Technology - - A
TI I Innovation EVRWGISISINNLY §:
Institute 1824 -,

The University of Manchester N2

10101101001010101011101011010010101010111010110100

A New Era in Software Security: Towards

Self-Healing Software via Large Language Models
and Formal Verification

Norbert Tihanyi, Yiannis Charalambous, Ridhi Jain, Mohamed
Amine Ferrag and Lucas C. Cordeiro

29 Apr 2025
Ottawa, Canada

ESBMC-AIl

Challenges in automatic code repair (ACR) using LLMs

Large &
Diverse dataset

Deep Arithmetic
Understanding

Equivalence
Checking

CHALLENGES

Vulnerability
Detection

Hallucination

Avoid False
Negatives/ Positives

ESBMC-AIl

Automatic Code Repair Framework

, N
/ ,—[Efficient SMT-based Context-Bounded Model Checker (ESBMC)]_\ REENEIEEITICHT
r . provided

C code

e { ESBMC-AI Framework J---

'AC source code that may. |
or may not be vulnerable |
|
|

N
Symbolic
execution

VERIFICATION
SUCCESSFUL

</>

Safe C code

Violated
property

Vulnerable C
code

\) \ J If a property violation is
AN e e found, itis fed to an LLM
with the original C code
~ = code suggested bythe - — — — — — = — — — — — — = — — = — — — — — ——— ==
LLM is verified again by
BMC.

’

Research questions to be answered..

@ RQ1: Can we enhance the ACR capabilities of current
LLMs by combining them with an external FV tool?

@ RQ2: Which vulnerabilities are the most challenging to
repair successfully for LLMs?

o RQ3: How reliable is the generated patch, and how
likely is it that the new code remains compilable and
does not disrupt the original program workflow?

ESBMC-AIl

Motivation: Fixed code based on external FV tool

Vulnerable C code example

1 int main() {

2 int x=77;

3] int y=x*x#*x;

4 int z=yxy;

5 unsigned int r= z/1000;
6 return 0;}

Using BMC, we can easily detect the arithmetic overflow: PROPERTY VIOLATION:
line 4 function main arithmetic overflow on mul !overflow("*”, vy, y).

Corrected C program suggested by the LLM

int main() {
int x = 77;
long long int y = (long long int) x * x * X;
long long int z = y * y;
unsigned int r = z / 1000;
return 0;}

ESBMC-AIl

1
2
3
4
5
6

Bug detection and repair methods

TABLE I: Comparison of related software bug detection and repair approaches.

[Framework detalls | Repair |
‘ Name ‘ Year ‘ ol ‘ Dataset | Language | Granularity ‘ Compiles ‘ Method l
Bhayat et al. [57] 2001 x SV-COMP [89] e NAA NA NA
OpenGB (58] 2022 v SV-COMP [89] e NIA NiA NiA
ESBMC-Solidity (59] | 2022 v own? Solidity NIA NA NIA
FuseBMC [60] 2022 v Test-Comp [90] e NIA NA NIA
COMPCODER [84] 2022 x AdVTest [91], CodeSearchNet [92] Python Program v Compiler Feedback based code
completion
Jigsaw [72] 2022 x PandasEvall, PandasEval2 [72]2 Python Snippets X Program Synthesis
Conversational ACR [83] | 2023 X QuixBugs [74] Java, Python Function X Prompt-based repair
ChatRepair [88] 2023 x Defectsd [93], QuixBugs [74] Java, Python Patch x Learns from previously failed tests
Pearce ct al. 23] 2023 v ExtractFix [94] C, Python Program v Security tests-based
RING [87] 2023 x BIFL [95], Bavishi et al. [96], TFix [97) Excel, C, PowerFx, PS, Program v Compiler message
Python, JS
Huang et al. [65] 2023 v Defectsd) (93], CPatMiner [17] Java, C/C++, Python Patch X Model trained on buggy code - fix pair
FuzzGPT (98] 2024 x Own [98] (unavailable) Python - x LLM:-based Fuzzing,
RepairAgent [75] 2024 X Defects4] (93] Java Program v Invoking suitable tools
SecRepair [79] 2024 x InstructVul [79] (unavailable) e Program v Fine-tuned instruction training
Self-Edit [77] 2024 7 APPS [99], HumanEval [18] Python Program v Compile/Runtime with tests
LLM-CompDroid [77) | 2024 x ConfFix [100] XML Configuration x Prompi-based
ContrastRepair [101] 2024 X Defectsd] [93], HumanEval [18], QuixBugs [74] Java, Python Program v Contrastive test-pair
CigaR [102] 2004 v Defects4] [93], HumanEval (18] Java Patches x Prompt optimization
ESBMC-AL 2025 v FormAl [2], [103] cren Program v Formal verifcation based fecdback

