DSSynth: An Automated Digital Controller Synthesis Tool for Physical Plants ASE 2017

Alessandro Abate, Iury Bessa, Dario Cattaruzza, Lennon Chaves, **Lucas Cordeiro**, Cristina David, Pascal Kesseli, Daniel Kroening and Elizabeth Polgreen

> Diffblue Ltd., University of Oxford, Federal University of Amazonas

> > November 1st, 2017

Motivation

Motivation

Automatically synthesise digital controllers

- Representation of the digital controller and plant
 - state-space: matrices A, B, C, and D
 - transfer-function: coefficients b_0 , b_1 ,..., b_m and a_0 , a_1 ,..., a_m

- Representation of the digital controller and plant
 - \circ state-space: matrices A, B, C, and D
 - transfer-function: coefficients b_0 , b_1 ,..., b_m and a_0 , a_1 ,..., a_m
- Stability of closed-loop systems
 - $\circ\,$ presents a bounded response for any bounded excitation

- Representation of the digital controller and plant
 - \circ state-space: matrices A, B, C, and D
 - transfer-function: coefficients b_0 , b_1 ,..., b_m and a_0 , a_1 ,..., a_m
- Stability of closed-loop systems
 - o presents a bounded response for any bounded excitation
- Safety of closed-loop systems
 - $\circ~$ defines a requirement on the states of the model

- Representation of the digital controller and plant
 - \circ state-space: matrices A, B, C, and D
 - transfer-function: coefficients b_0 , b_1 ,..., b_m and a_0 , a_1 ,..., a_m
- Stability of closed-loop systems
 - o presents a bounded response for any bounded excitation
- Safety of closed-loop systems
 - $\circ~$ defines a requirement on the states of the model
- Numerical erros (truncation and rounding)

Generate sound digital controllers for stability and safety specifications with a very high degree of automation

Generate sound digital controllers for stability and safety specifications with a very high degree of automation

• support for transfer-function and state-space representations in closed-loop form

Generate sound digital controllers for stability and safety specifications with a very high degree of automation

- support for transfer-function and state-space representations in closed-loop form
- synthesize different numerical representations of the controller using CounterExample Guided Inductive Synthesis (CEGIS)

Generate sound digital controllers for stability and safety specifications with a very high degree of automation

- support for transfer-function and state-space representations in closed-loop form
- synthesize different numerical representations of the controller using CounterExample Guided Inductive Synthesis (CEGIS)
- provide a MATLAB toolbox to synthesize digital controllers while taking into account finite word-length effects

The Proposed Synthesis Methodology

Phases of the controller synthesis:

CEGIS for Control Systems

CEGIS with multi-staged verification:

DSSynth Usage - Transfer Function

Physical plant for an unmanned aerial vehicle (UAV) plant:

$$G(z) = \frac{B(z)}{A(z)} = \frac{-0.06875z^2}{z^2 - 1.696z + 0.7089}.$$
 (1)

Synthesizing the digital controller:

DSSynth Usage - Transfer Function

Digital controller synthesized by DSSynth:

$$C(z) = \frac{-0.9983^2 + 0.09587z + 0.1926}{z^2 + 0.5665z + 0.75}$$

(2)

Computing the general equation (plant and controller):

DSSynth Usage - Step Response

Step response for the UAV plant describing a stable system:

DSSynth Usage - MATLAB Application

😣 🔿 💷 DSSynth Application	😣 😑 🗉 DSSynth Application
Define Plant	Define Implementation
Transfer-Function State-Space	Integer:
Transfer-Function Numerator [-0.06875 0 0]	Fractional:
Denominator [1 -1.696 0.7089]	Maximum Range: 1
Sampling Time (s) 0.02	Minimum Range: 1 +
Next	Previous Synthesize

(a) Definition of the system representation and the physical plant

(b) Definition of implementation aspects and input ranges

DSSynth Usage - MATLAB Application

😣 🚍 💷 DSSynth Application	😣 🔿 🗊 Figure 1
Synthesized Controller	<u>File Edit View Insert Tools D</u> esktop <u>W</u> indow <u>H</u> elp *
Numerator: -0.99829 0.095871 0.19263	[™] ≝ ⊗ ⊱ °< °< ° 9 ₩ ∡ · 3 □ E = □
Denominator: 0.99995 0.5665 0.75	Step Response
	0.6
	0.5
Synthesization Successful	
	E E E E E E E E E E E E E E E E E E E
	0.2
	0.1
Previous Simulate	0 10 20 30 40 50 Time (seconds)

(c) Digital controller synthesized by DSSynth

(d) Step response for the synthesized digital controller

Our evaluation consists of 18 Single-Input and Single-Output control system benchmarks extracted from the literature:

Our evaluation consists of 18 Single-Input and Single-Output control system benchmarks extracted from the literature:

Experimental Objectives:

- Evaluate the DSSynth performance to produce digital controllers
- · Confirm the stability and safety outside of our model using MATLAB

Our evaluation consists of 18 Single-Input and Single-Output control system benchmarks extracted from the literature:

Experimental Objectives:

- Evaluate the DSSynth performance to produce digital controllers
- · Confirm the stability and safety outside of our model using MATLAB

Experimental Setup:

- Signal input range: $\langle -1,1 \rangle$
- Implementation features: $\langle 8, 8 \rangle$
- Intel Core i7 2600 3.40 GHz processor with 24 GB of RAM

Experimental Results:

• The digital **controller order** ranges from 1 to 8

- The digital controller order ranges from 1 to 8
- The number of state variables ranges from 1 to 9

- The digital **controller order** ranges from 1 to 8
- The number of **state variables** ranges from 1 to 9
- The average synthesis time amounts to 35.5 s for state-space systems

- The digital controller order ranges from 1 to 8
- The number of **state variables** ranges from 1 to 9
- The average synthesis time amounts to 35.5 s for state-space systems
- The average synthesis time amounts to 123.6s for transfer functions

- The digital controller order ranges from 1 to 8
- The number of **state variables** ranges from 1 to 9
- The average synthesis time amounts to 35.5 s for state-space systems
- The average synthesis time amounts to 123.6s for transfer functions
- On average our engine spent 52% in the synthesis and 48% in the verification phase

Experimental Results:

- The digital controller order ranges from 1 to 8
- The number of **state variables** ranges from 1 to 9
- The average synthesis time amounts to 35.5 s for state-space systems
- The average synthesis time amounts to 123.6s for transfer functions
- On average our engine spent 52% in the synthesis and 48% in the verification phase

DSSynth Matlab toolbox:

https://www.cprover.org/DSSynth/dssynth-toolbox-1.0.0.zip https://github.com/ssvlab/dsverifier/tree/master/toolbox-dssynth