UNIVERSITY OF

Southampton

School of Electronics
and Computer Science

ESBMC 5.0

Mikhail R. Gadelha, Felipe R. Monteiro, Jeremy Morse,
Lucas Cordeiro, Bernd Fischer, Denis Nicole

Q

MANCHESTER

% University of
AR BRISTOL

Iﬁ

1324
The University of Manchester

MOTIVATION

Motivation

* Battleship built in 1946
and automated in 1996
(27 dual-core 200MHz
processors and
Windows NT).

USS Yorktown

Motivation

* Battleship built in 1946
and automated in 1996
(27 dual-core 200MHz
processors and
Windows NT).

* Failure due to a
division by zero: It had
to be towed back to its

USS Yorktown naval base.

SOFTWARE VERIFICATION
TECHNIQUES

Model Checking vs Testing/
Simulation

: Simulation
testing /
error

* Checks only some of the system executions.

* May miss errors.
* Can be less expensive than model checking.

Model Checking vs Testing/

Simulation
mp OK
@ s Model
- Checking —> Ef‘ror trace
o _ Line 5: ..
Specification (e.g, LTL) Line 12: ..

* Exhaustively explores all executions. |Line 41:..

— Can be bounded to limit number of iterations,
context-switch, etc.

* Report errors as traces.

* Can be extremely resource-hungry.

Bounded Model checking

Y

7/

_o__

\zb)%
/

e Bounded model
checkers “slice” the
state space in depth.

e |t's aimed to find bugs
and (naively) can only
prove correctness if all
states are reachable
within the bound.

ESBMC 5.0

ESBMC 5.0

ESBMC, the Efficient SMT-Based Context-Bounded
Model Checker was originally developed at
Southampton by Lucas Cordeiro under the
supervision of Bernd Fischer.

Jeremy Morse further developed ESBMC during
his PhD.

Development is now led from Southampton by
Mikhail Gadelha.

Turned 10 years in 2018!

ESBMC 5.0

SMT-based BMC of single- and multi-threaded
C/C++ programs.

exploits SMT solvers and their background theories:

— optimized encodings for pointers, bit operations,
unions, arithmetic over- and underflow, and floating-
points,

— support for Boolector, Z3, MathSAT, CVC4 and Yices.

supports verifying multi-threaded software that
uses pthreads threading library:

— lazy exploration of the reachability tree.

Supported Properties

 Dbuilt-in properties:
— arithmetic under- and overflow,
— pointer safety,
— array bounds,
— division by zero,
— memory leaks,
— atomicity and order violations,
— deadlock,
— data race.

K-INDUCTION

K-induction: we can sometimes
analyse to unbounded depths

* In general, there is no way to deduce depths:

— halting problem,
— lots of current work on deducing invariants.

* For simple loops, they can sometimes be
guessed.

* |Interval analysis often speed up the analysis
considerably.

K-induction: the proof falls into
three parts

1. Base case: naive BMC, tries to find bugs.

2. Forward condition: checks the completeness

threshold (if all loops were completely
unrolled).

3. Inductive step: over-approximate loops so all
states can be checked without unrolling them

completely (sometime it helps to unroll a few
times to strengthen invariants).

FLOATING-POINTS

Floating-points: can it fail?

int main ()

{
float x;
float yv = x;
assert (x == vy);

return 0O;

Floating-points: can it fail?

int main ()

{
float x = NalN;
float yv = x;
assert (x == vy);

return 0O;

Floating-point Encoding

« ESBMC encodes floating-point arithmetic
using:
— bitvectors, which extends the floating-point

arithmetic support to all solvers that are
currently integrated.

— the SMT theory of floating-points, available only
in Z3 and MathSAT.

PYTHON API

Python AP

« ESBMC now includes a Python API that
reduces the difficulty of prototyping new
features and makes the tool internals

accessible to a wider audience. P
* The verification process can be
Intercepted and modified: we

currently use the process to call Matlab
and generate the transfer functions of
digital systems.

Experimental Evaluation

e Qur evaluation consists of 9523 benchmarks
from SV-COMP’18, checking a range of
properties:

— Reachability in single- and multi-threaded
programs,

— Memory safety,
— Overflow,
— Termination.

Experimental Evaluation

* ESBMC ranked third in the overall category,
with a 5476 score.

* The k-induction algorithm reported 4301
correct results, the best result among tools
that used k-induction in the competition.

¢ 92% of withesses being correctly validated.

Experimental Evaluation
(floating-points)

350
300 * ESBMC; 308 Ceagle; 298 »

« CBMC; 264
250 - 2Ls; 248

ESBMC-Incr; 194
200 5
ESBMC-kind; 173 = SMACK; 153

150

CPA-Seq; 129 » Uautomizer; 109
100 Symbiotic; 86

Depthk; 100 ° " Utaipan; 109
CPA-kind; 107
50 " Ukojak; 62
« ESBMC-falsi; 18

0
-50 « CPA-BAM-BnB; -56
-100

-2000 0 2000 4000 6000 8000 10000 12000 14000 16000

Time (s)

Thank you

www.esbmc.org

https://github.com/esbmc/esbmc

mikhail.ramalho@gmail.com

rms.felipe@gmail.com