ESBMC-AIl

Bounded Model Checking (BMC)

Bounded Model Checking

We define a state transition system M = (S, R, s;) with states S,
transitions R C S x S, and initial states s;. A state s includes a program
counter pc and variable values, with s, starting at the CFG's initial
location. Transitions T = (s;, s;+1) are logical formulas reflecting
program constraints.

For BMC, ¢(s) encodes safety/security, and 1(s) encodes termination
states, with ¢(s) A 1(s) being unsatisfiable. The BMC formula is:

k—1 k
BMC(k) = I(s1) A J\ T(si,si41) A\ —~o(s). (1)

i=1 i=1

It represents M's executions of length k, where BMC(k) is satisfiable if ¢
is violated within k steps, yielding a counterexample.

ESBMC-AIl

Vulnerability Classification using ESBMC 7.6.1

Define X as the set of all C samples, X = {c1, ¢, ..., C50,000}-

3 Main Categories

@ VS C X the set of samples for which verification was
successful (no vulnerabilities have been detected within the
bound k);

@ VF C X: the set of samples for which the verification status
failed (known counterexamples);

@ VU C X: the set of samples for which the verification
process is unknown

ESBMC-AIl

Subcategories for V. F

Table: Top Vulnerabilities (> 1%) in the 50000 dataset

Cat

Violation Type

Count (%)

Vulnerability distribution

DF
BO
DF
DF
DF
AO

DF
DF
AO
DF
BO
AO
DF

Dereference failure: NULL pointer
Buffer overflow on scanf

Dereference failure: forgotten memory
Dereference failure: invalid pointer
Dereference failure: array bounds violated
Arithmetic overflow on add
Arithmetic overflow on sub

Array bounds violated: upper bound
Array bounds violated: lower bound
Arithmetic overflow on mul

DF: invalidated dynamic object
Buffer overflow on fscanf

Arithmetic overflow on FP ieee_mul
Division by zero

14,700 (23.49%)
13,518 (21.60%)
7,681 (12.27%)
5,487 (8.77%)
4,020 (6.42%)
2,761 (4.41%)
2,349 (3.75%)
1,893 (3.02%)
1,521 (2.43%)
1,145 (1.83%)
977 (1.56%)
961 (1.54%)
943 (1.51%)
631 (1.01%)

BMC-AI

Misleading Vulnerable C code (LLM hallucination)

This code does not implement the MD5 algorithm in C:

Verification output

Counterexample:

Vulnerable C code

#include <stdio.h>
unsigned int MD5(int a,int b) {

return ((a << 5)"(b << b))*(a-b); State 5 file gpt661.c line 4 func MD5

int main() {
int a = 33;
int b = a-9;
const charx password = "Secret!”;
int result=MD5(a,b);
printf("Result: %d\n"”, result);
return 0;}

Violated property:
file gpt661.c line 5 function MD5
arithmetic overflow on mul
loverflow("*", a << 5 " b
corresponding to << b, a - b)

VERIFICATION FAILED

ESBMC-AIl

Code fixation results (GPT-40) - human validated

Original Programs Patched Programs

Vuln-le;;:t;ility Sasrirzlzle I‘_A(‘)% Acvcg Vs VF vu ?:vcg Accuracy
Array bounds violation (upper bound) 182 79.56 6.72 174 4 4 8.35 -
Buffer overflow on fscanf (/O error) 241 74.95 4.61 220 13 8 5.62 91.29%
Buffer overflow on scanf 175 78.92 6.91 160 8 7 8.30 90.40%
Division by zero 133 73.52 3.77 115 8 10 4.42 86.47%
Dereference Failure: NULL pointer 229 78.05 5.44 184 40 5 7.70 80.35%
Arithmetic overflow on add 73 74.9 4.45 52 16 5 5.17 70.27%
Dereference Failure: forgotten memory 187 79.70 5.53 91 83 13 6.49 48.66%
Array bounds violation (lower bound) 117 81.69 5.74 48 65 4 6.59 41.03%

BMC-AI

Thank you for your attention!
N norbert.tihanyi®tii.ae

¥ @TihanyiNorbert

ESBMC-AIl

