Southampton

School of Electronics
and Computer Science

SMT-Based
Bounded Model Checking
for Embedded ANSI-C Software

Lucas Cordeiro, Bernd Fischer, Joao Marques-Silva
b.fischer@ecs.soton.ac.uk

Software Model Checking — State of The Art in 2009

Software model checking had made significant progress but faced challenges of
scalability, concurrency, and integration into the software development process

1.

Tools: Verifiers were available (BLAST, CBMC, JPF, NuSMV, and Spin), but had
limitations regarding scalability, modeling languages, types of properties.

SAT/SMT solvers: Few verifiers could support SAT (CBMC, SLAM) or even
SMT solvers (SMT-CBMC). The viability of using SMT solvers was unclear.

Concurrency: Researchers were developing techniques to model and verify
multi-threaded programs more effectively (ongoing challenge).

Integration with Development Process: Growing emphasis on integrating model
checking into the software development process.

Hybrid Approaches: Combine model-checking with other technigues, such as
testing and static analysis, to improve verification accuracy and efficiency.

Southampton

Objective of this work

Exploit SMT to improve BMC of embedded software

exploit background theories of SMT solvers
provide suitable encodings for

— pointers — bit operations

— unions — arithmetic over- and underflow
build an SMT-based BMC tool for full ANSI-C

— build on top of CBEMC front-end

— use several third-party SMT solvers as back-ends

evaluate ESBMC over embedded software applications

T (W

S lh {
SAT-based CBMC . kroening] ouhaTpton

implements BMC for ANSI-C/C++ programs using SAT-solvers:

unroll program
k times
CIC++ parse , IRep e
source =« tree |« | tree ¥ —
5 BMC verlﬁa::*.ghcm
; ; conditions
scan and {typecheck and " _
parse convert to SSA | PTOPSes T
check satisfiability
using a SAT solver
Problems {due to bft-b!asﬁng): = conversion to propositional form

« complex expressions lead to large propositional formulae

* high-level information is lost FErcodingofx==a+b
« represent x, a, b by n independent

propositional variables each
» represent addition by logical circuit
» represent equality by equivalences
on propositional vaniables

replace by SMT

_J translation and

solver

Soulhdmpton

Encoding of Numeric Types

+ SMT solvers typically provide different encodings for numbers:
— abstract domains (Z, R)
— fixed-width bit vectors (unsigned int, ...)
= “internalized bit-blasting”

« verification results can depend on encodings

~valid in abstract domains
" suchas ZorR

(@>0)A(b>0)=(@+b>0)"

*-.. doesn't hold for bitvectors,
due to possible overflows

— majority of VCs solved faster if numeric types are modelled
by abstract domains but possible loss of precision
— ESBMC supports both encodings

Soulhdmpton

Encoding of Structured Datatypes

+ arrays and records / tuples typically handled directly by
SMT-solver

* pointers modelled as tuples

— p.o 2 representation of underlying object (Store object at ‘
— p.i 2 index (if pointer used as array base) PUSWOH o
int main() { [Pyi= StDre(pDrD B:a[ﬂ]})
int a[2], i, x, *p; Apsi= store(pl, 1, 0)
p=a; Agyi= (X =i"-q.?‘ s . -
if (x==0) R A &y := store(ag, i l Store index at ‘
ali]=0; — ﬁ Update index ‘ position 1|
elsg T T -"-"(az: 1+ '0: l)
a[Hl]:l; . MNay = |t-.:\'1__1, a, as)
}assert((p+2)==1); . A ps:= store(p,, 1, select(p,, 1)+2)

T O

SULI[thI"Ip’EOI‘I

Encoding Numeric Types as Bitvectors -

Bitvector encodings need to handle

+ type casts and implicit conversions
— arithmetic conversions implemented using word-level functions
(part of the bitvector theory: extractBits, ...)
i- different conversions for every pair of types
= uses type information provided by front-end
— conversion to / from bool via if-then-else operator

+ arithmetic over- / underflow
— standard requires modulo-arithmetic for unsigned integers
— define error literals to detect over- / underflow for other types
res_ok < -~ overflow(x, y) A ™ underflow(x, y)
= similar to conversions
+ floating-point numbers
— approximated by fixed-point numbers, integral part only
— represented by fixed-width bitvector

Comparison to SAT-CBMC [p. kroening]

L VERRITY O

Southampton

Skl ool El et s

anddmm e Sewmar

SAT-CBMC ESBMC
Time #P Time #P

Module #L | #P | Enc. |Solver| Fail |[Error| Enc. |Solver| Fail | Error
fft1 218 72| 04| <01/ 0| 0 04 <0.1 0
it . MO -l 0| 39/2337.8 <01 0 0
i SMT-solveroften 12| <01] 1] o/ o5 24| 1] o
| significantly faster MOl _.L-0--35-43261__02] O 0
| than SAT-solver 4‘5{1‘;*1& o 1| <01| 144L-0 o0

