
10101101001010101011101011010010101010111010110100

A New Era in Software Security: Towards
Self-Healing Software via Large Language Models

and Formal Verification

Norbert Tihanyi, Yiannis Charalambous, Ridhi Jain, Mohamed
Amine Ferrag and Lucas C. Cordeiro

29 Apr 2025
Ottawa, Canada

ESBMC-AI



Challenges in automatic code repair (ACR) using LLMs

CHALLENGES

Large &
Diverse dataset

Deep Arithmetic
Understanding

Vulnerability
Detection

Avoid False
Negatives/ Positives

Hallucination

Equivalence
Checking

ESBMC-AI



Automatic Code Repair Framework

Safe C code

LLM 
Suggested C

code

Formal
Verification

AST 
converter

Efficient SMT-based Context-Bounded Model Checker (ESBMC)

Clang 
compiler

GOTO 
converter

1

C source 
code

ANSI C
Symbolic
execution SMT 

solver

VERIFICATION
FAILED

VERIFICATION
SUCCESSFUL

Violated
property

+
Vulnerable C

code

LLM module Counterexample

A C source code that may
or may not be vulnerable

1
Formal verification of the

provided C code

2

If a property violation is
found, it is fed to an LLM
with the original C code

3

C code suggested by the
LLM is verified again by

BMC.

4

ESBMC-AI Framework

ESBMC-AI



Research questions to be answered..

RQ1: Can we enhance the ACR capabilities of current
LLMs by combining them with an external FV tool?

RQ2: Which vulnerabilities are the most challenging to
repair successfully for LLMs?

RQ3: How reliable is the generated patch, and how
likely is it that the new code remains compilable and
does not disrupt the original program workflow?

ESBMC-AI



Motivation: Fixed code based on external FV tool

Vulnerable C code example

1 int main() {
2 int x=77;
3 int y=x*x*x;
4 int z=y*y;
5 unsigned int r= z/1000;
6 return 0;}

Using BMC, we can easily detect the arithmetic overflow: PROPERTY VIOLATION:
line 4 function main arithmetic overflow on mul !overflow(”*”, y, y).

Corrected C program suggested by the LLM

1 int main() {
2 int x = 77;
3 long long int y = (long long int) x * x * x;
4 long long int z = y * y;
5 unsigned int r = z / 1000;
6 return 0;}

ESBMC-AI



Bug detection and repair methods

ESBMC-AI



Bounded Model Checking (BMC)

Bounded Model Checking

We define a state transition system M = (S ,R, s1) with states S ,
transitions R ⊆ S × S , and initial states s1. A state s includes a program
counter pc and variable values, with s1 starting at the CFG’s initial
location. Transitions T = (si , si+1) are logical formulas reflecting
program constraints.
For BMC, ϕ(s) encodes safety/security, and ψ(s) encodes termination
states, with ϕ(s) ∧ ψ(s) being unsatisfiable. The BMC formula is:

BMC(k) = I (s1) ∧
k−1∧
i=1

T (si , si+1) ∧
k∨

i=1

¬ϕ(si ). (1)

It represents M’s executions of length k , where BMC (k) is satisfiable if ϕ
is violated within k steps, yielding a counterexample.

ESBMC-AI



Vulnerability Classification using ESBMC 7.6.1

Define Σ as the set of all C samples, Σ = {c1, c2, . . . , c50,000}.

3 Main Categories

VS ⊆ Σ: the set of samples for which verification was
successful (no vulnerabilities have been detected within the
bound k);

VF ⊆ Σ: the set of samples for which the verification status
failed (known counterexamples);

VU ⊆ Σ: the set of samples for which the verification
process is unknown

ESBMC-AI



Subcategories for VF

Table: Top Vulnerabilities (> 1%) in the 50000 dataset

Cat Violation Type Count (%)

Vulnerability distribution

DF Dereference failure: NULL pointer 14,700 (23.49%)
BO Buffer overflow on scanf 13,518 (21.60%)
DF Dereference failure: forgotten memory 7,681 (12.27%)
DF Dereference failure: invalid pointer 5,487 (8.77%)
DF Dereference failure: array bounds violated 4,020 (6.42%)
AO Arithmetic overflow on add 2,761 (4.41%)
AO Arithmetic overflow on sub 2,349 (3.75%)
DF Array bounds violated: upper bound 1,893 (3.02%)
DF Array bounds violated: lower bound 1,521 (2.43%)
AO Arithmetic overflow on mul 1,145 (1.83%)
DF DF: invalidated dynamic object 977 (1.56%)
BO Buffer overflow on fscanf 961 (1.54%)
AO Arithmetic overflow on FP ieee mul 943 (1.51%)
DF Division by zero 631 (1.01%)

ESBMC-AI



Misleading Vulnerable C code (LLM hallucination)

This code does not implement the MD5 algorithm in C:

Vulnerable C code

#include <stdio.h>
unsigned int MD5(int a,int b) {

return ((a << 5)ˆ(b << b))*(a-b);
}
int main() {

int a = 33;
int b = a-9;
const char* password = "Secret!";
int result=MD5(a,b);
printf("Result: %d\n", result);
return 0;}

Verification output

Counterexample:

State 5 file gpt661.c line 4 func MD5
------------------------------------
Violated property:
file gpt661.c line 5 function MD5
arithmetic overflow on mul
!overflow("*", a << 5 ˆ b
corresponding to << b, a - b)

VERIFICATION FAILED

ESBMC-AI



Code fixation results (GPT-4o) - human validated

Original Programs Patched Programs

Vulnerability
Type

Sample
size

Avg
LOC

Avg
CC

VS VF VU Avg
CC

Accuracy

Array bounds violation (upper bound) 182 79.56 6.72 174 4 4 8.35 95.60%

Buffer overflow on fscanf (I/O error) 241 74.95 4.61 220 13 8 5.62 91.29%

Buffer overflow on scanf 175 78.92 6.91 160 8 7 8.30 90.40%

Division by zero 133 73.52 3.77 115 8 10 4.42 86.47%

Dereference Failure: NULL pointer 229 78.05 5.44 184 40 5 7.70 80.35%

Arithmetic overflow on add 73 74.9 4.45 52 16 5 5.17 70.27%

Dereference Failure: forgotten memory 187 79.70 5.53 91 83 13 6.49 48.66%

Array bounds violation (lower bound) 117 81.69 5.74 48 65 4 6.59 41.03%

ESBMC-AI



Thank you for your attention!
 norbert.tihanyi@tii.ae

7 @TihanyiNorbert

ESBMC-AI


