


Software Model Checking – State of The Art in 2009

Software model checking had made significant progress but faced challenges of 

scalability, concurrency, and integration into the software development process

1. Tools: Verifiers were available (BLAST, CBMC, JPF, NuSMV, and Spin), but had 

limitations regarding scalability, modeling languages, types of properties.

2. SAT/SMT solvers: Few verifiers could support SAT (CBMC, SLAM) or even 

SMT solvers (SMT-CBMC). The viability of using SMT solvers was unclear.

3. Concurrency: Researchers were developing techniques to model and verify 

multi-threaded programs more effectively (ongoing challenge).

4. Integration with Development Process: Growing emphasis on integrating model 

checking into the software development process.

5. Hybrid Approaches: Combine model-checking with other techniques, such as 

testing and static analysis, to improve verification accuracy and efficiency.
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ESBMC – Post 2009: Building a better tool

• SMT-Based Bounded Model Checking for Embedded ANSI-C Software.
[TSE 2012, 371 citations]

• ESBMC 5.0: an industrial-strength C model checker. [ASE 2018, 95 citations]

• Verifying Multi-Threaded Software using SMT-Based Context-Bounded Model 

Checking. [ICSE 2011, 202 citations]

• Context-Bounded Model Checking with ESBMC 1.17. [TACAS 2012, 69 citations]

• Model Checking LTL Properties over ANSI-C Programs with Bounded Traces. 
[Softw. Syst. Model. 2015, 38 citations]

• Handling Unbounded Loops with ESBMC 1.20. [TACAS 2013, 55 citations]

• ESBMC v6.0: Verifying C Programs Using k-Induction and Invariant Inference -

(Competition Contribution). [TACAS 2019, 58 citations]



ESBMC – Post 2009: Building a software engineering tool

• Continuous Verification of Large Embedded Software Using SMT-Based Bounded 

Model Checking. [ECBS 2010, 19 citations]

• ESBMC: Scalable and Precise Test Generation based on the Floating-Point Theory. 
[FASE 2020, 13 citations]

• ESBMC 6.1: Automated Test Case Generation Using Bounded Model Checking. 
[STTT 2021, 13 citations]

• A Method to Localize Faults in Concurrent C Programs. [JSS 2017, 16 citations]

• A New Era in Software Security: Towards Self-Healing Software via Large Language 

Models and Formal Verification. [Under Review ACM TOSEM 2023, 5 citations]

• The FormAI Dataset: Generative AI in Software Security Through the Lens of Formal 

Verification. [PROMISE 2023]



ESBMC – Post 2009: Supporting more languages

• SMT-Based Bounded Model Checking of C++ Programs [ECBS 2013, 49 citations]

• Bounded Model Checking of C++ Programs Based on the Qt Cross-Platform 

Framework. [STVR 2017, 21 citations]

• Verifying CUDA Programs using SMT-Based Context-Bounded Model Checking. 
[SAC 2016, 30 citations]

• ESBMC-Jimple: Verifying Kotlin Programs via Jimple Intermediate Representation. 
[ISSTA 2022]

• ESBMC-Solidity: An SMT-Based Model Checker for Solidity Smart Contracts. 
[ICSE  2022, 3 citations]

• ESBMC-CHERI: Towards Verification of C Programs for CHERI Platforms with 

ESBMC. [ISSTA 2022, 2 citations]



Logic-based automated reasoning for checking the 

safety and security of AI and software systems

Combines BMC, k-induction, abstract interpretation, CP/SMT solving 

towards correctness proof and bug hunting

www.esbmc.org

GOTO

Program

Verification 

Conditions

Abstract Syntax

Tree (AST)

Scan

SMT

Solver

Symbolic

Execution

Engine

Property holds

Property violated

C/C++/

CUDA

Control-flow 

Graph 

Generator 

clang

Memory 

Model

External 

Libraries

Correctness 

Witness

Violation 

Witness

Scan
Java/Kotlin Soot

Scan
Solidity Solidity

Scan
CHERI-C

clang-

cheri-c

Abstract 

Interpretation

Code 

Instrumentation
CP Solver

Large 

Language 

Models

Root Cause Analysis / 

Program Repair

Source code

Models

Parallelization

Software

onnx2c / 

keras2c

Tiny ML

Caching / 

Slicing

ESBMC today: integrated logic-based verification platform



International Competitions

• Intl. Competition on Software Verification (TACAS 2012-2023)

• 6 x Gold

• 4 x Silver 

• 10 x Bronze

• Intl. Competition on Software Testing (FASE 2020-2023)

• 7 x Gold

• 1 x Silver 

• 1 x Bronze

13 x gold, 5 x silver and 11 bronze (29 medals)



Intl. Software Verification Competitions (SV-Comp 2023)

• SV-COMP 2023, 23805 verification tasks, max. score: 38644

• ESBMC solved most verification tasks in  10 seconds

Verification of the Overall Category
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Intl. Software Testing Competitions (Test-Comp 2023)

FuSeBMC achieved 3 awards: 1st place in Cover-Error, 1st place in 

Cover-Branches, and 1st place in Overall

https://test-comp.sosy-lab.org/2023/
Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation 

for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

FuSeBMC

FuSeBMC_IA

https://test-comp.sosy-lab.org/2023/


Impact: Awards and Industrial Deployment

• Distinguished Paper Award at ICSE’11

• Best Paper Award at SBESC’15

• Most Influential Paper Award at ASE’23

• 29 awards from the international competitions on software verification (SV-

COMP) and testing (Test-Comp) 2012-2023 at TACAS/FASE

• Bug Finding and Code Coverage

• Intel deploys ESBMC in production as one of its verification engines for 

verifying firmware in C

• Nokia and ARM have found security vulnerabilities in C/C++ software

• Funded by government (EPSRC, British Council, Royal Society, CAPES, 

CNPq, FAPEAM) and industry (Intel, Motorola, Samsung, Nokia, ARM)

🥇



(Real) Impact: Students and Contributors

• 5 PhD theses

• 30+ MSc dissertations

• 30+ final-year projects

• GitHub:

▪ 35 contributors

▪ 21,580 commits

▪ 195 stars

▪ 81 forks

https://github.com/esbmc/esbmc 

https://github.com/esbmc/esbmc


Vision: Automated Reasoning System for Secure SW and AI 
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Develop an automated reasoning system for safeguarding 

software and AI systems against security vulnerabilities 

in an increasingly digital and interconnected world
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