\8.8__TOo| o] 1] 12 77[>0] o0

K] R e e T R
ao,. sl asl_0f---0--457L__92/ 0 0
laplace 110 76| 30.8{._ 10| o] 76 123] o03l-0] o
exStbKey 558 18] 1.2] <0al_of--i- A2l _<01] o o
exStoHDMI | 1045| 25 167.9_ 78.9| 0| 0| 1644] 335,20 o0
exStbLED 430/ 6|195.%7130.0, 0] " 0] 7656 445/~0/ 0
exStbHwAcc | 1432 113| 07| <01 "D~ -01--U7~ "<0.1| 0 0
exStbRes 353| 40| 271.8| 319.0/ 0| 0| 269.3/1161.0 © 0

Comparison to SMT-CBMC [a. Armando et al]

Southampton

Skl ool El et s
and e SewmaT

« SMT-based BMC for C, built on top of CVC3 (hard-coded)
— limited coverage of language

« (Goal: compare efficiency of encodings

ESBEMC SMT-CBEMC

Module z3 | cvea | cves
BubbleSort (n=35) | - *_Lf—r’za? 94.5
' ESBMC substantially faster, | MO "
even with identical solvers 8.9 66.5
= probably better encoding | MO MO
‘Belnmanrord U3l 0.5 13.6
Prim 0.5 16.9 18.4
StrCmp 38.8 9.9 TO
SumArray 4.7 1.2 113.8
MinMax 6.2 MO MO

Conclusions

IS TREESITY O
Southampton
Skl ool El et s

and e SewmaT

« SMT-based BMC is more efficient than SAT-based BMC

— but not uniformly

« described and evaluated first SMT-based BMC for ANSI-C
— provided encodings for typical ANSI-C constructs not directly

supported by SMT-solvers

« available at users.ecs.soton.ac.uk/1cc08r/esbmc/

Future work:

« better handling of floating-point numbers
« concurrency (based on Pthread library)
« termination analysis

ESBMC — Post 2009: Building a better tool

« SMT-Based Bounded Model Checking for Embedded ANSI-C Software.
[TSE 2012, 371 citations]

« ESBMC 5.0: an industrial-strength C model checker. [ASE 2018, 95 citations]

 Verifying Multi-Threaded Software using SMT-Based Context-Bounded Model
Checking. [ICSE 2011, 202 citations]

« Context-Bounded Model Checking with ESBMC 1.17. [TACAS 2012, 69 citations]

« Model Checking LTL Properties over ANSI-C Programs with Bounded Traces.
[Softw. Syst. Model. 2015, 38 citations]

« Handling Unbounded Loops with ESBMC 1.20. [TACAS 2013, 55 citations]

« ESBMC v6.0: Verifying C Programs Using k-Induction and Invariant Inference -
(Competition Contribution). [TACAS 2019, 58 citations]

ESBMC — Post 2009: Building a software engineering tool

« Continuous Verification of Large Embedded Software Using SMT-Based Bounded
Model Checking. [ECBS 2010, 19 citations]

« ESBMC: Scalable and Precise Test Generation based on the Floating-Point Theory.
[FASE 2020, 13 citations]

« ESBMC 6.1: Automated Test Case Generation Using Bounded Model Checking.
[STTT 2021, 13 citations]

« A Method to Localize Faults in Concurrent C Programs. [JSS 2017, 16 citations]

A New Era in Software Security: Towards Self-Healing Software via Large Language
Models and Formal Verification. [Under Review ACM TOSEM 2023, 5 citations]

 The FormAl Dataset: Generative Al in Software Security Through the Lens of Formal
Verification. [PROMISE 2023]

ESBMC — Post 2009: Supporting more languages

« SMT-Based Bounded Model Checking of C++ Programs [ECBS 2013, 49 citations]

 Bounded Model Checking of C++ Programs Based on the Qt Cross-Platform
Framework. [STVR 2017, 21 citations]

 Verifying CUDA Programs using SMT-Based Context-Bounded Model Checking.
[SAC 2016, 30 citations]

« ESBMC-Jimple: Verifying Kotlin Programs via Jimple Intermediate Representation.
[ISSTA 2022]

« ESBMC-Solidity: An SMT-Based Model Checker for Solidity Smart Contracts.
[ICSE 2022, 3 citations]

« ESBMC-CHERI: Towards Verification of C Programs for CHERI Platforms with
ESBMC. [ISSTA 2022, 2 citations]

