
Mikhail R. Gadelha, Felipe R. Monteiro, Jeremy Morse, 
Lucas Cordeiro, Bernd Fischer, Denis Nicole 

 
 

ESBMC 5.0  



MOTIVATION	



Motivation	

•  Battleship	built	in	1946	
and	automated	in	1996	
(27	dual-core	200MHz	
processors	and	
Windows	NT).	

USS	Yorktown	



Motivation	

•  Battleship	built	in	1946	
and	automated	in	1996	
(27	dual-core	200MHz	
processors	and	
Windows	NT).	

•  Failure	due	to	a	
division	by	zero:	It	had	
to	be	towed	back	to	its	
naval	base.	USS	Yorktown	



SOFTWARE	VERIFICATION	
TECHNIQUES		



Model Checking vs Testing/
Simulation 

•  Checks	only	some	of	the	system	executions.	
•  May	miss	errors.	
•  Can	be	less	expensive	than	model	checking.	

Simulation/	
testing	

OK 
 

error 



Model Checking vs Testing/
Simulation 

•  Exhaustively	explores	all	executions.	
– Can	be	bounded	to	limit	number	of	iterations,	
context-switch,	etc.	

•  Report	errors	as	traces.	
•  Can	be	extremely	resource-hungry.	

Model	
Checking		

OK 
 

Error trace 

Specification (e.g, LTL) 
Line 5: … 
Line 12: … 
… 
Line 41:… 



Bounded	Model	checking	

•  Bounded	model	
checkers	“slice”	the	
state	space	in	depth.	

•  It’s	aimed	to	find	bugs	
and	(naïvely)	can	only	
prove	correctness	if	all	
states	are	reachable	
within	the	bound.	

k	=	0	

k	=	1	

k	=	2	

k	=	3	

k	=	4	

k	=	5	

k	=	6	



ESBMC	5.0	



ESBMC 5.0 
•  ESBMC,	the	Efficient	SMT-Based	Context-Bounded	
Model	Checker	was	originally	developed	at	
Southampton	by	Lucas Cordeiro under the 
supervision of Bernd Fischer. 

•  Jeremy Morse further developed ESBMC during 
his PhD. 

•  Development is now led from Southampton by 
Mikhail Gadelha. 

•  Turned 10 years in 2018!	



ESBMC 5.0 

•  SMT-based BMC of single- and multi-threaded 
C/C++ programs. 

•  exploits SMT solvers and their background theories: 
–  optimized encodings for pointers, bit operations, 

unions, arithmetic over- and underflow, and floating-
points, 

–  support for Boolector, Z3, MathSAT, CVC4 and Yices. 

•  supports verifying multi-threaded software that 
uses pthreads threading library: 
–  lazy exploration of the reachability tree. 



Supported Properties 

•  built-in properties: 
–  arithmetic under- and overflow,  
–  pointer safety, 
–  array bounds, 
–  division by zero, 
–  memory leaks, 
–  atomicity and order violations, 
–  deadlock, 
–  data race. 



K-INDUCTION	



K-induction: we can sometimes 
analyse to unbounded depths 

•  In	general,	there	is	no	way	to	deduce	depths:	
– halting	problem,	
–  lots	of	current	work	on	deducing	invariants.	

•  For	simple	loops,	they	can	sometimes	be	
guessed.	

•  Interval	analysis	often	speed	up	the	analysis	
considerably.	



K-induction: the proof falls into 
three parts 

1.  Base	case:	naïve	BMC,	tries	to	find	bugs.	

2.  Forward	condition:	checks	the	completeness	
threshold	(if	all	loops	were	completely	
unrolled).	

3.  Inductive	step:	over-approximate	loops	so	all	
states	can	be	checked	without	unrolling	them	
completely	(sometime	it	helps	to	unroll	a	few	
times	to	strengthen	invariants).	



FLOATING-POINTS	



Floating-points: can it fail? 

 int main() 
 { 

   float x; 

   float y = x; 

   assert (x == y); 

   return 0; 

 } 



Floating-points: can it fail? 

 int main() 
 { 

   float x = NaN; 

   float y = x; 

   assert (x == y); 

   return 0; 

 } 



Floating-point Encoding 

•  ESBMC encodes floating-point arithmetic 
using: 
– bitvectors, which extends the floating-point 

arithmetic support to all solvers that are 
currently integrated. 

–  the SMT theory of floating-points, available only 
in Z3 and MathSAT. 



PYTHON	API	



Python API 

•  ESBMC now includes a Python API that 
reduces the difficulty of prototyping new 
features and makes the tool internals 
accessible to a wider audience. 

•  The verification process can be 
intercepted and modified: we  
currently use the process to call Matlab 
and generate the transfer functions of 
digital systems. 



Experimental Evaluation 

•  Our	evaluation	consists	of	9523	benchmarks	
from	SV-COMP’18,	checking	a	range	of	
properties:	
– Reachability	in	single-	and	multi-threaded	
programs,	

– Memory	safety,	
– Overflow,	
– Termination.	



Experimental Evaluation 

•  ESBMC	ranked	third	in	the	overall	category,	
with	a	5476	score.	

•  The k-induction algorithm reported 4301 
correct results, the best result among tools 
that used k-induction in the competition. 

•  92% of witnesses being correctly validated.  



Experimental Evaluation  
(floating-points) 



Thank you 

www.esbmc.org	
	

https://github.com/esbmc/esbmc	
	

mikhail.ramalho@gmail.com	
	

rms.felipe@gmail.com	


