

Software Model Checking – State of The Art in 2009

Software model checking had made significant progress but faced challenges of

scalability, concurrency, and integration into the software development process

1. Tools: Verifiers were available (BLAST, CBMC, JPF, NuSMV, and Spin), but had

limitations regarding scalability, modeling languages, types of properties.

2. SAT/SMT solvers: Few verifiers could support SAT (CBMC, SLAM) or even

SMT solvers (SMT-CBMC). The viability of using SMT solvers was unclear.

3. Concurrency: Researchers were developing techniques to model and verify

multi-threaded programs more effectively (ongoing challenge).

4. Integration with Development Process: Growing emphasis on integrating model

checking into the software development process.

5. Hybrid Approaches: Combine model-checking with other techniques, such as

testing and static analysis, to improve verification accuracy and efficiency.

replace by SMT

translation and

solver

ESBMC – Post 2009: Building a better tool

• SMT-Based Bounded Model Checking for Embedded ANSI-C Software.
[TSE 2012, 371 citations]

• ESBMC 5.0: an industrial-strength C model checker. [ASE 2018, 95 citations]

• Verifying Multi-Threaded Software using SMT-Based Context-Bounded Model

Checking. [ICSE 2011, 202 citations]

• Context-Bounded Model Checking with ESBMC 1.17. [TACAS 2012, 69 citations]

• Model Checking LTL Properties over ANSI-C Programs with Bounded Traces.
[Softw. Syst. Model. 2015, 38 citations]

• Handling Unbounded Loops with ESBMC 1.20. [TACAS 2013, 55 citations]

• ESBMC v6.0: Verifying C Programs Using k-Induction and Invariant Inference -

(Competition Contribution). [TACAS 2019, 58 citations]

ESBMC – Post 2009: Building a software engineering tool

• Continuous Verification of Large Embedded Software Using SMT-Based Bounded

Model Checking. [ECBS 2010, 19 citations]

• ESBMC: Scalable and Precise Test Generation based on the Floating-Point Theory.
[FASE 2020, 13 citations]

• ESBMC 6.1: Automated Test Case Generation Using Bounded Model Checking.
[STTT 2021, 13 citations]

• A Method to Localize Faults in Concurrent C Programs. [JSS 2017, 16 citations]

• A New Era in Software Security: Towards Self-Healing Software via Large Language

Models and Formal Verification. [Under Review ACM TOSEM 2023, 5 citations]

• The FormAI Dataset: Generative AI in Software Security Through the Lens of Formal

Verification. [PROMISE 2023]

ESBMC – Post 2009: Supporting more languages

• SMT-Based Bounded Model Checking of C++ Programs [ECBS 2013, 49 citations]

• Bounded Model Checking of C++ Programs Based on the Qt Cross-Platform

Framework. [STVR 2017, 21 citations]

• Verifying CUDA Programs using SMT-Based Context-Bounded Model Checking.
[SAC 2016, 30 citations]

• ESBMC-Jimple: Verifying Kotlin Programs via Jimple Intermediate Representation.
[ISSTA 2022]

• ESBMC-Solidity: An SMT-Based Model Checker for Solidity Smart Contracts.
[ICSE 2022, 3 citations]

• ESBMC-CHERI: Towards Verification of C Programs for CHERI Platforms with

ESBMC. [ISSTA 2022, 2 citations]

Logic-based automated reasoning for checking the

safety and security of AI and software systems

Combines BMC, k-induction, abstract interpretation, CP/SMT solving

towards correctness proof and bug hunting

www.esbmc.org

GOTO

Program

Verification

Conditions

Abstract Syntax

Tree (AST)

Scan

SMT

Solver

Symbolic

Execution

Engine

Property holds

Property violated

C/C++/

CUDA

Control-flow

Graph

Generator

clang

Memory

Model

External

Libraries

Correctness

Witness

Violation

Witness

Scan
Java/Kotlin Soot

Scan
Solidity Solidity

Scan
CHERI-C

clang-

cheri-c

Abstract

Interpretation

Code

Instrumentation
CP Solver

Large

Language

Models

Root Cause Analysis /

Program Repair

Source code

Models

Parallelization

Software

onnx2c /

keras2c

Tiny ML

Caching /

Slicing

ESBMC today: integrated logic-based verification platform

International Competitions

• Intl. Competition on Software Verification (TACAS 2012-2023)

• 6 x Gold

• 4 x Silver

• 10 x Bronze

• Intl. Competition on Software Testing (FASE 2020-2023)

• 7 x Gold

• 1 x Silver

• 1 x Bronze

13 x gold, 5 x silver and 11 bronze (29 medals)

Intl. Software Verification Competitions (SV-Comp 2023)

• SV-COMP 2023, 23805 verification tasks, max. score: 38644

• ESBMC solved most verification tasks in  10 seconds

Verification of the Overall Category

ESBMC

CBMC
2LS

UAutomizer

Intl. Software Testing Competitions (Test-Comp 2023)

FuSeBMC achieved 3 awards: 1st place in Cover-Error, 1st place in

Cover-Branches, and 1st place in Overall

https://test-comp.sosy-lab.org/2023/
Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation

for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

FuSeBMC

FuSeBMC_IA

https://test-comp.sosy-lab.org/2023/

Impact: Awards and Industrial Deployment

• Distinguished Paper Award at ICSE’11

• Best Paper Award at SBESC’15

• Most Influential Paper Award at ASE’23

• 29 awards from the international competitions on software verification (SV-

COMP) and testing (Test-Comp) 2012-2023 at TACAS/FASE

• Bug Finding and Code Coverage

• Intel deploys ESBMC in production as one of its verification engines for

verifying firmware in C

• Nokia and ARM have found security vulnerabilities in C/C++ software

• Funded by government (EPSRC, British Council, Royal Society, CAPES,

CNPq, FAPEAM) and industry (Intel, Motorola, Samsung, Nokia, ARM)

🥇

(Real) Impact: Students and Contributors

• 5 PhD theses

• 30+ MSc dissertations

• 30+ final-year projects

• GitHub:

▪ 35 contributors

▪ 21,580 commits

▪ 195 stars

▪ 81 forks

https://github.com/esbmc/esbmc

https://github.com/esbmc/esbmc

Vision: Automated Reasoning System for Secure SW and AI

Source

code

Binary

code

AI code

Automated

Reasoning System

(ARS): Searching,

learning, memory

and parallelization

Vulnerability

classification

Properties

Severity

Likelihood

Remediation cost

Explainable

Behavior Correctness

Robustness

Detection Correction

Code inspection

Static Analysis

Dynamic Analysis Fault Localization

Fault Repair

Develop an automated reasoning system for safeguarding

software and AI systems against security vulnerabilities

in an increasingly digital and interconnected world

Acknowledgements

	Seção Padrão
	Slide 1
	Slide 2: Software Model Checking – State of The Art in 2009
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: ESBMC – Post 2009: Building a better tool
	Slide 10: ESBMC – Post 2009: Building a software engineering tool
	Slide 11: ESBMC – Post 2009: Supporting more languages
	Slide 12
	Slide 13: International Competitions
	Slide 14: Intl. Software Verification Competitions (SV-Comp 2023)
	Slide 15: Intl. Software Testing Competitions (Test-Comp 2023)
	Slide 16: Impact: Awards and Industrial Deployment
	Slide 17: (Real) Impact: Students and Contributors
	Slide 18: Vision: Automated Reasoning System for Secure SW and AI
	Slide 19: Acknowledgements