ESBMC today: integrated logic-based verification platform

Tiny ML

onnx2c /
keras2c

Logic-based automated reasoning for checking the
safety and security of Al and software systems

Software
)
CIC++/ Sean o can
CUDA g 9
Scan
Java/Kotlin > Soot
o Scan o
Solidity » Solidity
Scan -
CHERI-C » clang
cheri-c

;'_/

Abstract Syntax External Memory
Tree (AST) L
Libraries Model .
Parallelization
! v ¢
Cog:g:)—;low .| GOTO § :){en;ggg% Verification| sSMT
Program g Conditions |
Generator Y Engine SV
A
\ 4
Code T Abstract Caching /
Instrumentation e Interpretation Slicing

Source code

Correctness
Witness

Property holds
Models

Property violated

Violation
Witness

|

Large
» Language

Combines BMC, k-induction, abstract interpretation, CP/SMT solving

www.esbmc.orq

towards correctness proof and bug hunting

Models

l

Root Cause Analysis /
Program Repair

International Competitions

* Intl. Competition on Software Verification (TACAS 2012-2023)
. 6 x Gold \

e 4 X Silver

10 x Bronze

@< O=

* Intl. Competition on Software Testing (FASE 2020-2023)
+ 7 x Gold Y

1 x Silver

« 1 X Bronze

O< O=<

13 x gold, 5 x silver and 11 bronze (29 medals)

Intl. Software Verification Competitions (SV-Comp 2023)

« SV-COMP 2023, 23805 verification tasks, max. score: 38644

« ESBMC solved most verification tasks in < 10 seconds
CBMC

tive score

Verification of the Overall Category

Intl. Software Testing Competitions (Test-Comp 2023)

\

N FuseBMC

ao - CoVeriTest i
FuSeBMC ===
F BAC-14
-~ b Tiger ———
i MLEE =—fF—
Legian
Legion/SymCC e
3000 = PR Test
Symbiotic
. TracerX
EE £
AEP O e
3 2000
1500
1000 |-
i
= i
500 = P e e
L —
;-.---"' o]
e = S m—
— e 1
a 500 1000

FuSeBMC achieved 3 awards: 1st place in Cover-Error, 1st place in
Cover-Branches, and 1st place in Overall

Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation
for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

https://test-comp.sosy-lab.org/2023/

https://test-comp.sosy-lab.org/2023/

Impact: Awards and Industrial Deployment

 Distinguished Paper Award at ICSE'11
« Best Paper Award at SBESC'15
« Most Influential Paper Award at ASE'23

« 29 awards from the international competitions on software verification (SV-
COMP) and testing (Test-Comp) 2012-2023 at TACAS/FASE

» Bug Finding and Code Coverage @

* Intel deploys ESBMC Iin production as one of its verification engines for
verifying firmware in C

* Nokia and ARM have found security vulnerabilities in C/C++ software

 Funded by government (EPSRC, British Council, Royal Society, CAPES,
CNPqg, FAPEAM) and industry (Intel, Motorola, Samsung, Nokia, ARM)

(Real) Impact: Students and Contributors

5 PhD theses
e 30+ MSc dissertations
« 30+ final-year projects

* GitHub:
= 35 contributors
= 21,580 commits
= 195 stars
= 81 forks

https://github.com/esbmc/esbmc

Vision: Automated Reasoning System for Secure SW and Al

Develop an automated reasoning system for safeguarding
software and Al systems against security vulnerabilities
In an increasingly digital and interconnected world

Al code
Automated
Reasoning System
S::C:ge (ARS): Searching,
learning, memory
: and parallelization
Binary
code

Explainable
Behavior Correctness
Robustness

Code inspection
Static Analysis
Dynamic Analysis

Detection Vulnerability
classification
Severity
Likelihood
Remediation cost
Properties

Fault Localization
Fault Repair

Correction

Acknowledgements

EPSRC i
@ ®® BRITISH
®® COUNCIL

NOKIA

motorola

@ CNPq

intel

arm

	Seção Padrão
	Slide 1
	Slide 2: Software Model Checking – State of The Art in 2009
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: ESBMC – Post 2009: Building a better tool
	Slide 10: ESBMC – Post 2009: Building a software engineering tool
	Slide 11: ESBMC – Post 2009: Supporting more languages
	Slide 12
	Slide 13: International Competitions
	Slide 14: Intl. Software Verification Competitions (SV-Comp 2023)
	Slide 15: Intl. Software Testing Competitions (Test-Comp 2023)
	Slide 16: Impact: Awards and Industrial Deployment
	Slide 17: (Real) Impact: Students and Contributors
	Slide 18: Vision: Automated Reasoning System for Secure SW and AI
	Slide 19: Acknowledgements

