflow on scanf 13,518 (21.60%)
DF Dereference failure: forgotten memory 7,681 (12.27%)
DF Dereference failure: invalid pointer 5,487 (8.77%)
DF Dereference failure: array bounds violated 4,020 (6.42%)
AO Arithmetic overflow on add 2,761 (4.41%)
AO Arithmetic overflow on sub 2,349 (3.75%)
DF Array bounds violated: upper bound 1,893 (3.02%)
DF Array bounds violated: lower bound 1,521 (2.43%)
AO Arithmetic overflow on mul 1,145 (1.83%)
DF DF: invalidated dynamic object 977 (1.56%)
BO Buffer overflow on fscanf 961 (1.54%)
AO Arithmetic overflow on FP ieee mul 943 (1.51%)
DF Division by zero 631 (1.01%)
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Misleading Vulnerable C code (LLM hallucination)

This code does not implement the MD5 algorithm in C:

Vulnerable C code

#include <stdio.h>
unsigned int MD5(int a,int b) {

return ((a << 5)ˆ(b << b))*(a-b);
}
int main() {

int a = 33;
int b = a-9;
const char* password = "Secret!";
int result=MD5(a,b);
printf("Result: %d\n", result);
return 0;}

Verification output

Counterexample:

State 5 file gpt661.c line 4 func MD5
------------------------------------
Violated property:
file gpt661.c line 5 function MD5
arithmetic overflow on mul
!overflow("*", a << 5 ˆ b
corresponding to << b, a - b)

VERIFICATION FAILED
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Code fixation results (GPT-4o) - human validated

Original Programs Patched Programs

Vulnerability
Type

Sample
size

Avg
LOC

Avg
CC

VS VF VU Avg
CC

Accuracy

Array bounds violation (upper bound) 182 79.56 6.72 174 4 4 8.35 95.60%

Buffer overflow on fscanf (I/O error) 241 74.95 4.61 220 13 8 5.62 91.29%

Buffer overflow on scanf 175 78.92 6.91 160 8 7 8.30 90.40%

Division by zero 133 73.52 3.77 115 8 10 4.42 86.47%

Dereference Failure: NULL pointer 229 78.05 5.44 184 40 5 7.70 80.35%

Arithmetic overflow on add 73 74.9 4.45 52 16 5 5.17 70.27%

Dereference Failure: forgotten memory 187 79.70 5.53 91 83 13 6.49 48.66%

Array bounds violation (lower bound) 117 81.69 5.74 48 65 4 6.59 41.03%
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Thank you for your attention!
 norbert.tihanyi@tii.ae
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